
Machine Learning, 22, 159-195 (1996)

(~) 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Average Reward Reinforcement Learning:
Foundations, Algorithms, and Empirical Results

SRIDHAR MAHADEVAN mahadeva@ samuel.csee.usf.edu

Department of Computer Science and Engineering, University of South Florida, Tampa, Florida 33620

Editor: Leslie Pack Kaelbling

Abstract . This paper presents a detailed study of average reward reinforcement learning, an undiscounted

optimality framework that is more appropriate for cyclical tasks than the much better studied discounted

framework. A wide spectrum of average reward algorithms are described, ranging from synchronous dynamic

programming methods to several (provably convergent) asynchronous algorithms from optimal control and

learning automata. A general sensitive discount optimality metric called n-discount-optimality is introduced, and

used to compare the various algorithms. The overview identifies a key similarity across several asynchronous

algorithms that is crucial to their convergence, namely independent estimation of the average reward and the

relative values. The overview also uncovers a surprising limitation shared by the different algorithms: while

several algorithms can provably generate gain-optimal policies that maximize average reward, none of them

can reliably filter these to produce bias-optimal (or T-optimal) policies that also maximize the finite reward to

absorbing goal states. This paper also presents a detailed empirical study of R-learning, an average reward

reinforcement learning method, using two empirical testbeds: a stochastic grid world domain and a simulated

robot environment. A detailed sensitivity analysis of R-learning is carried out to test its dependence on learning

rates and exploration levels. The results suggest that R-learning is quite sensitive to exploration strategies, and

can fall into sub-optimal limit cycles. The performance of R-learning is also compared with that of Q-learning,

the best studied discounted RL method. Here, the results suggest that R-learning can be fine-tuned to give

better performance than Q-learning in both domains.

Keywords: Reinforcement learning, Markov decision processes

1. Introduction

Machine learning techniques that enable autonomous agents to adapt to dynamic environ-

ments would find use in many applications, ranging from flexible robots for automating

chores (Engelberger, 1989) to customized software apprentices for managing informa-

tion (Dent, et al., 1992). Recently, an adaptive control paradigm called reinforcement

learning (RL) has received much attention (Barto, et al., 1995, Kaelbling, 1993b, Sutton,

1992). Here, an agent is placed in an initially unknown task environment, and learns by

trial and error to choose actions that maximize, over the long run, rewards that it receives.

RL has been shown to scale much better than related dynamic programming (DP) meth-

ods for solving Markov decision processes, such as policy iteration (Howard, 1960).

For example, Tesauro (Tesauro, 1992) recently produced a grandmaster backgammon

program using Sutton's TD(A) temporal difference learning algorithm (Sutton, 1988).

Most of the research in RL has studied a problem formulation where agents maximize

the cumulative sum of rewards. However, this approach cannot handle infinite horizon

tasks, where there are no absorbing goal states, without discounting future rewards.

Traditionally, discounting has served two purposes. In some domains, such as economics,

160 s. MAHADEVAN

discounting can be used to represent "interest" earned on rewards, so that an action that

generates an immediate reward will be preferred over one that generates the same reward

some steps into the future. However, the typical domains studied in RL, such as robotics

or games, do not fall in this category. In fact, many RL tasks have absorbing goal states,

where the aim of the agent is to get to a given goal state as quickly as possible. As

Kaelbling showed (Kaelbling, 1993a), such tasks can be solved using undiscounted RL

methods.

Clearly, discounting is only really necessary in cyclical tasks, where the cumulative

reward sum can be unbounded. Examples of such tasks include a robot learning to

avoid obstacles (Mahadevan & Connell, 1992) or an automated guided vehicle (AGV)

serving multiple queues (Tadepalli & Ok, 1994). Discounted RL methods can and have

been applied to such tasks, but can lead to sub-optimal behavior i f there is a short term

mediocre payoff solution that looks more attractive than a more long-term high reward

one (see Figure 1).

2.5

~n

2

1.5

< 0.5
,,=,

0

R-LEARNING VS Q-LEARNING

o
'Q-LEARNING-GAMMA-0.9' -~--- /

'Q-LEARNING-GAMMA-0.99' - ~ * J

10 20 30 40 50 6 0 70 80 90 I O0
NUMBER OF STEPS IN MULTIPLES OF 1000

Figure 1. An example to illustrate why an average-reward RL method (R-learning) is preferable to a discounted
RL method (Q-learning) for cyclical tasks. Consider a robot that is rewarded by +5 if it makes a roundtrip
service from "Home" to the "Printer", but rewarded +20 for servicing the more distant "Mailroom". The only
action choice is in the "Home" state, where the robot must decide the service location. The accompanying
graph shows that if the discount factor 3' is set too low (0.7), Q-learning converges to a suboptimal solution of
servicing the "Printer"• As 3, is increased, Q-learning infers the optimal policy of servicing the "Mailroom",
but converges much more slowly than R-learning.

A more natural long-term measure of optimality exists for such cyclical tasks, based on

maximizing the a v e r a g e reward per action. There are well known classical DP algorithms

for finding optimal average reward policies, such as policy iteration (Howard, 1960) and

value iteration (White, 1963). However, these algorithms require knowledge of the state

transition probabili ty matrices, and are also computationally intractable. RL methods for

producing optimal average reward policies should scale much better than classical DP

methods. Unfortunately, the study of average reward RL is currently at an early stage.

The first average-reward RL method (R-learning) was proposed only relatively recently

by Schwartz (Schwartz, 1993).

AVERAGE REWARD REINFORCEMENT LEARNING 161

Schwartz hypothesized several reasons why R-learning should outperform discounted

methods, such as Q-learning (Watkins, 1989), but did not provide any detailed exper-

imental results to support them. Instead, he used simplified examples to illustrate his

arguments, such as the one in Figure 1. Here, Q-learning converges much more slowly

than R-learning, because it initially chooses the closer but more mediocre reward over

the more distant but better reward. 1 An important question, however, is whether the supe-

riority of R-learning will similarly manifest itself on larger and more realistic problems.

A related question is whether average-reward RL algorithms can be theoretically shown

to converge to optimal policies, analogous to Q-learning.

This paper undertakes a detailed examination of average reward reinforcement learning.

First, a detailed overview of average reward Markov decision processes is presented, cov-

eting a wide range of algorithms from dynamic programming, adaptive control, learning

automata, and reinforcement learning. A general optimality metric called n-discount-
optimality (Veinott, 1969) is introduced to relate the discounted and average reward

frameworks. This metric is used to compare the strengths and limitations of the vari-

ous average reward algorithms. The key finding is that while several of the algorithms

described can provably yield optimal average reward (or gain-optimal (Howard, 1960))

policies, none of them can also reliably discriminate among these to obtain a bias-optimal
(Blackwell, 1962) (or what Schwartz (Schwartz, 1993) referred to as T-optimal) policy.

Bias-optimal policies maximize the finite reward incurred in getting to absorbing goal

states.

While we do not provide a convergence proof for R-learning, we lay the groundwork

for such a proof. We discuss a well known counter-example by Tsitsiklis (described in

(Bertsekas, 1982)) and show why it does not rule out provably convergent gain-optimal

RL methods. In fact, we describe several provably convergent asynchronous algorithms,

and identify a key difference between these algorithms and the counter-example, namely

independent estimation of the average reward and the relative values. Since R-learning

shares this similarity, it suggests that a convergence proof for R-learning is possible.

The second contribution of this paper is a detailed empirical study of R-learning using

two testbeds: a stochastic grid world domain with membranes, and a simulated robot

environment. The sensitivity of R-learning to learning rates and exploration levels is

also studied. The performance of R-learning is compared with that of Q-learning, the

best studied discounted RL method. The results can be summarized into two findings:

R-learning is more sensitive than Q-learning to exploration strategies, and can get trapped

in limit cycles; however, R-learning can be fine-tuned to outperform Q-learning in both

domains.

The rest of this paper is organized as follows. Section 2 provides a detailed overview

of average reward Markov decision processes, including algorithms from DP, adaptive

control, and learning automata, and shows how R-learning is related to them. Section 3

presents a detailed experimental test of R-learning using two domains, a stochastic grid

world domain with membranes, and a simulated robot domain. Section 4 draws some

conclusions regarding average reward methods, in general, and R-learning, in particular.

Finally, Section 5 outlines some directions for future work.

162 S. MAHADEVAN

2. Average Reward Markov Decision Processes

This section introduces the reader to the study of average reward Markov decision pro-

cesses (MDP). It describes a wide spectrum of algorithms ranging from synchronous

DP algorithms to asynchronous methods from optimal control and learning automata.

A general sensitive discount optimality metric is introduced, which nicely generalizes

both average reward and discounted frameworks, and which is useful in comparing the

various algorithms. The overview clarifies the relationship of R-learning to the (very

extensive) previous literature on average reward MDP. It also highlights a key similar-

ity between R-learning and several provably convergent asynchronous average reward

methods, which may help in its further analysis.

The material in this section is drawn from a variety of sources. The literature on

average reward methods in DP is quite voluminous. Howard (Howard, 1960) pioneered

the study of average reward MDP's, and introduced the policy iteration algorithm. Bias

optimality was introduced by Blackwell (Blackwell, 1962), who pioneered the study

of average reward MDP as a limiting case of the discounted MDP framework. The

concept of n-discount-optimality was introduced by Veinott (Veinott, 1969). We have

drawn much of our discussion, including the key definitions and illustrative examples,

from Puterman's recent book (Puterman, 1994), which contains an excellent treatment

of average reward MDP.

By comparison, the work on average reward methods in RL is in its infancy. Schwartz's

original paper on R-learning (Schwartz, 1993) sparked interest in this area in the RL

community. Other more recent work include that of Singh (Singh, 1994b), Tadepalli

and Ok (Tadepalli & Ok, 1994), and Mahadevan (Mahadevan, 1994). There has been

much work in the area of adaptive control on algorithms for computing optimal average

reward policies; we discuss only one algorithm from (Jalali & Ferguson, 1989). Finally,

we have also included here a provably convergent asynchronous algorithm from learning

automata (Narendra & Thathachar, 1989), which has only recently come to our attention,

and which to our knowledge has not been discussed in the previous RL literature. Average

reward MDP has also drawn attention in recent work on decision-theoretic planning (e.g.

see Boutilier and Puterman (Boutilier & Puterman, 1995)).

2.1. Markov Decision Processes

A Markov Decision Process (MDP) consists of a (finite or infinite) set of states S, and

a (finite or infinite) set of actions A for moving between states. In this paper we will

assume that S and A are finite. Associated with each action a is a state transition matrix

P(a), where Pzv(a) represents the probability of moving from state x to y under action

a. There is also a reward or payoff function r : S x A ~ "/-4, where r(x, a) is the

expected reward for doing action a in state x.

A stationary deterministic policy is a mapping 7r : S ~ A from states to actions. In

this paper we restrict our discussion to algorithms for such policies, with the exception

of the learning automata method, where we allow stationary randomized policies. In any

case, we do not allow nonstationary policies. 2 Any policy induces a state transition

AVERAGE REWARD REINFORCEMENT LEARNING 163

matrix P(Tr), where Pzy(Tr) = Pzy(Tr(x)). Thus, any policy yields a Markov chain

(S, P(Tr)). A key difference between discounted and average reward frameworks is

that the policy chain structure plays a critical role in average reward methods. All the

algorithms described here incorporate some important assumptions about the underlying

MDP, which need to be defined before presenting the algorithms.

Two states x and y communicate under a policy 7r if there is a positive probability of

reaching (through zero or more transitions) each state from the other. It is easy to see

that the communication relation is an equivalence relation on states, and thus partitions

the state space into communicating classes. A state is recurrent if starting from the state,

the probability of eventually reentering it is 1. Note that this implies that recurrent states

will be visited forever. A non-recurrent state is called transient, since at some finite point

in time the state will never be visited again. Any finite MDP must have recurrent states,

since not all states can be transient. If a recurrent state x communicates with another

state y, then y has to be recurrent also.

An ergodic or recurrent class of states is a set of recurrent states that all communicate

with each other, and do not communicate with any state outside this class. If the set of

all states forms an ergodic class, the Markov chain is termed irreducible. Let psn, s(Tr)

denote the probability of reaching state s from itself in n steps using policy ~. The

period of a state s under policy 7r is the greatest common divisor of all n for which

pn, s(Tr) > 0. A state is termed periodic if its period exceeds 1, else it is aperiodic. States

in a given recurrence class all have the same period.

An ergodic or recurrent MDP is one where the transition matrix corresponding to every

(deterministic stationary) policy has a single recurrent class. An MDP is termed unichain

if the transition matrix corresponding to every policy contains a single recurrent class,

and a (possibly empty) set of transient states. An MDP is communicating if every pair

of states communicate under some stationary policy. Finally, an MDP is multichain if

there is at least one policy whose transition matrix has two or more recurrent classes.

We will not discuss algorithms for multichain MDP's in this paper.

Figure 2 contains two running examples that we will use to illustrate these concepts,

as well as to explain the following algorithms. These examples originally appeared in

(Puterman, 1994). For simplicity, in both MDP's, there is a choice of action only in

state A. Each transition is labeled with the action taken, and a pair of numbers. The

first number is the immediate reward, and the second number represents the transition

probability. Both MDP's are unichain. In the two-state MDP, state A is transient under

either policy (that is, doing action a l or a2 in state A), and state B is recurrent. Such

recurrent single-state classes are often called absorbing states. Both states are aperiodic

under the policy that selects a l .

In the three-state MDP, there are two recurrent classes, one for each policy. If action a l

is taken in state A, the recurrent class is formed by A and B, and is periodic with period

2. If action a2 is taken, the recurrent class is formed by A and C, which is also periodic

with period 2. As we will show below, these differences between the two MDP's will

highlight themselves in the operation of the algorithms.

164 s. MAHADEVAN

••a1(-1,1)
a2 (10,1)

a l (5,0.5) al (0,1) a2 (0,1)

Figure 2. Two simple MDP's that illustrate the underlying concepts and algorithms in this section. Both

policies in the two MDP's maximize average reward and are gain-optimal. However, only the policy that

selects action al in state A is bias-optimal (T-optimal) in both MDP's. While most of the algorithms described

here can compute the bias-optimal policy for the 2 state MDP, none of them can do so for the 3 state MDR

2.2. Gain and Bias Optimality

The aim of average reward MDP is to compute policies that yield the highest expected

payoff per step. The average reward p~ (x) associated with a particular policy 7r at a

state x is defined as 3

E f V ~ N - 1 R ~ (x))
p~(x) = lim ~z..4=o

N ---+ cx~ N '

where R~ (x) is the reward received at time t starting from state x, and actions are chosen

using policy 7r. E(.) denotes the expected value. We define a gain-optimal policy 7r* as

one that maximizes the average reward over all states, that is J * (x) > p" (x) over all

policies 7r and states x.

A key observation that greatly simplifies the design of average reward algorithms is

that for unichain MDP's, the average reward of any policy is state independent. That is,

p (x) = p (v) =

The reason is that unichain policies generate a single recurrent class of states, and possibly

a set of transient states. Since states in the recurrent class will be visited forever, the

expected average reward cannot differ across these states. Since the transient states will

eventually never be reentered, they can at most accumulate a finite total expected reward

before entering a recurrent state, which vanishes under the limit.

For the example MDP's in Figure 2, note that the average rewards of the two policies in

the two-state MDP are both -1. In the three-state MDP, once again, the average rewards

of the two policies are identical and equal to 1.

2.2.1. Bias Optimality

Since the aim of solving average reward MDP's is to compute policies that maximize

the expected payoff per step, this suggests defining an optimal policy 7r* as one that is

gain-optimal. Figure 3 illustrates a problem with this definition. MDP's of this type

AVERAGE REWARD REINFORCEMENT LEARNING 165

naturally occur in goal-oriented tasks. For example, consider a two-dimensional grid-

world problem, where the agent is rewarded by +1 if an absorbing goal state is reached,

and is rewarded - 1 otherwise. Clearly, in this case, all policies that reach the goal will

have the same average reward, but we are mainly interested in policies that reach the

goal in the shortest time, i.e. those that maximize the finite reward incurred in reaching

the goal.

a2 (-100,1)

Figure 3. In this MDP, both policies yield the same average reward, but doing action a l is clearly preferrable

to doing a2 in state A.

The notion of bias optimality is needed to address such problems. We need to define

a few terms before introducing this optimality metric. A value function V : S --+ 7~

is any mapping from states to real numbers. In the traditional discounted framework,

any policy 7r induces a value function' that represents the cumulative discounted sum of

rewards earned following that policy starting from any state s

N--1

V4(s) = lim E (E T t R ~ (s)) ,
N----*oo

t=0

where 3' < 1 is the discount factor, and R[(s) is the reward received at time t starting

from state s under policy 7r. An optimal discounted policy 7c* maximizes the above value

function over all states x and policies 7r, i.e. V~ ~ (x) > V~(x). In average reward MDP,

since the undiscounted sum of rewards can be unbounded, a policy 7c is measured using

a different value function, namely the average adjusted sum of rewards earned following

that policy, 4

N - 1

w(s) = lira
t=0

where p~ is the average reward associated with policy 7r. The term V~(x) is usually

referred to as the bias value, or the relative value, since it represents the relative difference

in total reward gained from starting in state s as opposed to some other state x. In

particular, it can be easily shown that

V'~(s) - V'~(x) = lim E (~ R~(s)) - E (E R~[(x)) .
N ~ c ~ t=O t=O

A policy ~* is termed bias-optimal if it is gain-optimal, and it also maximizes bias

values, that is V~*(x) > V~(x) over all z E S and policies ~r. Bias optimality was

166 s. MAHADEVAN

referred to as T-optimality by Schwartz (Schwartz, 1993). The notion of bias-optimality

was introduced by Blackwell (Blackwell, 1962), who also pioneered the study of average

reward MDP as the limiting case of the discounted framework. In particular, he showed

how the gain and bias terms relate to the total expected discounted reward using a Laurent

series expansion. A key result is the following truncated Laurent series expansion of the

discounted value function V~ (Puterman, 1994):

LEMMA 1 Given any policy 7r and state s,

V ~ (s) - p~(s) ~ - - 7 + W (s) + e~(,,7)

where lim.r__+ 1 e'~(s, 7) = 0.

We will use this corollary shortly. First, we define a general optimality metric that

relates discounted and average reward RL, which is due to Veinott (Veinott, 1969):

DEFINITION 1 A policy 7r* is n-discount-optimal, for n = - 1 , 0 , 1, if for each state
s, and over all policies 7r,

lim (1 - "~)-~ (V~* (s) - V~(s)) >_ O.
7---+1

We now consider some special cases of this general optimality metric to illustrate how it

nicely generalizes the optimality metrics used previously in both standard discounted RL

and average reward RL. In particular, we show below (see Lemma 2) that gain optimality

is equivalent to -1-discount-optimality. Furthermore, we also show (see Lemma 3) that

bias optimality is equivalent to O-discount-optimality. Finally, the traditional discounted

MDP framework can be viewed as studying 0-discounted-optimality for a fixed value of

7.
In the two-state MDP in Figure 2, the two policies have the same average reward of

- 1 , and are both gain-optimal. However, the policy rr that selects action a l in state A

results in bias values V~(A) = 12 and V~(B) = 0. The policy 7r' that selects action

a2 in state A results in bias values V~'(A) = 11 and V~'(B) = 0. Thus, 7r is better

because it is also bias-optimal. In the 3-state MDP, both policies are again gain-optimal

since they yield an average reward of 1. However, the policy 7r that selects action a l

in state A generates bias values V~(A) = 0.5, V~(B) = -0 .5 , and V~(C) = 1.5. The

policy ~ is bias-optimal because the only other policy is 7r' that selects action a2 in state

A, and generates bias values V~'(A) = -0.5 , V~(B) = -1 .5 , and V~(C) = 0.5.

It is easy to see why we might prefer bias-optimal policies, but when do we need to

consider a more selective criterion than bias optimality? Figure 4 shows a simple MDP

that illustrates why n-discount-optimality is useful for n > 0.

For brevity, we only include proofs showing one side of the equivalences for bias

optimality and gain optimality. More detailed proofs can be found in (Puterman, 1994).

LEMMA 2 If 7r* is a -1-discount-optimal policy, then 7r* is a gain-optimal policy.

AVERAGE REWARD REINFORCEMENT LEARNING 167

a1(o,1)

Figure 4. A simple MDP that clarifies the meaning of n-discount-optimality. There are only 2 possible
policies, corresponding to the two actions in state S1. Both policies yield an average reward of 0, and are
-1-discount-optimal. Both policies yield a cumulative reward of 3 in reaching the absorbing goal state $3, and
are also O-discount-optimal. However, the bottom policy reaches the goal quicker than the top policy, and is
1-discount-optimal. Finally, the bottom policy is also Blackwell optimal, since it is n-discount-optimal, for all

P roof : Let rr* be -1-discount-opt imal , and let 7r be any other policy. It follows from

Defini t ion I that over all states s

lim(l - 7>(W (s) - VT~(s)) > O.

Using L e m m a I, we can t ransform the above equat ion to

l i r a (1 - 3`) / (~P~*':J --p_~(s) + V ~ . (s) + e~.(s,3,) _ V~(s) _ e~(s, 3,))\ O.

Noting that e ~" (s, 7) and e~(s , 3`) both approach 0 as 3' ~ 1, the above equation implies

that

(/ - / (s)) >_ o.

LEMMA 3 I f 7:* is a O-discount-optimal policy, then 7:* is a bias-optimal (or T-optimal)

policy.

Proof : Note that we need only consider gain-opt imal policies, since as "7 -~ 1, the first

term on the right hand side in L e m m a 1 dominates , and hence we can ignore all policies

where p~ < p~ ' . From the definition, it fol lows that if 7:* is a 0-discount-opt imal policy,

then for all gain-opt imal policies 7r, over all states s

li cv: - > o .
7__~i ~ 3'

As before, we can expand this to yield

168 s. MAHADEVAN

Bias-Optimal
(O-discount)

policies

Gain-Optimal
(-1 -discount)

policies

All Policies

Blackwell Optimal

(infinite-discount)

policies

Figure 5. This diagram illustrates the concept of n-discount-optimal policies. Gain-optimal policies are -
1-discount-optimal policies. Bias-optimal (or T-optimal) policies are O-discount-optimal policies. Note that
n-discount-optimal policies get increasingly selective as n increases. Blackwell optimal policies are n-discount-
optimal for all n > -1.

S(s))
tim ((p ~ ' (s) + V~r.(s) + e~r.(s,7)) _ (1 - "y + V ' (s) + e~r(s,'~)) > O.

Since 7r* and 7r are both gain-optimal, p~* = p~, and hence

1ira (((V~" (s) + e ~" (s, ~)) - (V~(s) + e~Is, ~))) >- 0.
7--'1

Since both e ~* (s, 7) and e~(s, 3') approach 0 as 7 --* 1, the above equation implies that

(w' (s) - v~(s)) >_ 0.

Figure 5 illustrates the structure of n-discount-optimal policies. The most selective

optimality criterion is Blackwell optimality, and corresponds to a policy 7v* that is n-

discount-optimal for all n > - 1 . It is interesting to note that a policy that is m-discount-

optimal wilt also be n-discount-optimal for all n < m. Thus, bias optimality is a

more selective optimality metric than gain optimality. This suggests a computational

procedure for producing Blackwell-optimal policies, by starting with -1-discount-optimal

policies, and successively pruning these to produce i-discount-optimal policies, for i >

- 1 . Exactly such a policy iteration procedure for multichain MDP's is described in

(Puterman, 1994). In this paper, we restrict our attention to -1-discount-optimal and

0-discount-optimal policies.

A V E R A G E R E W A R D R E I N F O R C E M E N T L E A R N I N G 169

2.3. Average Reward Bellman Equation

Clearly, it is useful to know the class of finite state MDP's for which (gain or bias) optimal

policies exist. A key result, which essentially provides an average reward Bellman

optimality equation, is the following theorem (see (Bertsekas, 1987, Puterman, 1994) for

a proof):

THEOREM 1 For any MDP that is either unichain or communicating, there exist a value

function V* and a scalar p* satisfying the equation

V * (x) + p * = m a a x (r (x , a) + E P x y (a) V * (y)) (1)

Y

such that the greedy policy 7r* resulting from V* achieves the optimal average reward
p* = p~" where p~* >_ p~ over all policies 7r.

Here, "greedy" policy means selecting actions that maximize the right hand side of

the above Bellman equation. If the MDP is multichain, there is an additional optimality

equation that needs to be specified to compute optimal policies, but this is outside the

scope of this paper (see (Howard, 1960, Puterman, 1994)). Although this result assures

us that stationary deterministic optimal policies exist that achieve the maximum average

reward, it does not tell us how to find them. We turn to discuss a variety of algorithms

for computing optimal average reward policies.

2.4. Average Reward DP Algorithms

2.4.1. Unichain Policy Iteration

The first algorithm, introduced by Howard (Howard, 1960), is called policy iteration.

Policy iteration iterates over two phases: policy evaluation and policy improvement.

1. Initialize k = 0 and set 7r ° to some arbitrary policy.

2. Policy Evaluation: Given a policy 7r k, solve the following set of IS[linear equations

for the average reward p ~ and relative values V ~ (x), by setting the value of a

reference state V(s) = O.

v (x) + p' k : + Px (k(x))V (y).
Y

3. Policy Improvement: Given a value function V ~ , compute an improved policy 7r k+l

by selecting an action maximizing the following quantity at each state,

m ~ x (r (x , a) + E P z y (a) V ~ k (Y)) •

Y

170 s. MAHADEVAN

setting, if possible, rr k+l (x) = rc k (x).

4. If 7rk(x) ~ 7tk+l(x) for some state x, increment k and return to step 2.

V(s) is set to 0 because there are [S[+ 1 unknown variables, but only IS] equations.

Howard (Howard, 1960) also provided a policy iteration algorithm for multichain MDP's

and proved that both algorithms would converge in finitely many steps to yield a gain-

optimal policy. More recently, Haviv and Puterman (Haviv & Puterman, 1991) have

developed a more efficient variant of Howard's policy iteration algorithm for communi-

cating MDP's.

The interesting question now is: Does policy iteration produce bias-optimal policies,

or only gain-optimal policies? It turns out that policy iteration will find bias-optimal

policies if the first gain-optimal policy it finds has the same set of recurrent states as

a bias-optimal policy (Puterman, 1994). Essentially, policy iteration first searches for a

gain-optimal policy that achieves the highest average reward. Subsequent improvements

in the policy can be shown to improve only the relative values, or bias, over the transient

states.

An example will clarify this point. Consider the two-state MDP in Figure 2. Let us start

with the initial policy rr °, which selects action a2 in state A. The policy evaluation phase

results in the relative values V~°(A) = 11 and V'°(B) = 0 (since B is chosen as the

reference state), and the average reward p~O = -1 . Clearly, policy iteration has already

found a gain-optimal policy. However, in the next step of policy improvement, a better

policy 7r I is found, which selects action a l in state A. Evaluating this policy subsequently

reveals that the relative values in state A has been improved to V ~1 (A) = 12, with the

average reward staying unchanged at p'~l = -1 . Policy iteration will converge at this

point because no improvement in gain or bias is possible.

However, policy iteration will not always produce bias-optimal policies, as the three-

state MDP in Figure 2 shows. Here, if we set the value of state A to 0, then both

policies evaluate to identical bias values V(A) = O, V(B) = -1 , and V(C) = 1. Thus,

if we start with the policy rr ° which selects action a2 in state A, and carry out the policy

evaluation and subsequent policy improvement step, no change in policy occurs. But,

as we explained above, policy 7r ° is only gain-optimal and not bias-optimal. The policy

that selects action a l in state A is better since it is bias-optimal.

2.4.2. Value Iteration

The difficulty with policy iteration is that it requires solving [S[equations at every

iteration, which is computationally intractable when ISl is large. Although some shortcuts

have been proposed that reduce the computation (Puterman, 1994), a more attractive

approach is to iteratively solve for the relative values and the average reward. Such

algorithms are typically referred to in DP as value iteration methods.

Let us denote by T(V)(x) the mapping obtained by applying the right hand side of

Bellman's equation:

AVERAGE REWARD R E I N F O R C E M E N T LEARNING 171

Y

It is well known (e.g. see (Bertsekas, 1987)) that T is a monotone mapping, i.e. given

two value functions V(x) and V'(x), where V(z) < V'(x) over all states x, it follows

that T(V)(z) < T(V')(x). Monotonicity is a crucial property in DP, and it is the basis

for showing the convergence of many algorithms (Bertsekas, 1987). The value iteration

algorithm is as follows:

1. Initialize V°(t) = 0 for all states t, and select an e > 0. Set k = 0.

2. Set Vk+l(x) = T(Vk)(x) over all x E S.

3. I f sp(V k+l - V k) > e, increment k and go to step 2.

4. For each x c S, choose 7r(x) = a to maximize (r(x,a) + ~-~y Pxy(a)Vk(y)).

The stopping criterion in step 3 uses the span semi-norm function sp(f(x)) = maxz(f(x))
min~(f(x)). Note that the value iteration algorithm does not explicitly compute the av-

erage reward, but this can be estimated as Vn+l(x) - Vn(x) for large n.

The above value iteration algorithm can also be applied to communicating MDP's,

where only optimal policies are guaranteed to have state-independent average reward.

However, value iteration has the disadvantage that the values V(x) can grow very large,

causing numerical instability. A more stable relative value iteration algorithm proposed

by White (White, 1963) subtracts out the value of a reference state at every step from the

values of other states. That is, in White 's algorithm, step 2 in value iteration is replaced

by

where s is some reference state. Note that Vk(s) = 0 holds for all time steps k.

Another disadvantage of (relative) value iteration is that it cannot be directly applied

to MDP's where states are periodic under some policies (such as the 3-state MDP in

Figure 2). Such MDP's can be handled by a modified value iteration procedure proposed

by Hordijk and Tijms (Hordijk & Tijms, 1975), namely

vk+X(x) : rnax (r(x,a) + ~k ~-~ P~y(a)Vk(y)) ,
y

where ~k ~ 1 as k ~ oc. Alternatively, periodic MDP's can be transformed using

an aperiodicity transformation (Bertsekas, 1987, Puterman, 1994) and then solved using

value iteration.

Value iteration can be shown to converge to produce an e-optimal policy in finitely

many iterations, but the conditions are stricter than for policy iteration. In particular,

it will converge if the MDP is aperiodic under all policies, or if there exists a state

s E S that is reachable from every other state under all stationary policies. Like policy

172 s. MAHADEVAN

iteration, value iteration finds the bias-optimal policy for the 2 state MDP in Figure 2.

Unfortunately, like policy iteration, value iteration cannot discriminate between the bias-

optimal and gain-optimal policies in the 3-state example MDP.

2.4.3. Asynchronous Value Iteration

Policy iteration and value iteration are both synchronous, meaning that they operate by

conducting an exhaustive sweep over the whole state space at each step. When updating

the relative value of a state, only the old values of the other states are used. In contrast,

RL methods are asynchronous because states are updated at random intervals, depending

on where the agent happens to be. A general model of asynchronous DP has been

studied by Bertsekas (Bertsekas, 1982). Essentially, we can imagine one processor for

every state, which keeps track of the relative value of the state. Each processor can

be in one of three states: idle, compute the next iterate, or broadcast its value to other

processors. It turns out that the asynchronous version of value iteration for discounted

MDP's converges under very general protocols for communication and computation.

A natural question, therefore, is whether the natural asynchronous version of value it-

eration and relative value iteration will similarly converge for the average reward frame-

work. Tsitsiklis provided a counter-example (described in (Bertsekas, 1982)) to show

that, quite surprisingly, asynchronous relative value iteration diverges. We discuss this

example in some detail because it calls into question whether provably convergent asyn-

chronous algorithms can exist at all for the average reward framework. As we show

below, such provably convergent algorithms do exist, and they differ from asynchronous

relative value iteration in a crucial detail.

(gO,l-pO) ~ - - ~ / ~ ~ " ' ~ (gl,pl)
(gO,pO)

Figure 6. A simple MDP to illustrate that the asynchronous version of White's relative value iteration algorithm

diverges, because the underlying mapping is non-monotonic. Both p0 and pl can lie anywhere in the interval

(0,1). gO and gl are arbitrary expected rewards. Asynchronous value iteration can be made to converge,

however, if it is implemented by a monotonic mapping.

Figure 6 shows a simple two-state MDP where there are no action choices, and hence

the problem is to evaluate the single policy to determine the relative values. For this

particular MDP, the mapping T can be written as

T(V)(O) = 90 + pOV(1) + (1 - pO)V(O)

T(V)(1) = gl + p lV(1) + (1 - p l)V(0) .

If we let state 0 be the reference state, White's algorithm can be written as

r(vk+l)(0) = gO + p O (T (V k) (1) - T(Vk)(0))

AVERAGE REWARD REINFORCEMENT LEARNING 173

T(Vk+I)(1) = g l + pl(T(V)(1) - T(Vk)(O)).

Now, it can be shown that this mapping has a fixpoint V* such that V*(O) yields the

optimal average reward. However, it is easy to show that this mapping is not mono-

tonic! Thus, although the above iteration will converge when it is solved synchronously,

divergence occurs even if we update the values in a Gauss-Seidel fashion, that is use

the just computed value of T(Vk(O)) when computing for T(Vk(1))! Note that the

asynchronous algorithm diverges, not only because the mapping is not monotonic, but

also because it is not a contraction mapping with respect to the maximum norm. 5 For

a more detailed analysis, see (Bertsekas, 1982). There are many eases when divergence

can occur, but we have experimentally confirmed that divergence occurs if 90 = 91 = 1

and p0 = p l > ~ .

However, this counter-example should not be viewed as ruling out provably convergent

asynchronous average reward algorithms. The key is to ensure that the underlying map-

ping remains monotonic or a contraction with respect to the maximum norm. Jalali and

Ferguson (Jalali & Ferguson, 1990) describe an asynchronous value iteration algorithm

that provably converges to produce a gain-optimal policy if there is a state s E S that is

reachable from every other state under all stationary policies. The mapping underlying

their algorithm is

v +l(x) = T (v ') (x) - w # s

Vt(s)=o yr.

where pt, the estimate of the average reward at time t, is independently estimated without

using the relative values. Note that the mapping is monotonic since T is monotonic and

pt is a scalar value.

There are several ways of independently estimating average reward. We discuss below

two provably convergent adaptive algorithms, where the average reward is estimated by

online averaging over sample rewards. This similarity is critical to the convergence of

the two asynchronous algorithms below, and since R-learning shares this similarity, it

suggests that a convergence proof for R-learning is possible.

2.5. An Asynchronous Adaptive Control Method

One fundamental limitation of the above algorithms is that they require complete knowl-

edge of the state transition matrices P(a), for each action a, and the expected payoffs

r(x, a) for each action a and state x. This limitation can be partially overcome by

inferring the matrices from sample transitions. This approach has been studied very

thoroughly in the adaptive control literature. We focus on one particular algorithm by

Jalali and Ferguson (Jalali & Ferguson, 1989). They describe two algorithms (named A

and B), which both assume that the underlying MDP can be identified by a maximum

likelihood estimator (MLE), and differ only in how th.e average reward is estimated. We

will focus mainly on Algorithm B, since that is most relevant to this paper. Algorithm

B, which is provably convergent under the assumption that the MDP is ergodic under all

stationary policies, is as follows:

174 s. MAHADEVAN

1. At time step t = 0, initialize the current state to some state x, cumulative reward

to K ° = 0, relative values V°(x) = 0 for all states z, and average reward pO = 0.

Fix Vt(s) ~ 0 for some reference state s for all t. The expected rewards r(z , a) are

assumed to be known.

2. Choose an action a that maximizes (r (x ,a) + ~ y p t y (a) V t (y)) .

3. Update the relative value Vt+l(x) = T(V t) (x) - pt, if x ¢ s.

4. Update the average reward p t + l = K~+lt+l ' where K t+l = K t + r(x, a).

5. Carry out action a, and let the resulting state be z. Update the probability transition

matrix entry P~(a) using a maximum-likelihood estimator. Increment t, set the

current state x to z, and go to step 2.

This algorithm is asynchronous because relative values of states are updated only when

they are visited. As discussed above, a key reason for the convergence of this algorithm

is that the mapping underlying the algorithm is monotonic. However, some additional

assumptions are also necessary to guarantee convergence, such as that the MDP is iden-

tifiable by an MLE-estimator (for details of the proof, see (Jalali & Ferguson, 1989)).

Tadepalli and Ok (Tadepalli & Ok, 1994) have undertaken a detailed study of a variant

of this algorithm, which includes two modifications. The first is to estimate the expected

rewards r(x, a) from sample rewards. The second is to occasionally take random actions

in step 2 (this strategy is called semi-uniform exploration - see Section 3.3). This

modification allows the algorithm to be applied to uniehain MDP's (assuming of course

that we also break up a learning run into a sequence of trials, and start in a random state

in each trial). In our experiments, which have been confirmed by Tadepalli (Tadepall),

we found that the modified algorithm cannot discriminate between the gain-optimal and

bias-optimal policy for the 3-state MDP in Figure 2.

2.6. An Asynchronous Learning Automata Method

Thus far, all the algorithms we have discussed are model-based; that is, they involve

transition probability matrices (which are either known or estimated). Model-free meth-

ods eliminate this requirement, and can learn optimal policies directly without the need

for a model. We now discuss a provably convergent model-free algorithm by Wheeler

and Narendra (Wheeler & Narendra, 1986) that learns an optimal average reward policy

for any ergodic MDP with unknown state transition probabilities and payoff functions.

Thus, this algorithm tackles the same learning problem addressed by R-learning, but as

we will see below, is quite different from most RL algorithms.

We need to first briefly describe the framework underlying learning automata (Narendra

& Thathachar, 1989). Unlike the previous algorithms, most learning automata algo-

rithms work with randomized policies. In particular, actions are chosen using a vector

of probabilities. The probability vector is updated using a learning algorithm. Although

many different algorithms have been studied, we will focus on one particular algorithm

AVERAGE REWARD REINFORCEMENT LEARNING 175

called linear reward-inaction or L R - z for short. Let us assume that there are n actions

a l , . . . , an. Let the current probability vector be p = (P l , . . . , P n) , where we of course

require that n The automata an a ~ / = 1 P/ = 1. carries out action according to the prob-

ability distribution p, and receives a response from the environment 0 < ~ _< 1. The

probability vector is updated as follows:

1. If action a is carried out, then ,-a't+l = pat + c~¢3t(1 _ pta)"

2. For all actions b • a, p~+l = pt b _ afltp~.

Here c~ is a learning rate in the interval (0, 1). Thus, the probability of doing the chosen

action is updated in proportion to the probability of not doing the action, weighted by the

environmental response fit at time step t. So far, we have not considered the influence of

state. Let us now assume that for each state an independent copy of the L n - i algorithm

exists. So for each state, a different probability vector is maintained, which is used

to select the best action. Now the key (and surprising) step in the Wheeler-Narendra

algorithm is in computing the environmental response /3. In particular, the procedure

ignores the immediate reward received, and instead computes the average reward over

repeated visits to a state under a particular action. The following global and local statistics

need to be maintained.

1. Let c t be the cumulative reward at time step t, and let the current state be s.

2. The loeal learning automaton in state s uses e t as well as the global time t to update

the following local statistics: 6~(a), the incremental reward received since state s

was last exited under action a, and 6~(a) the elapsed time since state s was last

exited under action a. These incremental values are used to compute the cumulative

statistics, that is rS(a) ~- rS(a) + 6~(a), and t~(a) ~ t~(a) + 6~(a).

3. Finally, the learning automaton updates the action probabilities with the LR-Z algo-

rithm using as environmental response the estimated average reward

Wheeler and Narendra prove that this algorithm converges to an optimal average reward

policy with probability arbitrarily close to 1 (i .e .w.p. 1 - c, where c can be made as

small as desired). The details of the proof are in (Wheeler & Narendra, 1986), which

uses some interesting ideas from game theory, such as Nash equilibria. Unfortunately,

this restriction to ergodic MDP's means it cannot handle either of the example MDP's

in Figure 2. Also, for convergence to be guaranteed, the algorithm requires using a very

small learning rate c~ which makes it converge very slowly.

2.7. R-learning: A Model-Free Average Reward R L Method

Schwartz (Schwartz, 1993) proposed an average-reward RL technique called R-learning.

Like its counterpart, Q-learning (Watkins, 1989) (see page 193 for a description of Q-

learning), R-learning uses the action value representation. The action value R ~ (x , a)

176 s. MAHADEVAN

represents the average adjusted value of doing an action a in state x once, and then

following policy 7r subsequently. That is,

R~ (x, a) = r(x, a) -"p~ + ~ P~y(a) V~ (y),

Y

where V~r(y) =- maXa~ A R~(y, a), and p~ is the average reward of policy 7v. R-learning

consists of the following steps:

1. Let time step t = 0. Initialize all the Rt(x, a) values (say to 0). Let the current state

be x.

2. Choose the action a that has the highest Rt(x, a) value with some probability, else

let a be a random exploratory action.

3. Carry out action a. Let the next state be y, and the reward be rimm(X,y). Update

the R values and the average reward p using the following rules:

Rt+l(x, a) ~-- Rt(x, a)(1 - / 3) +/3(rimm(X, y) - Pt + maxP~(y , a))
a E A

p t + l +-- p (i - + hmm(Z, a) + m a x a) -- ma R (x,
a E A a E A

4. Set the current state to y and go to step 2.

Here 0 < /3 < 1 is the learning rate controlling how quickly errors in the estimated

action values are corrected, and 0 < c~ < 1 is the learning rate for updating p. One key

point is that p is updated only when a non-exploratory action is performed.

Singh (Singh, 1994b) proposed some variations on the basic R-learning method, such

as estimating average reward as the sample mean of the actual rewards, updating the

average reward on every step, and finally, grounding a reference R(x, a) value to 0. We

have not as yet conducted any systematic experiments to test the effectiveness of these

modifications.

2.7.1. R-learning on Sample MDP Problems

We found that in the 2-state problem, R-learning reliably learns the bias-optimal policy

of selecting action a l in state A. However, in the 3-state problem, like all the preceding

algorithms, it is unable to differentiate the bias-optimal policy from the gain-optimal

policy.

Baird (Baird, personal communication) has shown that there exists a fixpoint of the

R(x, a) values for the 3-state MDE Consider the following assignment of R(x, a) values

for the 3-state MDP in Figure 2. Assume R(A, a l) = 100, R(A, a2) = 100, R(B, a l) =

99, and R(C, a l) = 101. Also, assume that p = 1. These values satisfy the definition of

R(x, a) for all states and actions in the problem, but the resulting greedy policy does not

discriminate between the two actions in state A. Thus, this is a clear counter-example

that demonstrates that R-learning can converge to a policy with sub-optimal bias for

unichain MDP's. 6

AVERAGE REWARD REINFORCEMENT LEARNING 177

Table 1. Summary of the average reward algorithms described in this paper. Only the convergence
conditions for gain optimality are shown.

ALGORITHM GAIN OPTIMALITY
Unichain Policy Iteration (Section 2.4.1) (Howard, t960) MDP is unichain
(Relative) Value Iteration (Section 2.4,2) (Puterman, 1994, White, 1963) MDP is communicating
Asynchronous Relative Value Iteration (Section 2.4.3) (Bertsekas, 1982) Does not converge
Asynchronous Value Iteration (Section 2.4.3) (Jalali & Ferguson, 1990) A state s is reachable
with Online Gain Estimation under every policy
Asynchronous Adaptive Control (Section 2.5) (Jalali & Ferguson, 1989) MDP is ergodic
with Online Gain Estimation and MLE-Identifiable
Asynchronous Learning Automata (Section 2.6) (Wheeler & Narendra, 1986) MDP is ergodic
R-Learning (Section 2.7) (Schwartz, 1993) Convergence unknown

2.7.2. Convergence Proof for R-learning

Of course, the question of whether R-learning can be guaranteed to produce gain-optimal

policies remains unresolved. From the above discussion, it is clear that to show con-

vergence, we need to determine when the mapping underlying R-learning satisfies some

key properties, such as monotonicity and contraction. We are currently developing such

a proof, which will also exploit the existing convergence results underlying Jalali and

Ferguson's B algorithm (see Section 2.5) and Q-learning (for the undiscounted case).

2.8. Summary of Average Reward Methods

Table 1 summarizes the average reward algorithms described in this section, and lists the

known convergence properties. While several convergent synchronous and asynchronous

algorithms for producing gain-optimal policies exist, none of them is guaranteed to find

bias-optimal policies. In fact, they all fail on the 3-state MDP in Figure 2 for the

same reason, namely that bias optimality really requires solving an additional optimality

equation (Puterman, 1994). An important problem for future research is to design RL

algorithms that can yield bias-optimal policies. We discuss this issue in more detail in

Section 5.

3. Experimental Results

In this section we present an experimental study of R-learning. We use two empirical

testbeds, a stochastic grid-world domain with one-way membranes, and a simulated robot

environment. The grid-world task involves reaching a specific goal state, while the robot

task does not have any specific goal states. We use an idealized example to show how

R-learning can get into limit cycles given insufficient exploration, and illustrate where

such limit-cycle situations occur in the grid-world domain and the robot domain. We

show, however, that provided sufficient exploration is carried out, R-learning can perform

better than Q-learning in both these testbeds. Finally, we present a detailed sensitivity

analysis of R-learning using the grid world domain.

178 S. MAHADEVAN

We first presented the limit cycle behavior of R-learning in an earlier paper (Mahadevan,

1994). However, that paper mainly reported negative results for R-learning using the

robot domain. This paper contains several new experimental results, including positive

results where R-learning outperforms Q-learning, and a detailed sensitivity analysis of

R-learning with respect to exploration and learning rate decay. Since we will not repeat

our earlier experimental results, the interested reader is referred to our earlier paper for

additional results on R-learning for the robot domain.

3.1. A Grid Worm Domain with One-Way Membranes

i~il ii~i i ̧~ i ̧~ ~ ~i: i

Figure 7. A grid world environment with "one-way" membranes.

Figure 7 illustrates a grid-world environment, similar to that used in many previous

RL systems (Kaelbling, 1993a, Singh, 1994a, Sutton, 1990). Although such grid-world

tasks are somewhat simplistic "toy" domains, they are quite useful for conducting con-

trolled experimental tests of RL algorithms. The domain parameters can be easily varied,

allowing a detailed sensitivity analysis of any RL algorithm.

The agent has to learn a policy that will move it from any initial location to the goal

location (marked by the black square in the figure). The starting state can thus be any

location. At each step, the agent can move to any square adjacent (row-wise or column-

wise) to its current location. We also include "one way membranes", which allow the

agent to move in one direction but not in the other (the agent can move from the lighter

side of the wall to the darker side). The membrane wall is shown in the figure as an

"inverted cup" shape. If the agent "enters" the cup, it cannot reach the goal by going

up, but has to go down to leave the membrane. Thus, the membrane serves as a sort

of local maxima. The environment is made stochastic by adding a controlled degree of

randomness to every transition. In particular, the agent moves to the correct square with

probability p, and either stays at its current position or moves to an incorrect adjacent

square with probability (1 - p)/N,~, where Na is the number of adjacent squares. Thus,

if p = 0.75 and the robot is in a square with 4 adjacent squares, and it decides to move

AVERAGE REWARD REINFORCEMENT LEARNING 179

"up", then it may stay where it currently is, or move "left" or "down" or "right" with

equal probability 0.25/4.

The agent receives a reward of +100 for reaching the goal, and a reward of +1 for

traversing a membrane. The default reward is -1. Upon reaching the goal, the agent is

"transported" to a random starting location to commence another trial. Thus, although

this task involves reaching a particular goal state, the average reward obtained during

a learning run does not really reflect the tree average reward that would result if the

goal were made absorbing. In the latter case, since every policy would eventually reach

the goal, all policies result in a single recurrent class (namely, the goal state). Since

all non-goal states are transient, this task is more closely related to the 2 state example

MDP in Figure 2 than the 3 state MDP. This suggests that R-learning should be able to

perform quite well on this task, as the experimental results demonstrate.

3.2. A Simulated Robot Environment

"LJ

I !..
~', /--7

"q IL_U_I

©

Figure 8. A simulated robot environment modeled after a real robot environment.

We also compare R-learning and Q-learning on a more realistic task, namely avoiding

obstacles in a simulated robot environment illustrated in Figure 8. This task provides a

nice contrast with the above grid world task because it does not involve reaching any

goal states, but instead requires learning a policy that maximizes the average reward.

This testbed provides a good benchmark because we previously studied Q-learning

using this environment (Mahadevan & Connell, 1992). The robot is shown as a circular

figure; the "nose" indicates the orientation of the robot. Dark objects represent immovable

obstacles. Outline figures represent movable boxes. The robot uses eight simulated

"sonar" sensors arranged in a ring. For the experiment described below, the sonar data

was compressed as follows. The eight sonar values were thresholded to 16 sonar bits,

one "near" bit and one "far" bit in each of 8 radial directions. The figure illustrates what

the robot actually "sees" at its present location. Dark bars represent the near and far bits

that are on. The 16 sonar bits were further reduced to 10 bits by disjoining adjacent near

and far bits. 7

180 s. MAHADEVAN

There are also 2 bits of non-sonar information, BUMP and STUCK, which indicate

whether the robot is touching something and whether it is wedged. Thus, there are a

total of 12 state bits, and 4096 resulting states. The robot moves about the simulator

environment by taking one of five discrete actions: forward or turn left and right by either

45 or 90 degrees. The reinforcement function for teaching the robot to avoid obstacles

is to reward it by +10 for moving forward to "clear" states (i.e., where the front near

sonar bits are off), and punish it by -3 for becoming wedged (i.e., where STUCK is on).

This task is very representative of many recurrent robot tasks which have no absorbing

(i.e. terminal) goal states.

A learning run is broken down into a sequence of trials. For the obstacle avoidance

task, a trial consists of 100 steps. After 100 steps, the environment and the robot are

reset, except that at every trial the robot is placed at a random unoccupied location in

the environment facing a random orientation. The location of boxes and obstacles does

not vary across trials. A learning run lasts for 300 trials. We typically carried out 30

runs to get average performance estimates.

The simulator is a simplification of the real world situation (which we studied previ-

ously (Mahadevan & Connell, 1992)) in several important respects. First, boxes in the

simulator can only move translationally. Thus a box will move without rotation even

if a robot pushes the box with a force which is not aligned with the axis of symmetry.

Second, the sonars on the real robot are prone to various types of noise, whereas the sen-

sors on a simulator robot are "clean". Finally, the underlying dynamics of robot motion

and box movement are deterministic, although given its impoverished sensors, the world

does appear stochastic to the robot. Even though this simulator is a fairly inaccurate

model of reality, it is sufficiently complex to illustrate the issues raised in this paper.

3.3. Exploration Strategies

RL methods usually require that all actions be tried in all states infinitely often for

asymptotic convergence. In practice, this is usually implemented by using an "explo-

ration" method to occasionally take sub-optimal actions. We can divide exploration

methods into undirected and directed methods. Undirected exploration methods do not

use the results of learning to guide exploration; they merely select a random action

some of the time. Directed exploration methods use the results of learning to decide

where to concentrate the exploration efforts. We will be using four exploration methods

in our experimental tests of R-learning: two undirected exploration methods, Boltz-

mann exploration and semi-uniform exploration, and two directed exploration methods,

recency-based (Sutton, 1990) and uncertainty exploration (UE). A detailed comparison

of undirected and directed exploration methods is given in (Thmn).

3.3.1. Semi- Uniform Exploration

Let p(x, a) denote the probability of choosing action a Jn state x. Let U(x, a) denote a

generic state action value, which could be a Q(x, a) value or a /~ (x , a) value. Denote

AVERAGE REWARD REINFORCEMENT LEARNING 181

by abest the action that maximizes U(x, a). Semi-uniform exploration is defined as

p(x, abest) = Pexp -I- 1-p~p If X 7~ abest, p(x,a) = 1-pe~e In other words, the best [AI " IAI "
action is chosen with a fixed probability Pexp. With probability 1 -Pexp, a random action

is carried out.

3.3.2. Bohzmann Exploration

The Boltzmann exploration function (Lin, 1993, Sutton, 1990) assigns the probability
u~,~)

of doing an action a in state x as p(x, a) = ~ T where T is a "temperature"

parameter that controls the degree of randomness. In our experiments, the temperature

T was gradually decayed from an initial fixed value using a decaying scheme similar to

that described in (Barto, et al, 1995).

3.3.3. Recency-based Exploration

In recency-based exploration (Sutton, 1990), the action selected is one that maximizes

the quantity U(x, a) + e ~ , where N(x, a) is a recency counter and represents

the last time step when action a was tried in state x. e is a small constant < 1.

3.3.4. UE Exploration

Finally, the second directed exploration strategy is called uncertainty estimation (LIE).
Using this strategy, with a fixed probability p, the agent picks the action a that maximizes

U(x, a) + Ni~,a), where e is a constant, and Nf(x, a) represents the number of times

that the action a has been tried in state x. With probability 1 - p , the agent picks a

random action.

3.4. Limit Cycles in R-learning

A key assumption underlying R-learning (and all the other methods discussed in Sec-

tion 2) is that the average reward p is state independent. In this section, we explore

the consequences of this assumption, under a sub-optimal exploration strategy that does

not explore the state space sufficiently, creating non-ergodic multichains. Essentially,

R-learning and Q-learning behave very differently when an exploration strategy cre-

ates a tight limit cycle such as illustrated in Figure 9. In particular, the performance

of R-learning can greatly suffer. Later we will show that such limit cycles can easily

arise in both the grid world domain and the simulated robot domain, using two different

exploration strategies.

Consider the simple situation shown in Figure 9. In state 1, the only action is to go

right (marked r), and in situation 2, the only action is to go left (marked 1). Finally, the

182 s. MAHADEVAN

R(1,r) = R(2,1)

R e w a r d = 0

Figure 9. A simple limit cycle situation for comparing R-learning and Q-learning.

immediate reward received for going left or right is 0. Such a limit cycle situation can

easily result even when there are multiple actions possible, whenever the action values

for going left or right are initially much higher than the values for the other actions.

Under these conditions, the update equations for R-learning can be simplified to yield s

R O, r) ~- R(1, r) - ~p

R(2, 0 ~- R(2, l) - Zp.

Thus, R(1, r) and R(2, l) will decay over time. However, the average reward p is itself

decaying, since under these conditions, the average reward update equation turns out to
be

p +- (1 - oOp.

When p decays to zero, the utilities R(1, r) and R(2, l) will stop decaying. The relative

decay rate will of course depend on /3 and a , but one can easily show cases where the

R values will decay much slower than p. For example, given the values R(1, l) = 3.0,

p = 0.5, a = 0.1, /3 = 0.2, after 1000 iterations, R(1,I) = 2, but p < 10-46!

Since the R(x, a) values are not changing when p has decayed to zero, if the agent

uses the Boltzmann exploration strategy and the temperature is sufficiently low (so that

the R(x, a) values are primarily used to select actions), it will simply oscillate between

going left and going right. We discovered this problem in a simulated robot box-pushing

task where the robot had to leam to avoid obstacles (Mahadevan, 1994).

Interestingly, Q-learning will not get into the same limit cycle problem illustrated above

because the Q values will always decay by a fixed amount. Under the same conditions

as above, the update equation for Q-learning can be written as

Q(1, l) +--- Q(1,/)(1 - /3 (1 - 3'))

Q(2, r) +-- Q(2, r)(1 - /3 (1 - 7)).

Now the two utilities Q(1, r) and Q(2 , r) will continue to decay until at some point

another action will be selected because its Q value will be higher.

AVERAGE REWARD REINFORCEMENT LEARNING 183

3.4.1. Robot Task with Boltzmann Exploration

Limit cycles arise in the robot domain when the robot is learning to avoid obstacles.

Consider a situation where the robot is stalled against the simulator wall, and is undecided

between turning left or right. This situation is very similar to Figure 9 (in fact, we were

led to the limit cycle analysis while trying to understand the lackluster performance of

R-learning at learning obstacle avoidance). The limit cycles are most noticeable under

Boltzmann exploration.

3.4.2. Grid Worm Task with Counter-based Exploration

We have observed limit cycles in the grid world domain using the UE exploration strategy.

Limit cycles arise in the grid world domain at the two ends of the inverted cup membrane

shape shown in Figure 7. These limit cycles involve a clockwise or counterclockwise

chain of 4 states (the state left of the membrane edge, the state right of the membrane

edge, and the two states below these states). Furthermore, the limit cycles arise even

though the agent is getting non-zero rewards. Thus, this limit cycle is different from the

idealized one shown earlier in Figure 9.

In sum, since R-learning can get into limit cycles in different tasks using different

exploration strategies, this behavior is clearly not task specific or dependent on any

particular exploration method. The limit cycle behavior of R-learning arises due to the

fact that average reward is state independent because the underlying MDP is assumed

to be unichain. An exploration method that produces multichain behavior can cause

the average reward to be incorrectly estimated (for example, it can drop down to 0).

This reasoning suggests that limit cycles can be avoided by using higher degrees of

exploration. We show below that this is indeed the case.

3.5. Avoiding Limit Cycles by Increasing Exploration

Although limit cycles can seriously impair the performance of R learning, they can be

avoided by choosing a suitable exploration strategy. The key here is to ensure that a

sufficient level of exploration is carried out that will not hamper the estimate of the

average reward. Figure 10 illustrates this point: here the constant c used in the UE

exploration method is increased from 50 to 60. The errorbars indicate the range between

the high and low values over 30 independent runs. Note that when c = 50, limit cycles

arise (indicated by the high variance between low and high values), but disappear under

a higher level of exploration (¢ = 60).

Similarly, we have found that limit cycles can be avoided in the robot domain using

higher degrees of exploration. Next we demonstrate the improved performance of R-

learning under these conditions.

184 S. MAHADEVAN

R-LEARNING W1TH UE EXPLORATION (c=50,~d ph a=O.0S,beta=0.5)
3O0O

25OO

2000

1500
,,=,

s
1000

500

o

-5o0 0
100 200 300 400 500 600 700 800 900 1000

NUMBER OF STEPS IN MULTIPLES OF 500

R-LEARNING WITH UE EXPLORATION (~60,alpha=0.05 ,beta=0.5)

0 100 E00 300 400 500 600 700 800 900 1000
NUMBER OF STEPS IN MULTIPLES OF 500

Figure 10. Comparing performance of R-learning on the grid world environment with "one-way" membranes
as exploration level is increased.

3.6. Comparing R-learning and Q-learning

We now compare the performance of R-learning with Q-learning. We need to state some

caveats at the outset, as such a comparison is not without some inherent difficulties. The

two techniques depend on a number of different parameters, and also their performance

depends on the particular exploration method used. If we optimize them across different

exploration methods, then it could be argued that we are really not comparing the al-

gorithms themselves, but the combination of the algorithm and the exploration method.

On the other hand, using the same exploration method may be detrimental to the perfor-

mance of one or both algorithms. Ideally, we would like to do both, but the number of

parameter choices and alternative exploration methods can create a very large space of

possibilities.

Consequently, our aim here will be more modest, and that is to provide a reasonable

basis for evaluating the empirical performance of R-learning. We demonstrate that R-

learning can outperform Q-learning on the robot obstacle avoidance task, even if we

separately optimize the exploration method used for each technique. We also show a

similar result for the grid world domain, where both techniques use the same exploration

method, but with different parameter choices. We should also mention here that Tadepalli

and Ok (Tadepalli & Ok, 1994) have found that R-learning outperforms Q-learning on

a automated guided vehicle (AGV) task, where both techniques used the semi-uniform

exploration method.

3.6.1. Simulated Obstacle Avoidance Task

Figure 11 compares the performance of R-learning with that of Q-learning on the obstacle

avoidance task. Here, R-learning uses a semi-uniform exploration strategy, where the

robot takes random actions 2.5% of the time, since this seemed to give the best results.

Q-learning is using a recency-based exploration strategy, with e = 0.001 which gave

the best results. Clearly, R-learning is outperforming Q-learning consistently throughout

A V E R A G E R E W A R D R E I N F O R C E M E N T L E A R N I N G 1 8 5

the run. Note that we are measuring the performance of both algorithms on the basis of

average reward, which Q-learning is not specifically designed to optimize. However, this

is consistent with many previous studies in RL, which have used average reward to judge

the empirical performance of Q-learning (Lin, 1993, Mahadevan & Connell, 1992).

10

tu

8

<,

@
< 7

tu

5

R-LEARNING VS Q-LEARNING ON OBSTACLE AVOIDANCE TASK

'R-learning'
'Q-learning'

i r i I i

50 100 150 200 250 300
NUMBER OF TRIALS, EACH OF 100 STEPS

Figure 11. C o m p a r i n g R and Q- learn ing us ing different explorat ion techniques on a s imulated robot obstacle

avoidance task. Here Q- lea rn ing uses a r ecency-based explorat ion method with e = 0 . 0 0 1 wh ich gave the

best results. The d iscount factor "y = 0.99. R-learn ing uses a semi-uni form explorat ion with r andom act ions

chosen 2 .5% of the time. The curves represent med ian values over 30 independent runs.

3.6.2, Grid World Domain

R-LEARNING VS Q-LEARNING ON STOCHASTIC GRID WORLD

SO0

0 100 200 300 400 E00 600 700 800 900 1000
NUMBER OF STEPS IN MULTIPLES OF 500

Figure 12. C o m p a r i n g R vs Q- learn ing on a grid wor ld envi ronment with membranes . Here both a lgor i thms

used the UE explora t ion method. The UE cons tant for R- learning is c = 60, whereas for Q- learning, c = 30.

The learning rates were set t o / 3 = 0 .5 and a = 0 .05 . The discount factor "7 = 0 .995 .

186 s. MAHADEVAN

Figure 12 compares the performance of R and Q-learning on the grid world domain.

The exploration strategy used here is the LIE counter-based strategy described above,

which was separately optimized for each technique. R-learning is clearly outperforming

Q-learning. Interestingly, in both domains, R-learning is slower to reach its optimal

performance than Q-learning.

3. 7. Sensitivity Analysis of R-learning

Clearly, we need to determine the sensitivity of R-learning to exploration to obtain a more

complete understanding of its empirical performance. We now describe some sensitivity

analysis experiments that illustrate the variation in the performance of R learning with

different amounts of exploration. The experiments also illustrate the sensitivity of R-

learning to the learning rate parameters c~ and/3.

Figure 13 and Figure 14 illustrate the sensitivity of R-learning to exploration levels

and learning rates for the grid world domain. Each figure shows a 3-dimensional plot of

the performance of R-learning (as measured by the total cumulative reward) for different

values of the two learning rates, c~, for adjusting average reward p, and/3, for adjusting

the relative action values R(x, a). The exploration probability parameter p was reduced

gradually from an initial value of p = 0.95 to a final value of p = 0.995 in all the

experiments. Each plot measures the performance for different values of the exploration

constant c, and a parameter k that controls how quickly the learning rate/3 is decayed.

/3 is decayed based on the number of updates of a particular R(x, a) value. This state

action dependent learning rate was previously used by Barto et al (Barto, et al, 1995).

More precisely, the learning rate/3 for updating a particular R(x, a) value is calculated

as follows:

/3ok
/7(x, a) = k + freq(x, a)'

where/70 is the initial value of the/3. In these experiments, the learning rate c~ was also

decayed over time using a simpler state independent rule:

where C~m~n is the minimum learning rate required.

Figure 13 and Figure 14 reveal a number of interesting properties of R-learning. The

first two properties can be observed by looking at each plot in isolation, whereas the

second two can be observed by comparing different plots.

More exploration is better than less: The degree of exploration is controlled by the

parameter c. Higher values of e mean more exploration. Each plot shows that higher

values of e generally produce better performance than lower values. This behavior

is not surprising, given our analysis of limit cycles. Higher exploration means that

R-learning will be less likely to fall into limit cycles. However, as we show below,

the degree of exploration actually depends on the stochasticity of the domain, and

more exploration is not always better than less.

AVERAGE REWARD REINFORCEMENT LEARNING 187

Slow decay of fl is better than fast decay: Each plot also shows larger values of

the parameter k (which imply that fl will be decayed more slowly) produces better

performance than small values of k. This behavior is similar to that of Q-learning,

in that performance suffers if learning rates are decayed too quickly.

Low values of o~ are better than high values: Another interesting pattern revealed by

comparing different plots is that initializing a to smaller values (such as 0.05) clearly

produces better performance as compared to larger initial values (such as 0.5). The

reason for this behavior is that higher values of a cause the average reward p to

be adjusted too frequently, causing wide fluctuations in its value over time. A low

initial value of (x means that p will be changed very slowly over time.

High values of/3 are better than tow values: Finally, comparing different plots reveals

that higher initial values of/3 are to be preferred to lower values. The underlying

reason for this behavior is not apparent, but it could be dependent on the particular

grid world domain chosen for the study.

3.7.1. Degree of Exploration

The above sensitivity analysis tends to give the impression that more exploration is

alway better than less. Figure 15 illustrates how the amount of exploration needed

actually depends on the stochasticity of the underlying MDP. Here, the domain is a

simplified grid world with no membranes. The goal is to reach the grid cell (19, 19) (the

bottom right corner) from any other cell in the grid world. The curves show the result

of increasing semi-uniform exploration from no exploration (t9 -- 0.00) to a high level

of exploration (p = 0.80). The graph on the left shows the results for a deterministic

grid world domain. Here, performance does improve as exploration is increased, but

only up to a point (between p = 0.20 and p = 0.40). Beyond that, performance suffers.

The graph on the right shows the same results for a stochastic grid world domain with

transition probability p -- 0.75. Here, the best performance occurs with no exploration

at all, because the underlying stochasticity of the domain ensures that all states will be

visited!

4. Conclusions

Based on our overview of average reward RL (Section 2) and the experimental tests on

R-learning (Section 3), the main findings of this paper can be summarized as follows.

4.1. Average Reward MDP

We emphasized the distinction between gain-optimal policies that maximize average

reward versus bias-optimal policies that also maximize relative values. The key finding is

188 s. MAHADEVAN

R learning with beta = 0.3, alpha = 0.05

x 105

20-
r r

 .10.

"5 O"
E
"" , l

o

k 0 c

10

R learning with beta = 0.3, alpha = 0.1

x 105

20.
II

5 0
E

0

k 0 c

10

R learning with beta = 0,3, alpha = 0.3

x 105

~ 2 0
r r

.~ 10.

~ O
E

0

k 0 c

10

R learning with beta = 0.3, alpha = 0.5

x 10 s

i2ot

°

2 ~ 5

k 0 c

10

Figure 13. Performance of R-learning on a 20x20 stochastic grid world environment with one-way membranes.

Each point represents the median over 30 runs of 500,000 steps. The domain was stochastic with transition

probability = 0.75. The x axis represents ten different values of the constant of exploration c varied uniformly

over the range [10,100]. Higher values ofc mean more exploration. The y axis represents five different values

of the constant k controlling the decay of the learning rate/3, k was uniformly varied over the range [100,500].

Higher values of k mean more gradual decay of/3.

AVERAGE REWARD REINFORCEMENT LEARNING 189

R learning with beta = 0.5, alpha = 0.05

x 105

R learning with beta = 0.5, alpha = 0.1

x 10 s

20 20
rr" rr"

~10 ~,I0

0 10 0 ~ 1 0

5 5

k 0 c k 0 c

R learning with beta = 0.5, alpha = 0.3

x 105

~ 20.
r r

- . ~

~ 0
E

o
10

R learning with beta = 0.5, alpha = 0.5

x 105

20
r r

,,i..o

~ 0
E

0

m

k 0 c k 0 c

10

Figure 14. Performance of R-learning on a 20x20 stochastic grid world environment with one-way membranes.

Each point represents the median over 30 runs of 500,000 steps. The domain was stochastic with transition

probability = 0.75. The x axis plots ten different values of the constant of exploration c varied uniformly

over the range [10,100]. Higher values of c mean more exploration. The y axis plots five different values of

the constant k controlling the decay of the learning rate ~. k was uniformly varied over the range [100,500].

Higher values of k mean more gradual decay of ft.

190 s MAHADEVAN

0 ~0 20 30 40 SO 60 70 SO £,3
NUMBER OF STEPS IN MULTtPLES OF 50000

100

'goal- 19-19~xplom-O.O0'
'goal- 19-19~xplore~,20' -
'9oat- 19-1 S-explore.O,40" . ~ . .
goal 19-19-explore-0.60*
'goal- 19-19~olo~-0.80'

I0 20 ~0 40 5Q 6O 70 80 9O 100
NUMBER OF STEPS IN MULTIPLES OF SO000

Figure 15. Performance of R-learning for varying amounts of semi-uniform exploration for a deterministic
(graph on left) and stochastic (graph on right) grid world domain with no membranes. These graphs show that
the best level of exploration depends on the stochasticity of the domain.

that while there are several synchronous and asynchronous algorithms for producing gain-

optimal policies, none of these algorithms (including R-learning) can reliably produce

bias-optimal policies for a general unichain MDR

We presented a general optimality metric called n-discount-optimality (Veinott, 1969)

relating discounted and undiscounted MDE Gain optimality and bias optimality corre-

spond to the first two terms of this optimality metric. We believe that this metric offers a

general framework to understand the relationship between discounted and undiscounted

RL, and also opens up some very interesting directions for future work.

We described several asynchronous algorithms that are provably guaranteed to yield

gain-optimal policies. We also pointed out a key difference between these algorithms and

the natural asynchronous relative value iteration method, namely that the average reward

is estimated independently of the relative values, such as by averaging over sample

rewards. Since R-learning shares this similarity, it brightens the prospect of proving it

converges to yield gain-optimal policies.

4.2. Experimental Results on R-learning

We now discuss two key conclusions that are based on our experimental results. However,

we must emphasize the tentative nature of these conclusions at this point. We are

planning to undertake a more detailed study of a residual gradient (Baird, 1995) version

of R-learning using larger state space problems, which will provide a further test of these

hypotheses (Mahadevan & Baird).

Our first observation is that average reward methods are more sensitive to exploration

than discounted methods. We showed that R learning can fall into limit cycles in two

domains using two different exploration methods. We also showed that by increasing the

degree of exploration, R-learning does not get into limit cycles. Finally, we presented a

detailed sensitivity study of R-learning by varying the degree of exploration over different

learning rates.

AVERAGE REWARD REINFORCEMENT LEARNING 191

Our second observation is that average reward methods can be superior to discounted

methods. We showed that R-learning can perform better than Q-learning in two domains,

a simulated robot task and a grid world task, even if the two methods were separately

optimized. More detailed tests are needed to determine if there are some generic types

of domains (for example, ergodic domains) that average reward methods, such as R-

learning, are inherently better at than discounted methods such as Q-learning.

Recent work by Tadepalli and Ok (Tadepalli & Ok, 1994) also supports both these

conclusions. They compared a model-based average reward method called H learning

(which is a variant of Jalali and Ferguson's B algorithm (Jalali & Ferguson, 1989) de-

scribed in Section 2.5) with R learning, Q-learning, and ARTDP (Barto, et al, 1995),

using an automated guided vehicle (AGV) task. In their experiments, they primarily

used semi-uniform exploration. They found that H learning performs much better as the

level of exploration is increased. They also found that in some cases the two average

reward methods, namely H learning and R learning, outperformed the two discounted

methods, namely ARTDP and Q learning.

5. Directions for Future Research

This paper suggests many promising directions for future research in average reward RL,

some of which are already bearing fruit.

Bias-Optimal RL Algorithms: Clearly, one of the most pressing open problems is

developing a bias-optimal RL algorithm. The key difference between the algorithms

described in this paper and a bias-optimal algorithm is that the latter requires solving

two nested optimality equations (Puterman, 1994). Several approaches to the design

of a bias-optimal algorithm have been pursued in the DP literature, ranging from pol-

icy iteration (Veinott, 1969, Puterman, 1994), linear programming (Denardo, 1970),

and value iteration (Federgruen & Sehweitzer, 1984). We are currently testing a

model-based bias optimality algorithm, which extends Jalali and Ferguson's B algo-

rithm (Mahadevan). We are also working on a model-free bias optimality algorithm,

which extends R-learning. We expect that bias-optimal RL algorithms will scale

better than bias-optimal DP algorithms.

Value Function Approximation in Average Reward MDP: In this paper, we used a sim-

ple table lookup representation for representing policies. In most realistic applications

of RL, such as robotics (Mahadevan & Connell, 1992) or games (Tesauro, 1992),

the size of the state space rules out table-lookup representations, and necessitates

using a function approximator, such as a neural net (Lin, 1993, Tesauro, 1992) or

kd-trees (Moore, 1991, Salganicoff, 1993). We have recently developed some the-

oretical results showing the performance loss that results from using approximate

value functions (Mahadevan & Baird). We are also working on a residual gradient

(Baird, 1995) version of R-learning.

• Multi-Chain Average Reward Algorithms: In this paper we focused mainly on al-

gorithms for unichain MDP's. This allows representing the average reward p by a

192 S. MAHADEVAN

scalar value. However, this assumption may be violated in many applications. An

interesting problem is to develop RL algorithms to handle multi-chain MDP's, where

different states may have different average rewards. In multi-chain MDP's, an ad-

ditional optimality equation relating the gain of one state to other states has to be

solved.

Modular Average Reward Methods: A number of researchers have studied modular

architectures for scaling RL (Dayan & Hinton, 1992, Lin, 1993, Mahadevan, 1992,

Mahadevan & Connell, 1992, Singh, 1994a, Whitehead, et al., 1993). Such archi-

tectures decompose tasks into different sets of primitive subtasks. Learning primitive

subtasks is easier because rewards are more frequent. Also, the solutions learned to

subtasks can be transferred to yield faster task learning. All these systems have

been based on Q-learning. However, an average reward method such as R-learning

has significant advantages over Q-learning for multi-task learning. Average adjusted

values satisfy a nice linearity property (Schwartz, 1993) (assuming a deterministic

MDP): V~ - V~ = p - r. In other words, if rewards are constant, the difference

in relative values across states is also constant. We have empirically found this

linearity property to hold up well even in stochastic MDP's. Discounting, on the

other hand, causes exponential non-linearities across states. We plan to develop an

average-reward based modular architecture for multi-task learning.

Acknowledgements

This paper could not have been completed without the help of the following people, to

whom I am indebted. Ronny Ashar implemented R-learning on the stochastic grid world

domain. Leemon Baird provided several counter-examples for R-learning. I am espe-

cially grateful to the special issue editor, Leslie Kaelbling, for encouraging me to discuss

average reward MDP. I thank Prasad Tadepalli for many discussions on average reward

reinforcement learning, and for his detailed comments on this paper. This research was

supported, in part, by the University of South Florida Research and Creative Scholarship

Grant No. 21-08-936-RO, and by a National Science Foundation (NSF) Career Award

Grant No. IRI-9501852.

Appendix: Discounted Reinforcement Learning

Most previous work in reinforcement learning has studied a formulation where agents

maximize the discounted cumulative sum of rewards (Sutton, 1992). The discounted

return of a policy 7r starting from a state z is defined as

N - 1

V:(s) lim Z(~ tR~ : (s)) ,
N ~ o c

t : O

where 7 -< 1 is the discount factor, and R[(s) is the reward received at time step

t starting from state s and choosing actions using policy 7r. An optimal discounted

AVERAGE REWARD REINFORCEMENT LEARNING 193

policy re* maximizes the above value function over all states x and policies 7r, i.e.

v4" > v 4(x).
The action value Q.~ (x, a) denotes the discounted return obtained by performing action

a once from state x, and thereafter following policy 7r

E O~ (x, a) = r(x, a) + "y P~u(a)V~(y),
Y

where V~(y) = maxacAO(Y, a), and r(x, a) is the expected reward for doing action a

in state x.

5.0.1. Q-learning:

Watkins (Watkins, 1989) proposed a simple iterative method for learning Q values. All

the Q(x, a) values are randomly initialized to some value (say 0). At time step t, the

learner either chooses the action a with the maximum Qt(x, a) value, or with some

probability selects a random "exploratory" action to ensure that it does not get stuck in

a local maximum. If the agent moves from state x to state y, and receives an immediate

reward rimm(x, a), the current Qt(x, a) values are updated using the rule:

Qt+l (x, a) +- Ot(x, a) (1- /3) + /3 (r~m~(x, y) + 7 mea ~ Qt(y, a)) (2)

where 0 < /3 ___ 1 is the learning rate controlling how quickly errors in action val-

ues are corrected. Q-learning is guaranteed to asymptotically converge to the optimal

discounted policy for a finite MDP. The precise convergence conditions are given in

(Tsitsiklis, 1994), but essentially every action must be tried in every state infinitely of-

ten, and the learning rate/3 must be slowly decayed to 0. Q-learning also converges

when 7 = 1, if we assume a zero reward absorbing state s which is reachable under all

policies, and Qt(s , a) = 0 for all actions a and time t.

Notes

1. The reason both techniques converge to a value slightly below 2 is because the robot takes random actions

5% of the time.

2. If the state space is not finite, we have to allow history dependent policies, since there may be no gain-

optimal stationary policy. See (Bertsekas, 1987, Puterman, 1994, Ross, 1983) for some examples.

3. This limit is guaranteed to exist as long as the state space is countable, and we do not allow history

dependent policies (Puterman, 1994). For more general policies, this limit need not exist, and two possibly

different measures of average reward result from using lira sup and lirn inf, respectively.

4. This limit assumes that all policies are aperiodic. For periodic policies, we need to use the Cesaro limit
I [, c ' ~ k \

N

5. A mapping T is a contraction mapping (w.r.t. the maximum norm) if and only if there exists a real number

0 < 6 < 1 such that f lT(V)(x) - T(V') (x) I I <_ 51IV(x) - Ve(x){I, where tif(x)lt = max:~ l f (x) l , and
V(x) and Vt(x) are any two real-valued bounded functions on S'.

194 S. MAHADEVAN

6. This counter-example implies that Schwartz's remark in his paper (Schwartz, 1993) - "when R-learning

converges, it must produce a T-optimal policy" - is not correct for unichain MDP's.

7. Drastically compressing sensor information can easily make robot tasks non-Markovian. However, note

here that the robot does not have to discriminate between boxes and non-boxes, but only avoid hitting

anything and keep moving forward. Using all the sensor data would require using function approximation,

which could itself create a non-Markevian problem.

8. To simplify the argument, we are assuming synchronous updating, but the results hold even for asynchronous

updating.

References

Baird, L. Personal Communication.
Baird, L., (1995). Residual algorithms: Reinforcement learning with function approximation. In Proceedings

of the 12th International Conference on Machine Learning, pages 30-37. Morgan Kaufmann.

Barto, A., Bradtke, S. & Singh, S., (1995). Learning to act using real-time dynamic programming. Artificial

Intelligence, 72(1):81-138.
Bertsekas, D., (1982). Distributed dynamic programming. IEEE Transactions on Automatic Control, AC-27(3).

Bertsekas, D., (1987). Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall.

Blackwell, D., (1962). Discrete dynamic programming. Annals of Mathematical Statistics, 33:719-726.

Boutilier, C. & Puterman, M., (1995). Process-oriented planning and average-reward optimality. In Proceedings

of the Fourteenth JCAI, pages 1096-1103. Morgan Kaufmann.
Dayan, E & Hinton, G., (1992). Feudal reinforcement learning. In Neural Information Processing Systems

(NIPS), pages 271-278.
Denardo, E., (1970). Computing a bias-optimal policy in a discrete-time Markov decision problem. Operations

Research, 18:272-289.
Dent, L , Boticario, J., McDermott, J., Mitchell, T. & Zabowski, D., (1992). A personal learning apprentice.

In Proceedings of the Tenth National Conference on Artificial Intelligence (AAAO, pages 96-103. MIT Press.

Engelberger, J., (1989). Robotics in Service. MIT Press.
Federgruen, A. & Schweitzer, P., (1984). Successive approximation methods for solving nested functional

equations in Markov decision problems. Mathematics of Operations Research, 9:319-344.

Haviv, M. & Puterman, M., (1991) An improved algorithm for solving communicating average reward markov

decision processes. Annals of Operations Research, 28:229-242.
Hordijk, A. & Tijms, H., (1975). A modified form of the iterative method of dynamic programming. Annals

of Statistics, 3:203-208.
Howard, R., (1960). Dynamic Programming and Marker Processes. MIT Press.

Jalali, A. & Ferguson, M_, (1989). Computationally efficient adaptive control algorithms for Markov chains.

In Proceedings of the 28th IEEE Conference on Decision and Control, pages 1283-1288.
Jalali, A. & Ferguson, M., (1990). A distributed asynchronous algorithm for expected average cost dynamic

programming. In Proceedings of the 29th IEEE Conference on Decision and Control, pages 1394-]395.
Kaelbling, L., (1993a). Hierarchical learning in stochastic domains: Preliminary results. In Proceedings of

the Tenth International Conference on Machine Learning, pages I67-173. Morgan Kaufmann.

Kaelbling, L., (1993b) Learning in Embedded Systems. MIT Press.

Lin, L., (1993). Reinforcement Learning for Robots using Neural Networks. Phi) thesis, Carnegie-Mellon

Univ.
Mahadevan, S. A model-based bias-optimal reinforcement learning algorithm. In preparation.

Mahadevan, S., (1992). Enhancing transfer in reinforcement learning by building stochastic models of robot

actions. In Proceedings of the Seventh International Conference on Machine Learning, pages 290-299.

Morgan Kaufmann.
Mahadevan, S., (1994). To discount or not to discount in reinforcement learning: A case study comparing

R-learning and Q-learning. In Proceedings of the Eleventh International Conference on Machine Learning,

pages 164-172. Morgan Kaufmann.
Mahadevan, S. & Baird, L. Value function approximation in average reward reinforcement learning. In

preparation.

AVERAGE REWARD REINFORCEMENT LEARNING 195

Mahadevan, S. & Connell, J., (1992). Automatic programming of behavior-based robots using reinforcement

learning. Artificial Intelligence, 55:311-365. Appeared originally as IBM TR RC16359, Dec 1990.
Moore, A., (1991). Variable resolution dynamic programming: Efficiently learning action maps in multivariate

real-valued state spaces. In Proceedings of the Eighth International Workshop on Machine Learning, pages
333-337. Morgan Kaufmann.

Narendra, K. & Thathachar, M., (1989). Learning Automata: An Introduction. Prentice Hall.
Puterman, M., (1994). Markov Decision Processes: Discrete Dynamic Stochastic Programming. John Wiley.
Ross, S., (1983). Introduction to Stochastic Dynamic Programming. Academic Press.
Salganicoff, M., (1993). Density-adaptive learning and forgetting. In Proceedings of the Tenth International

Conference on Machine Learning, pages 276-283. Morgan Kaufmann.
Schwartz, A., (1993). A reinforcement teaming method for maximizing undiscounted rewards. In Proceedings

of the Tenth International Conference on Machine Learning, pages 298-305. Morgan Kaufmann.
Singh, S., (1994a). Learning to Solve Markovian Decision Processes. PhD thesis, Univ of Massachusetts,

Amherst.
Singh, S., (1994b) Reinforcement learning algorithms for average-payoff Markovian decision processes. In

Proceedings of the 12th AAAI. MIT Press.
Sutton, R., (1988). Learning to predict by the method of temporal differences. Machine Learning, 3:9--44.
Sutton, R., (1990). Integrated architectures for learning, planning, and reacting based on approximating

dynamic programming. In Proceedings of the Seventh International Conference on Machine Learning, pages
216-224. Morgan Kaufmann.

Sutton, R., editor, (1992). Reinforcement Learning. Kluwer Academic Press. Special Issue of Machine
Learning Journal Vol 8, Nos 3-4, May 1992.

Tadepall, P. Personal Communication.
Tadepalli, P. & Ok, D., (1994). H learning: A reinforcement learning method to optimize undiscounted average

reward. Technical Report 94-30-01, Oregon State Univ.
Tesauro, G., (1992). Practical issues in temporal difference learning. In R. Sutton, editor, Reinforcement

Learning. Kluwer Academic Publishers.
Thrun, S. The role of exploration in learning control. In D. A. White and D. A. Sofge, editors, Handbook of

Intelligent Control: Neural, Fuzzy, and Adaptive Approaches. Van Nostrand Reinhold.
Tsitsiklis, J., (1994). Asynchronous stochastic approximation and Q-learning. Machine Learning, t 6:185-202.
Veinott, A., (1969) Discrete dynamic programming with sensitive discount optimality criteria. Annals of

Mathematical Statistics, 40(5): 1635-1660.
Watkins, C., (1989). Learning from Delayed Rewards. PhD thesis, King's College, Cambridge, England.
Wheeler, R. & Narendra, K., (1986). Decentralized learning in finite Markov chains. IEEE Transactions on

Automatic Control, AC-31(6)
White, D., (1963). Dynamic programming, markov chains, and the method of successive approximations.

Journal of Mathematical Analysis and Applications, 6:373-376.
Whitehead, S., Karlsson, J. & Tenenberg, J., (1993). Learning multiple goal behavior via task decomposition

and dynamic policy merging. In J. Connell and S. Mahadevan, editors, Robot Learning. Kluwer Academic
Publishers.

Received November 15, 1994
Accepted February 24, 1995
Final Manuscript October 4, 1995

