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Abstract .  This paper presents a detailed study of average reward reinforcement learning, an undiscounted 

optimality framework that is more appropriate for cyclical tasks than the much better studied discounted 

framework. A wide spectrum of average reward algorithms are described, ranging from synchronous dynamic 

programming methods to several (provably convergent) asynchronous algorithms from optimal control and 

learning automata. A general sensitive discount optimality metric called n-discount-optimality is introduced, and 

used to compare the various algorithms. The overview identifies a key similarity across several asynchronous 

algorithms that is crucial to their convergence, namely independent estimation of the average reward and the 

relative values. The overview also uncovers a surprising limitation shared by the different algorithms: while 

several algorithms can provably generate gain-optimal policies that maximize average reward, none of them 

can reliably filter these to produce bias-optimal (or T-optimal) policies that also maximize the finite reward to 

absorbing goal states. This paper also presents a detailed empirical study of R-learning, an average reward 

reinforcement learning method, using two empirical testbeds: a stochastic grid world domain and a simulated 

robot environment. A detailed sensitivity analysis of R-learning is carried out to test its dependence on learning 

rates and exploration levels. The results suggest that R-learning is quite sensitive to exploration strategies, and 

can fall into sub-optimal limit cycles. The performance of R-learning is also compared with that of  Q-learning, 

the best studied discounted RL method. Here, the results suggest that R-learning can be fine-tuned to give 

better performance than Q-learning in both domains. 

Keywords:  Reinforcement learning, Markov decision processes 

1. Introduction 

Machine learning techniques that enable autonomous agents to adapt to dynamic environ- 

ments would find use in many applications, ranging from flexible robots for automating 

chores (Engelberger, 1989) to customized software apprentices for managing informa- 

tion (Dent, et al., 1992). Recently, an adaptive control paradigm called reinforcement 

learning (RL) has received much attention (Barto, et al., 1995, Kaelbling, 1993b, Sutton, 

1992). Here, an agent is placed in an initially unknown task environment, and learns by 

trial and error to choose actions that maximize, over the long run, rewards that it receives. 

RL has been shown to scale much better than related dynamic programming (DP) meth- 

ods for solving Markov decision processes, such as policy iteration (Howard, 1960). 

For example, Tesauro (Tesauro, 1992) recently produced a grandmaster backgammon 

program using Sutton's TD(A) temporal difference learning algorithm (Sutton, 1988). 

Most of the research in RL has studied a problem formulation where agents maximize 

the cumulative sum of rewards. However, this approach cannot handle infinite horizon 

tasks, where there are no absorbing goal states, without discounting future rewards. 

Traditionally, discounting has served two purposes. In some domains, such as economics, 
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discounting can be used to represent "interest" earned on rewards, so that an action that 

generates an immediate reward will be preferred over one that generates the same reward 

some steps into the future. However, the typical domains studied in RL, such as robotics 

or games, do not fall in this category. In fact, many RL tasks have absorbing goal states, 

where the aim of  the agent is to get to a given goal state as quickly as possible. As 

Kaelbling showed (Kaelbling, 1993a), such tasks can be solved using undiscounted RL 

methods. 

Clearly, discounting is only really necessary in cyclical  tasks, where the cumulative 

reward sum can be unbounded. Examples of  such tasks include a robot learning to 

avoid obstacles (Mahadevan & Connell, 1992) or an automated guided vehicle (AGV) 

serving multiple queues (Tadepalli & Ok, 1994). Discounted RL methods can and have 

been applied to such tasks, but can lead to sub-optimal behavior i f  there is a short term 

mediocre payoff  solution that looks more attractive than a more long-term high reward 

one (see Figure 1). 
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Figure 1. An example to illustrate why an average-reward RL method (R-learning) is preferable to a discounted 
RL method (Q-learning) for cyclical tasks. Consider a robot that is rewarded by +5 if it makes a roundtrip 
service from "Home" to the "Printer", but rewarded +20 for servicing the more distant "Mailroom". The only 
action choice is in the "Home" state, where the robot must decide the service location. The accompanying 
graph shows that if the discount factor 3' is set too low (0.7), Q-learning converges to a suboptimal solution of 
servicing the "Printer"• As 3, is increased, Q-learning infers the optimal policy of servicing the "Mailroom", 
but converges much more slowly than R-learning. 

A more natural long-term measure of  optimality exists for such cyclical tasks, based on 

maximizing the a v e r a g e  reward per action. There are well known classical DP algorithms 

for finding optimal average reward policies, such as policy iteration (Howard, 1960) and 

value iteration (White, 1963). However, these algorithms require knowledge of  the state 

transition probabili ty matrices, and are also computationally intractable. RL methods for 

producing optimal average reward policies should scale much better than classical DP 

methods. Unfortunately, the study of average reward RL is currently at an early stage. 

The first average-reward RL method (R-learning) was proposed only relatively recently 

by Schwartz (Schwartz, 1993). 
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Schwartz hypothesized several reasons why R-learning should outperform discounted 

methods, such as Q-learning (Watkins, 1989), but did not provide any detailed exper- 

imental results to support them. Instead, he used simplified examples to illustrate his 

arguments, such as the one in Figure 1. Here, Q-learning converges much more slowly 

than R-learning, because it initially chooses the closer but more mediocre reward over 

the more distant but better reward. 1 An important question, however, is whether the supe- 

riority of R-learning will similarly manifest itself on larger and more realistic problems. 

A related question is whether average-reward RL algorithms can be theoretically shown 

to converge to optimal policies, analogous to Q-learning. 

This paper undertakes a detailed examination of average reward reinforcement learning. 

First, a detailed overview of average reward Markov decision processes is presented, cov- 

eting a wide range of algorithms from dynamic programming, adaptive control, learning 

automata, and reinforcement learning. A general optimality metric called n-discount- 
optimality (Veinott, 1969) is introduced to relate the discounted and average reward 

frameworks. This metric is used to compare the strengths and limitations of the vari- 

ous average reward algorithms. The key finding is that while several of the algorithms 

described can provably yield optimal average reward (or gain-optimal (Howard, 1960)) 

policies, none of them can also reliably discriminate among these to obtain a bias-optimal 
(Blackwell, 1962) (or what Schwartz (Schwartz, 1993) referred to as T-optimal) policy. 

Bias-optimal policies maximize the finite reward incurred in getting to absorbing goal 

states. 

While we do not provide a convergence proof for R-learning, we lay the groundwork 

for such a proof. We discuss a well known counter-example by Tsitsiklis (described in 

(Bertsekas, 1982)) and show why it does not rule out provably convergent gain-optimal 

RL methods. In fact, we describe several provably convergent asynchronous algorithms, 

and identify a key difference between these algorithms and the counter-example, namely 

independent estimation of the average reward and the relative values. Since R-learning 

shares this similarity, it suggests that a convergence proof for R-learning is possible. 

The second contribution of this paper is a detailed empirical study of R-learning using 

two testbeds: a stochastic grid world domain with membranes, and a simulated robot 

environment. The sensitivity of R-learning to learning rates and exploration levels is 

also studied. The performance of R-learning is compared with that of Q-learning, the 

best studied discounted RL method. The results can be summarized into two findings: 

R-learning is more sensitive than Q-learning to exploration strategies, and can get trapped 

in limit cycles; however, R-learning can be fine-tuned to outperform Q-learning in both 

domains. 

The rest of this paper is organized as follows. Section 2 provides a detailed overview 

of average reward Markov decision processes, including algorithms from DP, adaptive 

control, and learning automata, and shows how R-learning is related to them. Section 3 

presents a detailed experimental test of R-learning using two domains, a stochastic grid 

world domain with membranes, and a simulated robot domain. Section 4 draws some 

conclusions regarding average reward methods, in general, and R-learning, in particular. 

Finally, Section 5 outlines some directions for future work. 



162 S. MAHADEVAN 

2. Average Reward Markov Decision Processes 

This section introduces the reader to the study of average reward Markov decision pro- 

cesses (MDP). It describes a wide spectrum of algorithms ranging from synchronous 

DP algorithms to asynchronous methods from optimal control and learning automata. 

A general sensitive discount optimality metric is introduced, which nicely generalizes 

both average reward and discounted frameworks, and which is useful in comparing the 

various algorithms. The overview clarifies the relationship of R-learning to the (very 

extensive) previous literature on average reward MDP. It also highlights a key similar- 

ity between R-learning and several provably convergent asynchronous average reward 

methods, which may help in its further analysis. 

The material in this section is drawn from a variety of sources. The literature on 

average reward methods in DP is quite voluminous. Howard (Howard, 1960) pioneered 

the study of average reward MDP's, and introduced the policy iteration algorithm. Bias 

optimality was introduced by Blackwell (Blackwell, 1962), who pioneered the study 

of average reward MDP as a limiting case of the discounted MDP framework. The 

concept of n-discount-optimality was introduced by Veinott (Veinott, 1969). We have 

drawn much of our discussion, including the key definitions and illustrative examples, 

from Puterman's recent book (Puterman, 1994), which contains an excellent treatment 

of average reward MDP. 

By comparison, the work on average reward methods in RL is in its infancy. Schwartz's 

original paper on R-learning (Schwartz, 1993) sparked interest in this area in the RL 

community. Other more recent work include that of Singh (Singh, 1994b), Tadepalli 

and Ok (Tadepalli & Ok, 1994), and Mahadevan (Mahadevan, 1994). There has been 

much work in the area of adaptive control on algorithms for computing optimal average 

reward policies; we discuss only one algorithm from (Jalali & Ferguson, 1989). Finally, 

we have also included here a provably convergent asynchronous algorithm from learning 

automata (Narendra & Thathachar, 1989), which has only recently come to our attention, 

and which to our knowledge has not been discussed in the previous RL literature. Average 

reward MDP has also drawn attention in recent work on decision-theoretic planning (e.g. 

see Boutilier and Puterman (Boutilier & Puterman, 1995)). 

2.1. Markov Decision Processes 

A Markov Decision Process (MDP) consists of a (finite or infinite) set of states S, and 

a (finite or infinite) set of actions A for moving between states. In this paper we will 

assume that S and A are finite. Associated with each action a is a state transition matrix 

P(a), where Pzv(a) represents the probability of moving from state x to y under action 

a. There is also a reward or payoff function r : S x A ~ "/-4, where r(x, a) is the 

expected reward for doing action a in state x. 

A stationary deterministic policy is a mapping 7r : S ~ A from states to actions. In 

this paper we restrict our discussion to algorithms for such policies, with the exception 

of the learning automata method, where we allow stationary randomized policies. In any 

case, we do not allow nonstationary policies. 2 Any policy induces a state transition 
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matrix P(Tr), where Pzy(Tr) = Pzy(Tr(x)). Thus, any policy yields a Markov chain 

(S, P(Tr)). A key difference between discounted and average reward frameworks is 

that the policy chain structure plays a critical role in average reward methods. All the 

algorithms described here incorporate some important assumptions about the underlying 

MDP, which need to be defined before presenting the algorithms. 

Two states x and y communicate under a policy 7r if there is a positive probability of  

reaching (through zero or more transitions) each state from the other. It is easy to see 

that the communication relation is an equivalence relation on states, and thus partitions 

the state space into communicating classes. A state is recurrent if starting from the state, 

the probability of  eventually reentering it is 1. Note that this implies that recurrent states 

will be visited forever. A non-recurrent state is called transient, since at some finite point 

in time the state will never be visited again. Any finite MDP must have recurrent states, 

since not all states can be transient. If  a recurrent state x communicates with another 

state y, then y has to be recurrent also. 

An ergodic or recurrent class of  states is a set of  recurrent states that all communicate 

with each other, and do not communicate with any state outside this class. If  the set of  

all states forms an ergodic class, the Markov chain is termed irreducible. Let psn, s(Tr) 

denote the probability of  reaching state s from itself in n steps using policy ~. The 

period of  a state s under policy 7r is the greatest common divisor of  all n for which 

pn, s(Tr ) > 0. A state is termed periodic if its period exceeds 1, else it is aperiodic. States 

in a given recurrence class all have the same period. 

An ergodic or recurrent MDP is one where the transition matrix corresponding to every 

(deterministic stationary) policy has a single recurrent class. An MDP is termed unichain 

if the transition matrix corresponding to every policy contains a single recurrent class, 

and a (possibly empty) set of  transient states. An MDP is communicating if every pair 

of  states communicate under some stationary policy. Finally, an MDP is multichain if 

there is at least one policy whose transition matrix has two or more recurrent classes. 

We will not discuss algorithms for multichain MDP's  in this paper. 

Figure 2 contains two running examples that we will use to illustrate these concepts, 

as well as to explain the following algorithms. These examples originally appeared in 

(Puterman, 1994). For simplicity, in both MDP's,  there is a choice of action only in 

state A. Each transition is labeled with the action taken, and a pair of numbers. The 

first number is the immediate reward, and the second number represents the transition 

probability. Both MDP's  are unichain. In the two-state MDP, state A is transient under 

either policy (that is, doing action a l  or a2 in state A), and state B is recurrent. Such 

recurrent single-state classes are often called absorbing states. Both states are aperiodic 

under the policy that selects a l .  

In the three-state MDP, there are two recurrent classes, one for each policy. If  action a l  

is taken in state A, the recurrent class is formed by A and B, and is periodic with period 

2. If  action a2 is taken, the recurrent class is formed by A and C, which is also periodic 

with period 2. As we will show below, these differences between the two MDP's  will 

highlight themselves in the operation of the algorithms. 
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••a1(-1,1) 
a2 (10,1) 

a l  (5,0.5) al (0,1) a2 (0,1) 

Figure 2. Two simple MDP's that illustrate the underlying concepts and algorithms in this section. Both 

policies in the two MDP's maximize average reward and are gain-optimal. However, only the policy that 

selects action al  in state A is bias-optimal (T-optimal) in both MDP's. While most of the algorithms described 

here can compute the bias-optimal policy for the 2 state MDP, none of them can do so for the 3 state MDR 

2.2. Gain and Bias Optimality 

The aim of  average reward MDP is to compute policies that yield the highest expected 

payoff  per step. The average reward p~ (x) associated with a particular policy 7r at a 

state x is defined as 3 

E f V ~ N - 1  R ~ ( x ) )  
p~(x) = lim ~z..4=o 

N ---+ cx~ N ' 

where R~ (x) is the reward received at time t starting from state x, and actions are chosen 

using policy 7r. E( . )  denotes the expected value. We define a gain-optimal policy 7r* as 

one that maximizes the average reward over all states, that is J *  (x) > p" (x) over all 

policies 7r and states x. 

A key observation that greatly simplifies the design of  average reward algorithms is 

that for unichain MDP's,  the average reward of  any policy is state independent. That is, 

p (x) = p (v) = 

The reason is that unichain policies generate a single recurrent class of  states, and possibly 

a set of  transient states. Since states in the recurrent class will be visited forever, the 

expected average reward cannot differ across these states. Since the transient states will 

eventually never be reentered, they can at most accumulate a finite total expected reward 

before entering a recurrent state, which vanishes under the limit. 

For the example MDP's  in Figure 2, note that the average rewards of the two policies in 

the two-state MDP are both -1. In the three-state MDP, once again, the average rewards 

of  the two policies are identical and equal to 1. 

2.2.1. Bias Optimality 

Since the aim of solving average reward MDP's  is to compute policies that maximize 

the expected payoff per step, this suggests defining an optimal policy 7r* as one that is 

gain-optimal. Figure 3 illustrates a problem with this definition. MDP's  of this type 
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naturally occur in goal-oriented tasks. For example, consider a two-dimensional grid- 

world problem, where the agent is rewarded by +1 if an absorbing goal state is reached, 

and is rewarded - 1  otherwise. Clearly, in this case, all policies that reach the goal will 

have the same average reward, but we are mainly interested in policies that reach the 

goal in the shortest time, i.e. those that maximize the finite reward incurred in reaching 

the goal. 

a2 (-100,1) 

Figure 3. In this MDP, both policies yield the same average reward, but doing action a l  is clearly preferrable 

to doing a2 in state A. 

The notion of  bias optimality is needed to address such problems. We need to define 

a few terms before introducing this optimality metric. A value function V : S --+ 7~ 

is any mapping from states to real numbers. In the traditional discounted framework, 

any policy 7r induces a value function' that represents the cumulative discounted sum of 

rewards earned following that policy starting from any state s 

N--1 

V4(s)  = lim E ( E T t R ~ ( s ) ) ,  
N----*oo 

t=0 

where 3' < 1 is the discount factor, and R[(s) is the reward received at time t starting 

from state s under policy 7r. An optimal discounted policy 7c* maximizes the above value 

function over all states x and policies 7r, i.e. V~ ~ (x) > V~(x). In average reward MDP, 

since the undiscounted sum of  rewards can be unbounded, a policy 7c is measured using 

a different value function, namely the average adjusted sum of rewards earned following 

that policy, 4 

N - 1  

w(s)  = lira 
t=0 

where p~ is the average reward associated with policy 7r. The term V~(x) is usually 

referred to as the bias value, or the relative value, since it represents the relative difference 

in total reward gained from starting in state s as opposed to some other state x. In 

particular, it can be easily shown that 

V'~(s) - V'~(x) = lim E ( ~  R~(s)) - E ( E  R~[(x)) . 
N ~ c ~  t=O t=O 

A policy ~* is termed bias-optimal if it is gain-optimal, and it also maximizes bias 

values, that is V~*(x) > V~(x) over all z E S and policies ~r. Bias optimality was 
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referred to as T-optimality by Schwartz (Schwartz, 1993). The notion of bias-optimality 

was introduced by Blackwell (Blackwell, 1962), who also pioneered the study of average 

reward MDP as the limiting case of the discounted framework. In particular, he showed 

how the gain and bias terms relate to the total expected discounted reward using a Laurent 

series expansion. A key result is the following truncated Laurent series expansion of the 

discounted value function V~ (Puterman, 1994): 

LEMMA 1 Given any policy 7r and state s, 

V ~ ( s ) -  p~(s) ~ - - 7  + W ( s )  + e~(,,7) 

where lim.r__+ 1 e'~(s, 7) = 0. 

We will use this corollary shortly. First, we define a general optimality metric that 

relates discounted and average reward RL, which is due to Veinott (Veinott, 1969): 

DEFINITION 1 A policy 7r* is n-discount-optimal, for n = - 1 , 0 ,  1, .... if for each state 
s, and over all policies 7r, 

lim ( 1 -  "~)-~ (V~* ( s ) -  V~(s)) >_ O. 
7---+1 

We now consider some special cases of this general optimality metric to illustrate how it 

nicely generalizes the optimality metrics used previously in both standard discounted RL 

and average reward RL. In particular, we show below (see Lemma 2) that gain optimality 

is equivalent to -1-discount-optimality. Furthermore, we also show (see Lemma 3) that 

bias optimality is equivalent to O-discount-optimality. Finally, the traditional discounted 

MDP framework can be viewed as studying 0-discounted-optimality for a fixed value of 

7. 
In the two-state MDP in Figure 2, the two policies have the same average reward of 

- 1 ,  and are both gain-optimal. However, the policy rr that selects action a l  in state A 

results in bias values V~(A) = 12 and V~(B) = 0. The policy 7r' that selects action 

a2 in state A results in bias values V~'(A) = 11 and V~'(B) = 0. Thus, 7r is better 

because it is also bias-optimal. In the 3-state MDP, both policies are again gain-optimal 

since they yield an average reward of 1. However, the policy 7r that selects action a l  

in state A generates bias values V~(A) = 0.5, V~(B) = -0 .5 ,  and V~(C) = 1.5. The 

policy ~ is bias-optimal because the only other policy is 7r' that selects action a2 in state 

A, and generates bias values V~'(A) = -0.5 ,  V~(B) = -1 .5 ,  and V~(C) = 0.5. 

It is easy to see why we might prefer bias-optimal policies, but when do we need to 

consider a more selective criterion than bias optimality? Figure 4 shows a simple MDP 

that illustrates why n-discount-optimality is useful for n > 0. 

For brevity, we only include proofs showing one side of the equivalences for bias 

optimality and gain optimality. More detailed proofs can be found in (Puterman, 1994). 

LEMMA 2 If 7r* is a -1-discount-optimal policy, then 7r* is a gain-optimal policy. 
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a1(o,1) 

Figure 4. A simple MDP that clarifies the meaning of n-discount-optimality. There are only 2 possible 
policies, corresponding to the two actions in state S1. Both policies yield an average reward of 0, and are 
-1-discount-optimal. Both policies yield a cumulative reward of 3 in reaching the absorbing goal state $3, and 
are also O-discount-optimal. However, the bottom policy reaches the goal quicker than the top policy, and is 
1-discount-optimal. Finally, the bottom policy is also Blackwell optimal, since it is n-discount-optimal, for all 

P roof :  Let rr* be -1-discount-opt imal ,  and let 7r be any other policy. It follows from 

Defini t ion I that over all states s 

lim(l - 7>( W (s) - VT~(s)) > O. 

Using L e m m a  I, we can t ransform the above equat ion to 

l i r a ( 1  - 3`) / (~P~*':J --p_~(s) + V ~ . ( s  ) + e~.(s,3,) _ V~(s  ) _ e~(s, 3,) )\ O. 

Noting  that e ~" (s, 7)  and e~(s ,  3`) both approach 0 as 3' ~ 1, the above equation implies  

that 

( /  - / ( s ) )  >_ o. 

LEMMA 3 I f  7:* is a O-discount-optimal policy, then 7:* is a bias-optimal (or T-optimal) 

policy. 

Proof :  Note that we need only consider  gain-opt imal  policies,  since as "7 -~  1, the first 

term on the right hand side in L e m m a  1 dominates ,  and hence we can ignore all policies 

where p~ < p~ ' .  From the definition, it fol lows that if 7:* is a 0-discount-opt imal  policy, 

then for all gain-opt imal  policies 7r, over all states s 

li cv: - > o .  
7__~i ~ 3' 

As before, we can expand this to yield 
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Bias-Optimal 
(O-discount) 

policies 

Gain-Optimal 
(-1 -discount) 

policies 

All Policies 

Blackwell Optimal 

(infinite-discount) 

policies 

Figure 5. This diagram illustrates the concept of n-discount-optimal policies. Gain-optimal policies are - 
1-discount-optimal policies. Bias-optimal (or T-optimal) policies are O-discount-optimal policies. Note that 
n-discount-optimal policies get increasingly selective as n increases. Blackwell optimal policies are n-discount- 
optimal for all n > -1. 

S(s) ) 
tim ( ( p ~ ' ( s )  + V~r.(s ) + e~r.(s,7)) _ (1 - "y + V ' ( s )  + e~r(s,'~)) > O. 

Since 7r* and 7r are both gain-optimal, p~* = p~, and hence 

1ira (((V~" (s) + e ~" (s, ~ ) ) -  (V~(s) + e~Is, ~))) >- 0. 
7--'1 

Since both e ~* (s, 7) and e~(s, 3') approach 0 as 7 --* 1, the above equation implies that 

(w' (s )  - v~(s)) >_ 0. 

Figure 5 illustrates the structure of  n-discount-optimal policies. The most selective 

optimality criterion is Blackwell optimality, and corresponds to a policy 7v* that is n- 

discount-optimal for all n > - 1 .  It is interesting to note that a policy that is m-discount- 

optimal wilt also be n-discount-optimal for all n < m. Thus, bias optimality is a 

more selective optimality metric than gain optimality. This suggests a computational 

procedure for producing Blackwell-optimal policies, by starting with -1-discount-optimal 

policies, and successively pruning these to produce i-discount-optimal policies, for i > 

- 1 .  Exactly such a policy iteration procedure for multichain MDP's  is described in 

(Puterman, 1994). In this paper, we restrict our attention to -1-discount-optimal and 

0-discount-optimal policies. 
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2.3. Average Reward Bellman Equation 

Clearly, it is useful to know the class of finite state MDP's for which (gain or bias) optimal 

policies exist. A key result, which essentially provides an average reward Bellman 

optimality equation, is the following theorem (see (Bertsekas, 1987, Puterman, 1994) for 

a proof): 

THEOREM 1 For any MDP that is either unichain or communicating, there exist a value 

function V* and a scalar p* satisfying the equation 

V * ( x ) + p * = m a a x ( r ( x , a ) + E P x y ( a ) V * ( y ) )  (1) 

Y 

such that the greedy policy 7r* resulting from V* achieves the optimal average reward 
p* = p~" where p~* >_ p~ over all policies 7r. 

Here, "greedy" policy means selecting actions that maximize the right hand side of 

the above Bellman equation. If the MDP is multichain, there is an additional optimality 

equation that needs to be specified to compute optimal policies, but this is outside the 

scope of this paper (see (Howard, 1960, Puterman, 1994)). Although this result assures 

us that stationary deterministic optimal policies exist that achieve the maximum average 

reward, it does not tell us how to find them. We turn to discuss a variety of algorithms 

for computing optimal average reward policies. 

2.4. Average Reward DP Algorithms 

2.4.1. Unichain Policy Iteration 

The first algorithm, introduced by Howard (Howard, 1960), is called policy iteration. 

Policy iteration iterates over two phases: policy evaluation and policy improvement. 

1. Initialize k = 0 and set 7r ° to some arbitrary policy. 

2. Policy Evaluation: Given a policy 7r k, solve the following set of IS[ linear equations 

for the average reward p ~  and relative values V ~ (x), by setting the value of a 

reference state V(s) = O. 

v (x) + p' k : + Px ( k(x))V (y). 
Y 

3. Policy Improvement: Given a value function V ~ ,  compute an improved policy 7r k+l 

by selecting an action maximizing the following quantity at each state, 

m ~ x ( r ( x , a ) + E P z y ( a ) V ~ k ( Y )  ) • 

Y 
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setting, if possible, rr k+l (x) = rc k (x). 

4. If 7rk(x) ~ 7tk+l(x) for some state x, increment k and return to step 2. 

V(s) is set to 0 because there are [S[ + 1 unknown variables, but only IS] equations. 

Howard (Howard, 1960) also provided a policy iteration algorithm for multichain MDP's 

and proved that both algorithms would converge in finitely many steps to yield a gain- 

optimal policy. More recently, Haviv and Puterman (Haviv & Puterman, 1991) have 

developed a more efficient variant of Howard's policy iteration algorithm for communi- 

cating MDP's. 

The interesting question now is: Does policy iteration produce bias-optimal policies, 

or only gain-optimal policies? It turns out that policy iteration will find bias-optimal 

policies if the first gain-optimal policy it finds has the same set of recurrent states as 

a bias-optimal policy (Puterman, 1994). Essentially, policy iteration first searches for a 

gain-optimal policy that achieves the highest average reward. Subsequent improvements 

in the policy can be shown to improve only the relative values, or bias, over the transient 

states. 

An example will clarify this point. Consider the two-state MDP in Figure 2. Let us start 

with the initial policy rr °, which selects action a2 in state A. The policy evaluation phase 

results in the relative values V~°(A) = 11 and V'°(B) = 0 (since B is chosen as the 

reference state), and the average reward p~O = -1 .  Clearly, policy iteration has already 

found a gain-optimal policy. However, in the next step of policy improvement, a better 

policy 7r I is found, which selects action a l  in state A. Evaluating this policy subsequently 

reveals that the relative values in state A has been improved to V ~1 (A) = 12, with the 

average reward staying unchanged at p'~l = -1 .  Policy iteration will converge at this 

point because no improvement in gain or bias is possible. 

However, policy iteration will not always produce bias-optimal policies, as the three- 

state MDP in Figure 2 shows. Here, if we set the value of state A to 0, then both 

policies evaluate to identical bias values V(A) = O, V(B) = -1 ,  and V(C) = 1. Thus, 

if we start with the policy rr ° which selects action a2 in state A, and carry out the policy 

evaluation and subsequent policy improvement step, no change in policy occurs. But, 

as we explained above, policy 7r ° is only gain-optimal and not bias-optimal. The policy 

that selects action a l  in state A is better since it is bias-optimal. 

2.4.2. Value Iteration 

The difficulty with policy iteration is that it requires solving [S[ equations at every 

iteration, which is computationally intractable when ISl is large. Although some shortcuts 

have been proposed that reduce the computation (Puterman, 1994), a more attractive 

approach is to iteratively solve for the relative values and the average reward. Such 

algorithms are typically referred to in DP as value iteration methods. 

Let us denote by T(V)(x) the mapping obtained by applying the right hand side of 

Bellman's equation: 
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It is well known (e.g. see (Bertsekas, 1987)) that T is a monotone mapping, i.e. given 

two value functions V(x) and V'(x), where V(z) < V'(x) over all states x, it follows 

that T(V)(z) < T(V')(x). Monotonicity is a crucial property in DP, and it is the basis 

for showing the convergence of many algorithms (Bertsekas, 1987). The value iteration 

algorithm is as follows: 

1. Initialize V°( t )  = 0 for all states t, and select an e > 0. Set k = 0. 

2. Set Vk+l(x) = T(Vk)(x) over all x E S. 

3. I f  sp(V k+l - V k) > e, increment k and go to step 2. 

4. For each x c S, choose 7r(x) = a to maximize (r(x,a) + ~-~y Pxy(a)Vk(y)). 

The stopping criterion in step 3 uses the span semi-norm function sp(f(x)) = maxz(f(x)) 
min~(f(x)). Note that the value iteration algorithm does not explicitly compute the av- 

erage reward, but this can be estimated as Vn+l(x) - Vn(x) for large n. 

The above value iteration algorithm can also be applied to communicating MDP's,  

where only optimal policies are guaranteed to have state-independent average reward. 

However, value iteration has the disadvantage that the values V(x) can grow very large, 

causing numerical instability. A more stable relative value iteration algorithm proposed 

by White (White, 1963) subtracts out the value of a reference state at every step from the 

values of other states. That is, in White 's  algorithm, step 2 in value iteration is replaced 

by 

where s is some reference state. Note that Vk(s) = 0 holds for all time steps k. 

Another disadvantage of (relative) value iteration is that it cannot be directly applied 

to MDP's  where states are periodic under some policies (such as the 3-state MDP in 

Figure 2). Such MDP's  can be handled by a modified value iteration procedure proposed 

by Hordijk and Tijms (Hordijk & Tijms, 1975), namely 

vk+X(x) : rnax (r(x,a) + ~k ~-~ P~y(a)Vk(y)) , 
y 

where ~k ~ 1 as k ~ oc. Alternatively, periodic MDP's  can be transformed using 

an aperiodicity transformation (Bertsekas, 1987, Puterman, 1994) and then solved using 

value iteration. 

Value iteration can be shown to converge to produce an e-optimal policy in finitely 

many iterations, but the conditions are stricter than for policy iteration. In particular, 

it will converge if the MDP is aperiodic under all policies, or if there exists a state 

s E S that is reachable from every other state under all stationary policies. Like policy 
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iteration, value iteration finds the bias-optimal policy for the 2 state MDP in Figure 2. 

Unfortunately, like policy iteration, value iteration cannot discriminate between the bias- 

optimal and gain-optimal policies in the 3-state example MDP. 

2.4.3. Asynchronous Value Iteration 

Policy iteration and value iteration are both synchronous, meaning that they operate by 

conducting an exhaustive sweep over the whole state space at each step. When updating 

the relative value of a state, only the old values of the other states are used. In contrast, 

RL methods are asynchronous because states are updated at random intervals, depending 

on where the agent happens to be. A general model of asynchronous DP has been 

studied by Bertsekas (Bertsekas, 1982). Essentially, we can imagine one processor for 

every state, which keeps track of the relative value of the state. Each processor can 

be in one of three states: idle, compute the next iterate, or broadcast its value to other 

processors. It turns out that the asynchronous version of value iteration for discounted 

MDP's converges under very general protocols for communication and computation. 

A natural question, therefore, is whether the natural asynchronous version of value it- 

eration and relative value iteration will similarly converge for the average reward frame- 

work. Tsitsiklis provided a counter-example (described in (Bertsekas, 1982)) to show 

that, quite surprisingly, asynchronous relative value iteration diverges. We discuss this 

example in some detail because it calls into question whether provably convergent asyn- 

chronous algorithms can exist at all for the average reward framework. As we show 

below, such provably convergent algorithms do exist, and they differ from asynchronous 

relative value iteration in a crucial detail. 

(gO,l-pO) ~ - - ~ / ~ ~ " ' ~  (gl,pl) 
(gO,pO) 

Figure 6. A simple MDP to illustrate that the asynchronous version of White's relative value iteration algorithm 

diverges, because the underlying mapping is non-monotonic. Both p0 and pl can lie anywhere in the interval 

(0,1). gO and gl  are arbitrary expected rewards. Asynchronous value iteration can be made to converge, 

however, if it is implemented by a monotonic mapping. 

Figure 6 shows a simple two-state MDP where there are no action choices, and hence 

the problem is to evaluate the single policy to determine the relative values. For this 

particular MDP, the mapping T can be written as 

T(V)(O) = 90 + pOV(1) + (1 - pO)V(O) 

T(V)(1) = gl  + p lV(1)  + (1 - p l )V(0) .  

If we let state 0 be the reference state, White's algorithm can be written as 

r(vk+l)(0) = gO + p O ( T ( V k ) ( 1 )  - T(Vk)(0)) 
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T(Vk+I)(1)  = g l  + pl(T(V )(1) - T(Vk)(O)). 

Now, it can be shown that this mapping has a fixpoint V* such that V*(O) yields the 

optimal average reward. However, it is easy to show that this mapping is not mono- 

tonic! Thus, although the above iteration will converge when it is solved synchronously, 

divergence occurs even if we update the values in a Gauss-Seidel fashion, that is use 

the just computed value of T(Vk(O)) when computing for T(Vk(1))!  Note that the 

asynchronous algorithm diverges, not only because the mapping is not monotonic, but 

also because it is not a contraction mapping with respect to the maximum norm. 5 For 

a more detailed analysis, see (Bertsekas, 1982). There are many eases when divergence 

can occur, but we have experimentally confirmed that divergence occurs if 90 = 91 = 1 

and p0 = p l  > ~ .  

However, this counter-example should not be viewed as ruling out provably convergent 

asynchronous average reward algorithms. The key is to ensure that the underlying map- 

ping remains monotonic or a contraction with respect to the maximum norm. Jalali and 

Ferguson (Jalali & Ferguson, 1990) describe an asynchronous value iteration algorithm 

that provably converges to produce a gain-optimal policy if there is a state s E S that is 

reachable from every other state under all stationary policies. The mapping underlying 

their algorithm is 

v +l(x) = T ( v ' ) ( x )  - w # s 

Vt(s)=o yr. 

where pt, the estimate of the average reward at time t, is independently estimated without 

using the relative values. Note that the mapping is monotonic since T is monotonic and 

pt is a scalar value. 

There are several ways of independently estimating average reward. We discuss below 

two provably convergent adaptive algorithms, where the average reward is estimated by 

online averaging over sample rewards. This similarity is critical to the convergence of 

the two asynchronous algorithms below, and since R-learning shares this similarity, it 

suggests that a convergence proof for R-learning is possible. 

2.5. An Asynchronous Adaptive Control Method 

One fundamental limitation of the above algorithms is that they require complete knowl- 

edge of the state transition matrices P(a), for each action a, and the expected payoffs 

r(x, a) for each action a and state x. This limitation can be partially overcome by 

inferring the matrices from sample transitions. This approach has been studied very 

thoroughly in the adaptive control literature. We focus on one particular algorithm by 

Jalali and Ferguson (Jalali & Ferguson, 1989). They describe two algorithms (named A 

and B), which both assume that the underlying MDP can be identified by a maximum 

likelihood estimator (MLE), and differ only in how th.e average reward is estimated. We 

will focus mainly on Algorithm B, since that is most relevant to this paper. Algorithm 

B, which is provably convergent under the assumption that the MDP is ergodic under all 

stationary policies, is as follows: 
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1. At time step t = 0, initialize the current state to some state x, cumulative reward 

to K ° = 0, relative values V°(x)  = 0 for all states z, and average reward pO = 0. 

Fix Vt(s) ~ 0 for some reference state s for all t. The expected rewards r(z ,  a) are 

assumed to be known. 

2. Choose an action a that maximizes ( r (x ,a)  + ~ y p t y ( a ) V t ( y ) ) .  

3. Update the relative value Vt+l(x)  = T(V t ) (x )  - pt, if x ¢ s. 

4. Update the average reward p t + l  = K~+lt+l ' where K t+l = K t + r(x, a). 

5. Carry out action a, and let the resulting state be z. Update the probability transition 

matrix entry P~(a)  using a maximum-likelihood estimator. Increment t, set the 

current state x to z, and go to step 2. 

This algorithm is asynchronous because relative values of  states are updated only when 

they are visited. As discussed above, a key reason for the convergence of  this algorithm 

is that the mapping underlying the algorithm is monotonic. However, some additional 

assumptions are also necessary to guarantee convergence, such as that the MDP is iden- 

tifiable by an MLE-estimator (for details of  the proof, see (Jalali & Ferguson, 1989)). 

Tadepalli and Ok (Tadepalli & Ok, 1994) have undertaken a detailed study of a variant 

of  this algorithm, which includes two modifications. The first is to estimate the expected 

rewards r(x, a) from sample rewards. The second is to occasionally take random actions 

in step 2 (this strategy is called semi-uniform exploration - see Section 3.3). This 

modification allows the algorithm to be applied to uniehain MDP's  (assuming of  course 

that we also break up a learning run into a sequence of  trials, and start in a random state 

in each trial). In our experiments, which have been confirmed by Tadepalli (Tadepall), 

we found that the modified algorithm cannot discriminate between the gain-optimal and 

bias-optimal policy for the 3-state MDP in Figure 2. 

2.6. An Asynchronous Learning Automata Method 

Thus far, all the algorithms we have discussed are model-based; that is, they involve 

transition probability matrices (which are either known or estimated). Model-free meth- 

ods eliminate this requirement, and can learn optimal policies directly without the need 

for a model. We now discuss a provably convergent model-free algorithm by Wheeler 

and Narendra (Wheeler & Narendra, 1986) that learns an optimal average reward policy 

for any ergodic MDP with unknown state transition probabilities and payoff functions. 

Thus, this algorithm tackles the same learning problem addressed by R-learning, but as 

we will see below, is quite different from most RL algorithms. 

We need to first briefly describe the framework underlying learning automata (Narendra 

& Thathachar, 1989). Unlike the previous algorithms, most learning automata algo- 

rithms work with randomized policies. In particular, actions are chosen using a vector 

of  probabilities. The probability vector is updated using a learning algorithm. Although 

many different algorithms have been studied, we will focus on one particular algorithm 
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called linear reward-inaction or L R - z  for short. Let us assume that there are n actions 

a l , . . . ,  an. Let the current probability vector be p = ( P l , . . . , P n ) ,  where we of course 

require that n The automata an a ~ / = 1  P/ = 1. carries out action according to the prob- 

ability distribution p, and receives a response from the environment 0 < ~ _< 1. The 

probability vector is updated as follows: 

1. If action a is carried out, then ,-a't+l = pat + c~¢3t(1 _ pta)" 

2. For all actions b • a, p~+l = pt b _ afltp~. 

Here c~ is a learning rate in the interval (0, 1). Thus, the probability of doing the chosen 

action is updated in proportion to the probability of not doing the action, weighted by the 

environmental response fit at time step t. So far, we have not considered the influence of 

state. Let us now assume that for each state an independent copy of the L n - i  algorithm 

exists. So for each state, a different probability vector is maintained, which is used 

to select the best action. Now the key (and surprising) step in the Wheeler-Narendra 

algorithm is in computing the environmental response /3. In particular, the procedure 

ignores the immediate reward received, and instead computes the average reward over 

repeated visits to a state under a particular action. The following global and local statistics 

need to be maintained. 

1. Let c t be the cumulative reward at time step t, and let the current state be s. 

2. The loeal learning automaton in state s uses e t as well as the global time t to update 

the following local statistics: 6~(a), the incremental reward received since state s 

was last exited under action a, and 6~(a) the elapsed time since state s was last 

exited under action a. These incremental values are used to compute the cumulative 

statistics, that is rS(a) ~- rS(a) + 6~(a), and t~(a) ~ t~(a) + 6~(a). 

3. Finally, the learning automaton updates the action probabilities with the LR-Z algo- 

rithm using as environmental response the estimated average reward 

Wheeler and Narendra prove that this algorithm converges to an optimal average reward 

policy with probability arbitrarily close to 1 ( i .e .w.p.  1 - c, where c can be made as 

small as desired). The details of the proof are in (Wheeler & Narendra, 1986), which 

uses some interesting ideas from game theory, such as Nash equilibria. Unfortunately, 

this restriction to ergodic MDP's means it cannot handle either of the example MDP's 

in Figure 2. Also, for convergence to be guaranteed, the algorithm requires using a very 

small learning rate c~ which makes it converge very slowly. 

2.7. R-learning: A Model-Free  Average Reward  R L  Method  

Schwartz (Schwartz, 1993) proposed an average-reward RL technique called R-learning. 

Like its counterpart, Q-learning (Watkins, 1989) (see page 193 for a description of Q- 

learning), R-learning uses the action value representation. The action value R ~ ( x ,  a) 
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represents the average adjusted value of doing an action a in state x once, and then 

following policy 7r subsequently. That is, 

R~ (x, a) = r(x, a) -"p~ + ~ P~y(a) V~ (y), 

Y 

where V~r(y) =- maXa~ A R~(y, a), and p~ is the average reward of policy 7v. R-learning 

consists of the following steps: 

1. Let time step t = 0. Initialize all the Rt(x, a) values (say to 0). Let the current state 

be x. 

2. Choose the action a that has the highest Rt(x, a) value with some probability, else 

let a be a random exploratory action. 

3. Carry out action a. Let the next state be y, and the reward be rimm(X,y ). Update 

the R values and the average reward p using the following rules: 

Rt+l(x, a) ~-- Rt(x, a)(1 - / 3 )  +/3(rimm(X, y) - Pt + maxP~(y ,  a)) 
a E A  

p t + l  +-- p (i - +  hmm(Z, a )  + m a x  a )  --  ma R (x, 
a E A  a E A  

4. Set the current state to y and go to step 2. 

Here 0 < /3 < 1 is the learning rate controlling how quickly errors in the estimated 

action values are corrected, and 0 < c~ < 1 is the learning rate for updating p. One key 

point is that p is updated only when a non-exploratory action is performed. 

Singh (Singh, 1994b) proposed some variations on the basic R-learning method, such 

as estimating average reward as the sample mean of the actual rewards, updating the 

average reward on every step, and finally, grounding a reference R(x, a) value to 0. We 

have not as yet conducted any systematic experiments to test the effectiveness of these 

modifications. 

2.7.1. R-learning on Sample MDP Problems 

We found that in the 2-state problem, R-learning reliably learns the bias-optimal policy 

of selecting action a l  in state A. However, in the 3-state problem, like all the preceding 

algorithms, it is unable to differentiate the bias-optimal policy from the gain-optimal 

policy. 

Baird (Baird, personal communication) has shown that there exists a fixpoint of the 

R(x, a) values for the 3-state MDE Consider the following assignment of R(x, a) values 

for the 3-state MDP in Figure 2. Assume R(A, a l )  = 100, R(A, a2) = 100, R(B, a l )  = 

99, and R(C, a l )  = 101. Also, assume that p = 1. These values satisfy the definition of 

R(x, a) for all states and actions in the problem, but the resulting greedy policy does not 

discriminate between the two actions in state A. Thus, this is a clear counter-example 

that demonstrates that R-learning can converge to a policy with sub-optimal bias for 

unichain MDP's. 6 
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Table 1. Summary of the average reward algorithms described in this paper. Only the convergence 
conditions for gain optimality are shown. 

ALGORITHM GAIN OPTIMALITY 
Unichain Policy Iteration (Section 2.4.1) (Howard, t960) MDP is unichain 
(Relative) Value Iteration (Section 2.4,2) (Puterman, 1994, White, 1963) MDP is communicating 
Asynchronous Relative Value Iteration (Section 2.4.3) (Bertsekas, 1982) Does not converge 
Asynchronous Value Iteration (Section 2.4.3) (Jalali & Ferguson, 1990) A state s is reachable 
with Online Gain Estimation under every policy 
Asynchronous Adaptive Control (Section 2.5) (Jalali & Ferguson, 1989) MDP is ergodic 
with Online Gain Estimation and MLE-Identifiable 
Asynchronous Learning Automata (Section 2.6) (Wheeler & Narendra, 1986) MDP is ergodic 
R-Learning (Section 2.7) (Schwartz, 1993) Convergence unknown 

2.7.2. Convergence Proof for R-learning 

Of course, the question of  whether R-learning can be guaranteed to produce gain-optimal 

policies remains unresolved. From the above discussion, it is clear that to show con- 

vergence, we need to determine when the mapping underlying R-learning satisfies some 

key properties, such as monotonicity and contraction. We are currently developing such 

a proof, which will also exploit the existing convergence results underlying Jalali and 

Ferguson's B algorithm (see Section 2.5) and Q-learning (for the undiscounted case). 

2.8. Summary of  Average Reward Methods 

Table 1 summarizes the average reward algorithms described in this section, and lists the 

known convergence properties. While several convergent synchronous and asynchronous 

algorithms for producing gain-optimal policies exist, none of  them is guaranteed to find 

bias-optimal policies. In fact, they all fail on the 3-state MDP in Figure 2 for the 

same reason, namely that bias optimality really requires solving an additional optimality 

equation (Puterman, 1994). An important problem for future research is to design RL 

algorithms that can yield bias-optimal policies. We discuss this issue in more detail in 

Section 5. 

3. Experimental Results 

In this section we present an experimental study of R-learning. We use two empirical 

testbeds, a stochastic grid-world domain with one-way membranes, and a simulated robot 

environment. The grid-world task involves reaching a specific goal state, while the robot 

task does not have any specific goal states. We use an idealized example to show how 

R-learning can get into limit cycles given insufficient exploration, and illustrate where 

such limit-cycle situations occur in the grid-world domain and the robot domain. We 

show, however, that provided sufficient exploration is carried out, R-learning can perform 

better than Q-learning in both these testbeds. Finally, we present a detailed sensitivity 

analysis of  R-learning using the grid world domain. 
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We first presented the limit cycle behavior of  R-learning in an earlier paper (Mahadevan, 

1994). However, that paper mainly reported negative results for R-learning using the 

robot domain. This paper contains several new experimental results, including positive 

results where R-learning outperforms Q-learning, and a detailed sensitivity analysis of 

R-learning with respect to exploration and learning rate decay. Since we will not repeat 

our earlier experimental results, the interested reader is referred to our earlier paper for 

additional results on R-learning for the robot domain. 

3.1. A Grid Worm Domain with One-Way Membranes 

i~il ii~i i ̧~ i ̧~ ~ ~i: i 

Figure 7. A grid world environment with "one-way" membranes. 

Figure 7 illustrates a grid-world environment, similar to that used in many previous 

RL systems (Kaelbling, 1993a, Singh, 1994a, Sutton, 1990). Although such grid-world 

tasks are somewhat simplistic "toy" domains, they are quite useful for conducting con- 

trolled experimental tests of  RL algorithms. The domain parameters can be easily varied, 

allowing a detailed sensitivity analysis of  any RL algorithm. 

The agent has to learn a policy that will move it from any initial location to the goal 

location (marked by the black square in the figure). The starting state can thus be any 

location. At each step, the agent can move to any square adjacent (row-wise or column- 

wise) to its current location. We also include "one way membranes", which allow the 

agent to move in one direction but not in the other (the agent can move from the lighter 

side of the wall to the darker side). The membrane wall is shown in the figure as an 

"inverted cup" shape. If  the agent "enters" the cup, it cannot reach the goal by going 

up, but has to go down to leave the membrane. Thus, the membrane serves as a sort 

of  local maxima. The environment is made stochastic by adding a controlled degree of 

randomness to every transition. In particular, the agent moves to the correct square with 

probability p, and either stays at its current position or moves to an incorrect adjacent 

square with probability (1 - p)/N,~, where Na is the number of adjacent squares. Thus, 

if p = 0.75 and the robot is in a square with 4 adjacent squares, and it decides to move 
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"up", then it may stay where it currently is, or move "left" or "down" or "right" with 

equal probability 0.25/4. 

The agent receives a reward of  +100 for reaching the goal, and a reward of  +1 for 

traversing a membrane. The default reward is -1. Upon reaching the goal, the agent is 

"transported" to a random starting location to commence another trial. Thus, although 

this task involves reaching a particular goal state, the average reward obtained during 

a learning run does not really reflect the tree average reward that would result if the 

goal were made absorbing. In the latter case, since every policy would eventually reach 

the goal, all policies result in a single recurrent class (namely, the goal state). Since 

all non-goal states are transient, this task is more closely related to the 2 state example 

MDP in Figure 2 than the 3 state MDP. This suggests that R-learning should be able to 

perform quite well on this task, as the experimental results demonstrate. 

3.2. A Simulated Robot Environment 

"LJ 

I !.. 
~', /--7 

"q IL_U_I 

© 

Figure 8. A simulated robot environment modeled after a real robot environment. 

We also compare R-learning and Q-learning on a more realistic task, namely avoiding 

obstacles in a simulated robot environment illustrated in Figure 8. This task provides a 

nice contrast with the above grid world task because it does not involve reaching any 

goal states, but instead requires learning a policy that maximizes the average reward. 

This testbed provides a good benchmark because we previously studied Q-learning 

using this environment (Mahadevan & Connell, 1992). The robot is shown as a circular 

figure; the "nose" indicates the orientation of  the robot. Dark objects represent immovable 

obstacles. Outline figures represent movable boxes. The robot uses eight simulated 

"sonar" sensors arranged in a ring. For the experiment described below, the sonar data 

was compressed as follows. The eight sonar values were thresholded to 16 sonar bits, 

one "near" bit and one "far" bit in each of 8 radial directions. The figure illustrates what 

the robot actually "sees" at its present location. Dark bars represent the near and far bits 

that are on. The 16 sonar bits were further reduced to 10 bits by disjoining adjacent near 

and far bits. 7 
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There are also 2 bits of non-sonar information, BUMP and STUCK, which indicate 

whether the robot is touching something and whether it is wedged. Thus, there are a 

total of  12 state bits, and 4096 resulting states. The robot moves about the simulator 

environment by taking one of  five discrete actions: forward or turn left and right by either 

45 or 90 degrees. The reinforcement function for teaching the robot to avoid obstacles 

is to reward it by +10 for moving forward to "clear" states (i.e., where the front near 

sonar bits are off), and punish it by -3 for becoming wedged (i.e., where STUCK is on). 

This task is very representative of many recurrent robot tasks which have no absorbing 

(i.e. terminal) goal states. 

A learning run is broken down into a sequence of  trials. For the obstacle avoidance 

task, a trial consists of 100 steps. After 100 steps, the environment and the robot are 

reset, except that at every trial the robot is placed at a random unoccupied location in 

the environment facing a random orientation. The location of boxes and obstacles does 

not vary across trials. A learning run lasts for 300 trials. We typically carried out 30 

runs to get average performance estimates. 

The simulator is a simplification of  the real world situation (which we studied previ- 

ously (Mahadevan & Connell, 1992)) in several important respects. First, boxes in the 

simulator can only move translationally. Thus a box will move without rotation even 

if a robot pushes the box with a force which is not aligned with the axis of  symmetry. 

Second, the sonars on the real robot are prone to various types of noise, whereas the sen- 

sors on a simulator robot are "clean". Finally, the underlying dynamics of  robot motion 

and box movement are deterministic, although given its impoverished sensors, the world 

does appear stochastic to the robot. Even though this simulator is a fairly inaccurate 

model of  reality, it is sufficiently complex to illustrate the issues raised in this paper. 

3.3. Exploration Strategies 

RL methods usually require that all actions be tried in all states infinitely often for 

asymptotic convergence. In practice, this is usually implemented by using an "explo- 

ration" method to occasionally take sub-optimal actions. We can divide exploration 

methods into undirected and directed methods. Undirected exploration methods do not 

use the results of  learning to guide exploration; they merely select a random action 

some of  the time. Directed exploration methods use the results of learning to decide 

where to concentrate the exploration efforts. We will be using four exploration methods 

in our experimental tests of  R-learning: two undirected exploration methods, Boltz- 

mann exploration and semi-uniform exploration, and two directed exploration methods, 

recency-based (Sutton, 1990) and uncertainty exploration (UE). A detailed comparison 

of  undirected and directed exploration methods is given in (Thmn). 

3.3.1. Semi- Uniform Exploration 

Let p(x, a) denote the probability of  choosing action a Jn state x. Let U(x, a) denote a 

generic state action value, which could be a Q(x, a) value or a /~ (x ,  a) value. Denote 
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by abest the action that maximizes U(x, a). Semi-uniform exploration is defined as 

p(x, abest) = Pexp -I- 1-p~p If  X 7~ abest, p(x,a) = 1-pe~e In other words, the best [AI " IAI " 
action is chosen with a fixed probability Pexp. With probability 1 -Pexp, a random action 

is carried out. 

3.3.2. Bohzmann Exploration 

The Boltzmann exploration function (Lin, 1993, Sutton, 1990) assigns the probability 
u~,~) 

of doing an action a in state x as p(x, a) = ~ T where T is a "temperature" 

parameter that controls the degree of  randomness. In our experiments, the temperature 

T was gradually decayed from an initial fixed value using a decaying scheme similar to 

that described in (Barto, et al, 1995). 

3.3.3. Recency-based Exploration 

In recency-based exploration (Sutton, 1990), the action selected is one that maximizes 

the quantity U(x, a) + e ~ ,  where N(x, a) is a recency counter and represents 

the last time step when action a was tried in state x. e is a small constant < 1. 

3.3.4. UE Exploration 

Finally, the second directed exploration strategy is called uncertainty estimation (LIE). 
Using this strategy, with a fixed probability p, the agent picks the action a that maximizes 

U(x, a) + Ni~,a), where e is a constant, and Nf(x,  a) represents the number of  times 

that the action a has been tried in state x. With probability 1 - p ,  the agent picks a 

random action. 

3.4. Limit Cycles in R-learning 

A key assumption underlying R-learning (and all the other methods discussed in Sec- 

tion 2) is that the average reward p is state independent. In this section, we explore 

the consequences of  this assumption, under a sub-optimal exploration strategy that does 

not explore the state space sufficiently, creating non-ergodic multichains. Essentially, 

R-learning and Q-learning behave very differently when an exploration strategy cre- 

ates a tight limit cycle such as illustrated in Figure 9. In particular, the performance 

of  R-learning can greatly suffer. Later we will show that such limit cycles can easily 

arise in both the grid world domain and the simulated robot domain, using two different 

exploration strategies. 

Consider the simple situation shown in Figure 9. In state 1, the only action is to go 

right (marked r), and in situation 2, the only action is to go left (marked 1). Finally, the 
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R(1,r)  = R(2,1) 

R e w a r d  = 0 

Figure 9. A simple limit cycle situation for comparing R-learning and Q-learning. 

immediate reward received for going left or right is 0. Such a limit cycle situation can 

easily result even when there are multiple actions possible, whenever the action values 

for going left or right are initially much higher than the values for the other actions. 

Under these conditions, the update equations for R-learning can be simplified to yield s 

R O, r) ~- R(1, r) - ~p 

R(2, 0 ~- R(2, l) - Zp. 

Thus, R(1, r)  and R(2, l) will decay over time. However, the average reward p is itself 

decaying, since under these conditions, the average reward update equation turns out to 
be 

p +- (1 - oOp. 

When p decays to zero, the utilities R(1, r) and R(2, l) will stop decaying. The relative 

decay rate will of course depend on /3 and a ,  but one can easily show cases where the 

R values will decay much slower than p. For example, given the values R(1, l) = 3.0, 

p = 0.5, a = 0.1, /3 = 0.2, after 1000 iterations, R(1,I)  = 2, but p < 10-46! 

Since the R(x, a) values are not changing when p has decayed to zero, if the agent 

uses the Boltzmann exploration strategy and the temperature is sufficiently low (so that 

the R(x, a) values are primarily used to select actions), it will simply oscillate between 

going left and going right. We discovered this problem in a simulated robot box-pushing 

task where the robot had to leam to avoid obstacles (Mahadevan, 1994). 

Interestingly, Q-learning will not get into the same limit cycle problem illustrated above 

because the Q values will always decay by a fixed amount. Under the same conditions 

as above, the update equation for Q-learning can be written as 

Q(1, l) +--- Q(1,/)(1 - /3 (1  - 3')) 

Q(2, r) +-- Q(2, r)(1 - /3 (1  - 7)). 

Now the two utilities Q(1, r) and Q(2 , r )  will continue to decay until at some point 

another action will be selected because its Q value will be higher. 



AVERAGE REWARD REINFORCEMENT LEARNING 183 

3.4.1. Robot Task with Boltzmann Exploration 

Limit cycles arise in the robot domain when the robot is learning to avoid obstacles. 

Consider a situation where the robot is stalled against the simulator wall, and is undecided 

between turning left or right. This situation is very similar to Figure 9 (in fact, we were 

led to the limit cycle analysis while trying to understand the lackluster performance of 

R-learning at learning obstacle avoidance). The limit cycles are most noticeable under 

Boltzmann exploration. 

3.4.2. Grid Worm Task with Counter-based Exploration 

We have observed limit cycles in the grid world domain using the UE exploration strategy. 

Limit cycles arise in the grid world domain at the two ends of the inverted cup membrane 

shape shown in Figure 7. These limit cycles involve a clockwise or counterclockwise 

chain of 4 states (the state left of the membrane edge, the state right of the membrane 

edge, and the two states below these states). Furthermore, the limit cycles arise even 

though the agent is getting non-zero rewards. Thus, this limit cycle is different from the 

idealized one shown earlier in Figure 9. 

In sum, since R-learning can get into limit cycles in different tasks using different 

exploration strategies, this behavior is clearly not task specific or dependent on any 

particular exploration method. The limit cycle behavior of R-learning arises due to the 

fact that average reward is state independent because the underlying MDP is assumed 

to be unichain. An exploration method that produces multichain behavior can cause 

the average reward to be incorrectly estimated (for example, it can drop down to 0). 

This reasoning suggests that limit cycles can be avoided by using higher degrees of 

exploration. We show below that this is indeed the case. 

3.5. Avoiding Limit Cycles by Increasing Exploration 

Although limit cycles can seriously impair the performance of R learning, they can be 

avoided by choosing a suitable exploration strategy. The key here is to ensure that a 

sufficient level of exploration is carried out that will not hamper the estimate of the 

average reward. Figure 10 illustrates this point: here the constant c used in the UE 

exploration method is increased from 50 to 60. The errorbars indicate the range between 

the high and low values over 30 independent runs. Note that when c = 50, limit cycles 

arise (indicated by the high variance between low and high values), but disappear under 

a higher level of exploration (¢ = 60). 

Similarly, we have found that limit cycles can be avoided in the robot domain using 

higher degrees of exploration. Next we demonstrate the improved performance of R- 

learning under these conditions. 
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R-LEARNING W1TH UE EXPLORATION (c=50,~d ph a=O.0S,beta=0.5) 
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Figure 10. Comparing performance of R-learning on the grid world environment with "one-way" membranes 
as exploration level is increased. 

3.6. Comparing R-learning and Q-learning 

We now compare the performance of  R-learning with Q-learning. We need to state some 

caveats at the outset, as such a comparison is not without some inherent difficulties. The 

two techniques depend on a number of  different parameters, and also their performance 

depends on the particular exploration method used. If  we optimize them across different 

exploration methods, then it could be argued that we are really not comparing the al- 

gorithms themselves, but the combination of  the algorithm and the exploration method. 

On the other hand, using the same exploration method may be detrimental to the perfor- 

mance of  one or both algorithms. Ideally, we would like to do both, but the number of  

parameter choices and alternative exploration methods can create a very large space of  

possibilities. 

Consequently, our aim here will be more modest, and that is to provide a reasonable 

basis for evaluating the empirical performance of  R-learning. We demonstrate that R- 

learning can outperform Q-learning on the robot obstacle avoidance task, even if we 

separately optimize the exploration method used for each technique. We also show a 

similar result for the grid world domain, where both techniques use the same exploration 

method, but with different parameter choices. We should also mention here that Tadepalli 

and Ok (Tadepalli & Ok, 1994) have found that R-learning outperforms Q-learning on 

a automated guided vehicle (AGV) task, where both techniques used the semi-uniform 

exploration method. 

3.6.1. Simulated Obstacle Avoidance Task 

Figure 11 compares the performance of  R-learning with that of Q-learning on the obstacle 

avoidance task. Here, R-learning uses a semi-uniform exploration strategy, where the 

robot takes random actions 2.5% of the time, since this seemed to give the best results. 

Q-learning is using a recency-based exploration strategy, with e = 0.001 which gave 

the best results. Clearly, R-learning is outperforming Q-learning consistently throughout 
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the run. Note that we are measuring the performance of both algorithms on the basis of 

average reward, which Q-learning is not specifically designed to optimize. However, this 

is consistent with many previous studies in RL, which have used average reward to judge 

the empirical performance of Q-learning (Lin, 1993, Mahadevan & Connell, 1992). 
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Figure 11. C o m p a r i n g  R and  Q- learn ing  us ing different  explorat ion techniques on a s imulated robot obstacle  

avoidance  task. Here  Q- lea rn ing  uses a r ecency-based  explorat ion method with e = 0 . 0 0 1  wh ich  gave  the 

best results. The d iscount  factor  "y = 0.99. R-learn ing  uses a semi-uni form explorat ion with r andom act ions 

chosen 2 .5% of  the time. The curves represent  med ian  values over  30 independent  runs. 

3.6.2, Grid World Domain 

R-LEARNING VS Q-LEARNING ON STOCHASTIC GRID WORLD 
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Figure 12. C o m p a r i n g  R vs Q- learn ing  on a grid wor ld  envi ronment  with membranes .  Here both a lgor i thms 

used the UE explora t ion  method.  The UE cons tant  for  R- learning is c = 60, whereas  for  Q- learning,  c = 30. 

The learning rates were  set t o / 3  = 0 .5  and  a = 0 .05 .  The discount  factor  "7 = 0 .995 .  
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Figure 12 compares the performance of R and Q-learning on the grid world domain. 

The exploration strategy used here is the LIE counter-based strategy described above, 

which was separately optimized for each technique. R-learning is clearly outperforming 

Q-learning. Interestingly, in both domains, R-learning is slower to reach its optimal 

performance than Q-learning. 

3. 7. Sensitivity Analysis of R-learning 

Clearly, we need to determine the sensitivity of R-learning to exploration to obtain a more 

complete understanding of its empirical performance. We now describe some sensitivity 

analysis experiments that illustrate the variation in the performance of R learning with 

different amounts of exploration. The experiments also illustrate the sensitivity of R- 

learning to the learning rate parameters c~ and/3. 

Figure 13 and Figure 14 illustrate the sensitivity of R-learning to exploration levels 

and learning rates for the grid world domain. Each figure shows a 3-dimensional plot of 

the performance of R-learning (as measured by the total cumulative reward) for different 

values of the two learning rates, c~, for adjusting average reward p, and/3, for adjusting 

the relative action values R(x,  a). The exploration probability parameter p was reduced 

gradually from an initial value of p = 0.95 to a final value of p = 0.995 in all the 

experiments. Each plot measures the performance for different values of the exploration 

constant c, and a parameter k that controls how quickly the learning rate/3 is decayed. 

/3 is decayed based on the number of updates of a particular R(x, a) value. This state 

action dependent learning rate was previously used by Barto et al (Barto, et al, 1995). 

More precisely, the learning rate/3 for updating a particular R(x,  a) value is calculated 

as follows: 

/3ok 
/7(x, a) = k + freq(x,  a)' 

where/70 is the initial value of the/3. In these experiments, the learning rate c~ was also 

decayed over time using a simpler state independent rule: 

where C~m~n is the minimum learning rate required. 

Figure 13 and Figure 14 reveal a number of interesting properties of R-learning. The 

first two properties can be observed by looking at each plot in isolation, whereas the 

second two can be observed by comparing different plots. 

More exploration is better than less: The degree of exploration is controlled by the 

parameter c. Higher values of e mean more exploration. Each plot shows that higher 

values of e generally produce better performance than lower values. This behavior 

is not surprising, given our analysis of limit cycles. Higher exploration means that 

R-learning will be less likely to fall into limit cycles. However, as we show below, 

the degree of exploration actually depends on the stochasticity of the domain, and 

more exploration is not always better than less. 
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Slow decay of fl is better than fast decay: Each plot also shows larger values of 

the parameter k (which imply that fl will be decayed more slowly) produces better 

performance than small values of k. This behavior is similar to that of Q-learning, 

in that performance suffers if learning rates are decayed too quickly. 

Low values of o~ are better than high values: Another interesting pattern revealed by 

comparing different plots is that initializing a to smaller values (such as 0.05) clearly 

produces better performance as compared to larger initial values (such as 0.5). The 

reason for this behavior is that higher values of a cause the average reward p to 

be adjusted too frequently, causing wide fluctuations in its value over time. A low 

initial value of (x means that p will be changed very slowly over time. 

High values of/3 are better than tow values: Finally, comparing different plots reveals 

that higher initial values of/3 are to be preferred to lower values. The underlying 

reason for this behavior is not apparent, but it could be dependent on the particular 

grid world domain chosen for the study. 

3.7.1. Degree of Exploration 

The above sensitivity analysis tends to give the impression that more exploration is 

alway better than less. Figure 15 illustrates how the amount of exploration needed 

actually depends on the stochasticity of the underlying MDP. Here, the domain is a 

simplified grid world with no membranes. The goal is to reach the grid cell (19, 19) (the 

bottom right corner) from any other cell in the grid world. The curves show the result 

of increasing semi-uniform exploration from no exploration (t9 -- 0.00) to a high level 

of exploration (p = 0.80). The graph on the left shows the results for a deterministic 

grid world domain. Here, performance does improve as exploration is increased, but 

only up to a point (between p = 0.20 and p = 0.40). Beyond that, performance suffers. 

The graph on the right shows the same results for a stochastic grid world domain with 

transition probability p -- 0.75. Here, the best performance occurs with no exploration 

at all, because the underlying stochasticity of the domain ensures that all states will be 

visited! 

4. Conclusions 

Based on our overview of average reward RL (Section 2) and the experimental tests on 

R-learning (Section 3), the main findings of this paper can be summarized as follows. 

4.1. Average Reward MDP 

We emphasized the distinction between gain-optimal policies that maximize average 

reward versus bias-optimal policies that also maximize relative values. The key finding is 
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Figure 13. Performance of R-learning on a 20x20 stochastic grid world environment with one-way membranes. 

Each point represents the median over 30 runs of 500,000 steps. The domain was stochastic with transition 

probability = 0.75. The x axis represents ten different values of the constant of exploration c varied uniformly 

over the range [10,100]. Higher values ofc  mean more exploration. The y axis represents five different values 

of the constant k controlling the decay of the learning rate/3, k was uniformly varied over the range [100,500]. 

Higher values of k mean more gradual decay of/3. 
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Figure 14. Performance of R-learning on a 20x20 stochastic grid world environment with one-way membranes. 

Each point represents the median over 30 runs of 500,000 steps. The domain was stochastic with transition 

probability = 0.75. The x axis plots ten different values of the constant of exploration c varied uniformly 

over the range [10,100]. Higher values of c mean more exploration. The y axis plots five different values of 

the constant k controlling the decay of the learning rate ~. k was uniformly varied over the range [100,500]. 

Higher values of k mean more gradual decay of ft. 
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Figure 15. Performance of R-learning for varying amounts of semi-uniform exploration for a deterministic 
(graph on left) and stochastic (graph on right) grid world domain with no membranes. These graphs show that 
the best level of exploration depends on the stochasticity of the domain. 

that while there are several synchronous and asynchronous algorithms for producing gain- 

optimal policies, none of these algorithms (including R-learning) can reliably produce 

bias-optimal policies for a general unichain MDR 

We presented a general optimality metric called n-discount-optimality (Veinott, 1969) 

relating discounted and undiscounted MDE Gain optimality and bias optimality corre- 

spond to the first two terms of  this optimality metric. We believe that this metric offers a 

general framework to understand the relationship between discounted and undiscounted 

RL, and also opens up some very interesting directions for future work. 

We described several asynchronous algorithms that are provably guaranteed to yield 

gain-optimal policies. We also pointed out a key difference between these algorithms and 

the natural asynchronous relative value iteration method, namely that the average reward 

is estimated independently of the relative values, such as by averaging over sample 

rewards. Since R-learning shares this similarity, it brightens the prospect of proving it 

converges to yield gain-optimal policies. 

4.2. Experimental Results on R-learning 

We now discuss two key conclusions that are based on our experimental results. However, 

we must emphasize the tentative nature of  these conclusions at this point. We are 

planning to undertake a more detailed study of  a residual gradient (Baird, 1995) version 

of  R-learning using larger state space problems, which will provide a further test of  these 

hypotheses (Mahadevan & Baird). 

Our first observation is that average reward methods are more sensitive to exploration 

than discounted methods. We showed that R learning can fall into limit cycles in two 

domains using two different exploration methods. We also showed that by increasing the 

degree of exploration, R-learning does not get into limit cycles. Finally, we presented a 

detailed sensitivity study of R-learning by varying the degree of  exploration over different 

learning rates. 
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Our second observation is that average reward methods can be superior to discounted 

methods. We showed that R-learning can perform better than Q-learning in two domains, 

a simulated robot task and a grid world task, even if the two methods were separately 

optimized. More detailed tests are needed to determine if there are some generic types 

of domains (for example, ergodic domains) that average reward methods, such as R- 

learning, are inherently better at than discounted methods such as Q-learning. 

Recent work by Tadepalli and Ok (Tadepalli & Ok, 1994) also supports both these 

conclusions. They compared a model-based average reward method called H learning 

(which is a variant of Jalali and Ferguson's B algorithm (Jalali & Ferguson, 1989) de- 

scribed in Section 2.5) with R learning, Q-learning, and ARTDP (Barto, et al, 1995), 

using an automated guided vehicle (AGV) task. In their experiments, they primarily 

used semi-uniform exploration. They found that H learning performs much better as the 

level of exploration is increased. They also found that in some cases the two average 

reward methods, namely H learning and R learning, outperformed the two discounted 

methods, namely ARTDP and Q learning. 

5. Directions for Future Research 

This paper suggests many promising directions for future research in average reward RL, 

some of which are already bearing fruit. 

Bias-Optimal RL Algorithms: Clearly, one of the most pressing open problems is 

developing a bias-optimal RL algorithm. The key difference between the algorithms 

described in this paper and a bias-optimal algorithm is that the latter requires solving 

two nested optimality equations (Puterman, 1994). Several approaches to the design 

of a bias-optimal algorithm have been pursued in the DP literature, ranging from pol- 

icy iteration (Veinott, 1969, Puterman, 1994), linear programming (Denardo, 1970), 

and value iteration (Federgruen & Sehweitzer, 1984). We are currently testing a 

model-based bias optimality algorithm, which extends Jalali and Ferguson's B algo- 

rithm (Mahadevan). We are also working on a model-free bias optimality algorithm, 

which extends R-learning. We expect that bias-optimal RL algorithms will scale 

better than bias-optimal DP algorithms. 

Value Function Approximation in Average Reward MDP: In this paper, we used a sim- 

ple table lookup representation for representing policies. In most realistic applications 

of RL, such as robotics (Mahadevan & Connell, 1992) or games (Tesauro, 1992), 

the size of the state space rules out table-lookup representations, and necessitates 

using a function approximator, such as a neural net (Lin, 1993, Tesauro, 1992) or 

kd-trees (Moore, 1991, Salganicoff, 1993). We have recently developed some the- 

oretical results showing the performance loss that results from using approximate 

value functions (Mahadevan & Baird). We are also working on a residual gradient 

(Baird, 1995) version of R-learning. 

• Multi-Chain Average Reward Algorithms: In this paper we focused mainly on al- 

gorithms for unichain MDP's. This allows representing the average reward p by a 
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scalar value. However, this assumption may be violated in many applications. An 

interesting problem is to develop RL algorithms to handle multi-chain MDP's, where 

different states may have different average rewards. In multi-chain MDP's, an ad- 

ditional optimality equation relating the gain of one state to other states has to be 

solved. 

Modular Average Reward Methods: A number of researchers have studied modular 

architectures for scaling RL (Dayan & Hinton, 1992, Lin, 1993, Mahadevan, 1992, 

Mahadevan & Connell, 1992, Singh, 1994a, Whitehead, et al., 1993). Such archi- 

tectures decompose tasks into different sets of primitive subtasks. Learning primitive 

subtasks is easier because rewards are more frequent. Also, the solutions learned to 

subtasks can be transferred to yield faster task learning. All these systems have 

been based on Q-learning. However, an average reward method such as R-learning 

has significant advantages over Q-learning for multi-task learning. Average adjusted 

values satisfy a nice linearity property (Schwartz, 1993) (assuming a deterministic 

MDP): V~ - V~ = p - r. In other words, if rewards are constant, the difference 

in relative values across states is also constant. We have empirically found this 

linearity property to hold up well even in stochastic MDP's. Discounting, on the 

other hand, causes exponential non-linearities across states. We plan to develop an 

average-reward based modular architecture for multi-task learning. 
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Appendix: Discounted Reinforcement Learning 

Most previous work in reinforcement learning has studied a formulation where agents 

maximize the discounted cumulative sum of rewards (Sutton, 1992). The discounted 

return of a policy 7r starting from a state z is defined as 

N - 1  

V:(s) lim Z(~ tR~ : ( s ) ) ,  
N ~ o c  

t : O  

where 7 -< 1 is the discount factor, and R[(s) is the reward received at time step 

t starting from state s and choosing actions using policy 7r. An optimal discounted 
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policy re* maximizes the above value function over all states x and policies 7r, i.e. 

v4" > v 4(x). 
The action value Q.~ (x, a) denotes the discounted return obtained by performing action 

a once from state x, and thereafter following policy 7r 

E O~ (x, a) = r(x, a) + "y P~u(a)V~(y), 
Y 

where V~(y) = maxacAO(Y, a), and r(x, a) is the expected reward for doing action a 

in state x. 

5.0.1. Q-learning: 

Watkins (Watkins, 1989) proposed a simple iterative method for learning Q values. All 

the Q(x, a) values are randomly initialized to some value (say 0). At time step t, the 

learner either chooses the action a with the maximum Qt(x, a) value, or with some 

probability selects a random "exploratory" action to ensure that it does not get stuck in 

a local maximum. If the agent moves from state x to state y, and receives an immediate 

reward rimm(x, a), the current Qt(x, a) values are updated using the rule: 

Qt+l (x, a) +- Ot(x, a ) (1-  /3) + /3 (r~m~(x, y) + 7 mea ~ Qt(y, a) ) (2)  

where 0 < /3 ___ 1 is the learning rate controlling how quickly errors in action val- 

ues are corrected. Q-learning is guaranteed to asymptotically converge to the optimal 

discounted policy for a finite MDP. The precise convergence conditions are given in 

(Tsitsiklis, 1994), but essentially every action must be tried in every state infinitely of- 

ten, and the learning rate/3 must be slowly decayed to 0. Q-learning also converges 

when 7 = 1, if we assume a zero reward absorbing state s which is reachable under all 

policies, and Qt(s ,  a) = 0 for all actions a and time t. 

Notes 

1. The reason both techniques converge to a value slightly below 2 is because the robot takes random actions 

5% of the time. 

2. If the state space is not finite, we have to allow history dependent policies, since there may be no gain- 

optimal stationary policy. See (Bertsekas, 1987, Puterman, 1994, Ross, 1983) for some examples. 

3. This limit is guaranteed to exist as long as the state space is countable, and we do not allow history 

dependent policies (Puterman, 1994). For more general policies, this limit need not exist, and two possibly 

different measures of average reward result from using lira sup and lirn inf, respectively. 

4. This limit assumes that all policies are aperiodic. For periodic policies, we need to use the Cesaro limit 
I [ , c ' ~ k  \ 

N 

5. A mapping T is a contraction mapping (w.r.t. the maximum norm) if and only if there exists a real number 

0 < 6 < 1 such that f lT(V)(x)  - T(V' ) (x) I I  <_ 51IV(x) - Ve(x){I, where tif(x)lt = max:~ l f (x) l ,  and 
V(x )  and Vt(x)  are any two real-valued bounded functions on S'. 
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6. This counter-example implies that Schwartz's remark in his paper (Schwartz, 1993) - "when R-learning 

converges, it must produce a T-optimal policy" - is not correct for unichain MDP's. 

7. Drastically compressing sensor information can easily make robot tasks non-Markovian. However, note 

here that the robot does not have to discriminate between boxes and non-boxes, but only avoid hitting 

anything and keep moving forward. Using all the sensor data would require using function approximation, 

which could itself create a non-Markevian problem. 

8. To simplify the argument, we are assuming synchronous updating, but the results hold even for asynchronous 

updating. 
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