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AVERAGE RUN LENGTHS OF AN OPTIMAL METHOD

OF DETECTING A CHANGE IN DISTRIBUTION

by

Moshe Pollak

The Hebrew University of Jerusalem

ABSTRACT

Suppose one is able to observe sequentially a series of

independent observations X1,X2 such that XlX 2 ,...,X_ 1 are

i.i.d. with known density f0 and X ,Xu+l, are i.i.d. with den-

sity f0 where V is unknown. Define

R Z~ I
n f9 (X)

k-i i-k foX)

it is known that rules which call for stopping and raising an alarm

the first time n that R M or a mixture thereof exceeds a prespeci-~n

fied level A are optimal methods of detecting that the density of the

observations is not fO any more.

Practical applications of such stopping rules require know-

ledge of their operating characteristics, whose exact evaluation is

difficult. Here are presented asymptotic (A co) expressions for the

expected stopping times of such stopping rules (a) when V - and (b)

when v - 1. We assume that the densities f6 form an exponential

family and that the distribution of log(f 6 (X 1)/fo(Y1 )) is (strongly)

non-lattice.

Monte Carlo studies Indicate that the asymptotic expressions

are very good approximations even when the expected sample sizes are

small.



I. INTRODUCTION

Suppose one accumulates independent observations from a certain

process. Initially, the process is at State #0. At some unknown point

in time something occurs (e.g., a "breakdown") which puts the process

in State #1, and consequently the stochastic behavior of the observa-

tions changes. It is of interest to declare that a change took place

(to "raise an alarm") as soon as possible after its occurrence, subject

to a restriction on the rate of false detections. It is assumed that

the aforementioned observations are the only information one has about

the process, and the problem is to construct a good detection scheme.

Practical examples of this problem arise in areas such as health,

quality control, ecological monitoring, etc. For instance, consider

surveillance for congenital malformations in newborn infants. Under

normal circumstances, the percentage of babies born with a certain type

of malformation has a known value.4 8  Should something occur (such as

an environmental change, the introduction of a new druA to the market,

etc.) the percentage may increase. (eT-., the--haldkmide episde-of-the- 9

0!.. ' One would want to raise an alarm as quickly as possible after

a change would have taken place, subject to an acceptable rate of false

alarms. Generally, the problem arises wherever surveillance is being

done.

A solution to the problem depends on what is known in advance

about the distributions of the observations. Let f0 denote the density

of observations with respect to a c-finite measure p when the process

is in State #0, let f denote the density of observations with respect

, g
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to U when the process is in State #1, and let v denote the unknown

point in time when the first observation from State #1 is made. Thus

one has a sequence of independent observations X1,X2,..., such that

X 1,X2,...X_ 1 are i.i.d. with density f0 and XX V+1.... are i.i.d.

with density f0 where 1 < V < - is unknown. It will be assumed here

that f0,f0 belong to an exponential family of distributions and that

f0 is known.

Solutions for the problem which are in current use are known

as CUSUM procedures. For a survey see, for instance, Johnson and Leone

(1962). (See also Weatherall and Haskey (1976).) Lorden (1971) proved

a first-order asymptotic optimality property of a certain class of pro-

cedures for reacting to a change in distribution. When f0 is known,

this class includes most of the standard appropriate CUSUM techniques

as special cases. When f is unknown, Lorden (1971) suggests a first-

order asymptotically optimal procedure. (Asymptotic operating charac-

teristics of this and related procedures are given in Pollak and Siegmund

(1975). Further refinements can be obtained using results of Lai and

Siegmund (1977).)

Shiryayev (1963, 1978) solved the problem in a Bayesian frame-

work in the case that fE is known.

An optimal solution in a classical framework is presented in

Pollak (1983). Asymptotic operating characteristics of this and related

procedures are the subject under study here.

Without loss of generality, let the assumed exponential family

be defined by

2(x) e , y

2 - . . r



where f) is an interval on the real line, 0 - V(0) - V'(0). Let F be

a probability measure on 5 with F({OM) - 0. Let 0 < A < o. Define

n k-l i-k 0'i k-i

R F RY} dF(y)

n n

Ny} min{nIR{ Y }  > A}
A  =

N -min{nIRn > A)

Raising an alarm at time NA is an optimal procedure when the value

e (of the parameter of the distribution after a change occurred) is

F
known and raising an alarm at time NA has optimality properties when

e is unknown (Pollak (1983)).

In order to evaluate and compare between procedures one needs

to formalize a restriction on false detections as well as to formalize

an expression for the speed of detection of a change after its occur-

rence. The restriction on false detections is usually formalized as

a requirement that the expected number of observations until a false

alarm (assuming that v - -) exceed a prespecified value B. This

suggests a need for evaluating E(N YIV - ), E(NFIV - in). The quality

of a procedure with regard to the speed of detection of a change after

its occurrence is often measured by the supremum (or essential supremm)

of the expected number of observations that it takes to detect a change

after its occurrence, given that no false alarms have previously been

raised (see Lorden (1971), Pollak and Siegmund (1975)). This suggests

a need for evaluating E(e - 1 , . 0), Z(N - v v 1, 0). These

(AA
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operating characteristics are difficult to compute. For simulations

see Roberts (1966).

In this article, asymptotic expressions (A *c)for these

operating characteristics are presented. Monte Carlo studies indi-

cate that these expressions are very good approximations even when

the expected samples sizes are small.

4



II. THE AVERAGE RUN LENGTH WHEN V =

Denote by F E 
(
y) the probability, expectation respectively

V

when 1 < V <, X ...,X are i.i.d. with density f and are independent

of X, XV,..., which are i.i.d. with density fy. Let Po,E0 denote

probability, expectation respectively when V - . Let F be a prob-

ability measure on Q with F({O}) - 0. Denote

z log f( yX 1P- Y)

0 1x)

y(e 1. E n8 zi Z }  e ye

S min{n i- > ' B}, M if no such n exists

C- l/lim E (Y) e-i iY

CF ./(lCY) dF(y)

The computations of C and COF are applications of renewal theory and

have been calculated in other contexts. (See Siegmund (1975), Lai and

Siegmund (1977), Theorem 6.2 of Woodroofe (1982).)

THEOREM 1. (i) E N{Y} > A for all y c n. If I(y) < -, then for any
0  A - (A0 ) (tS } < A)

A0 > 0 there exists a constant 0 < C y such that E0 N yA

whenever A > AO .

(ii) If y c f2, I(y) < - and the P Y)-distribution of
1

log(fy( 1
)
1 f0(11 )) is non-lattice, then

!:5
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E N - A C( + o( ))
0OA 0

where o(l) * 0 as A 4 .

THEOREM 2. Suppose that the P[Y)-distribution of X, is strongly non-
1

lattice (see Stone (1965)) for all y e Q. Then

F
() E N > A. If F({ylI(y) < }) 1 1, then for any A0 > 0

A0 A0
A0 F 0 Fweee

there exists a constant 0 < CF  < - such that E0 N A  C whenever

A> A0.

(ii) If F({ylI(y) < ®o) - 1, then

0 N A  Co (1 +o(l))

where o(l) * 0 as A .

6



III. PROOFS

The proof of Theorems 1 and 2 is based on the observation that

po) F
(under n ) - n is a martingale with zero expectation with respect

0 n

to (X1 ,... ,X), so that for stopping times N which are well-behaved

E N - E0  . The proof becomes an analysis of the asymptotic behavior

of ERF
0 F"

NAFor any m, r

E m4r zfy} m k {Y}
(1) R f e Z e dF(y)ii)iRk i dFly-

k=l

mr Zm+r {Y,~r i~k "iy
+ i=k i dF(y)

k=m+l

Make note of the following three observations: (I) Since EOZi < 0,

the first expression on the right side of equation (1) becomes negli-

gible as r becomes large. (II) The second expression on the right

side of equation (1) when regarded as a process in r has the same

F
stochastic P -behavior as the original process R . (III) If the

value of R
F 

is large, the process R
F 
behaves approximately like the

m n

first expression on the right side of (1) for n - u+r closely follow-

ing m.

The idea of the proof can now be described as follows. Let c

be a large constant, and let A be much larger than c. Regard the

stopping time NA which at first tells one to continue sampling until

NF Fso"R

N/F".If "soon" thereafter > A, let N N . If not, forget the
FF

first A obse vations and reapply N
F  

to the sequence of observa-
cA/c FF

tions .u oW..A NA/c. Repeat this until the first time that R n > A

7
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"soon" after N F This first time defines NA. By virtue of observa-

tion (I) it will be shown that the asymptotics of EoRFF are the same

as those of EoRF*.

NA F

The repeated applications of NA/ (conditional on their exis-

tence) will be shown to be approximately independent of each other. By

virtue of observations (I) and (II), it will be shown that E0RF, is~NA

approximately equal to

(2) E (RF.JR
F > A "soon" after the first application of NA/c)

0 NA n

F

Letting m - NA/ in equation(l), note that the first expression
A/c

on the right side of equation (1) is equal to RF  X W F where

N N +r
NA/c+r ~{yl A/c A/c

FF

ENA/cr z y}

Ni=N F/+1
W F e A/c dFl1(Y),

A/c

NF NF
A/c A/c Z y )

Ac Ei=k ziF
dF1 (y) = E e dF(y)/RF

k=l NA/c

By virtue of observation (III) it will be shown that RF > A "soon"
n

after the first application of NIc} is approximately equal to
A/c

{RFF W F > A for some I < r < -}. Let HI = mintrIRFF W F > A),

NA/c NA/c+r NA/c NA/c+ r

H1 = ® if no such r exists. It follows from (2) that

E F approximately Eo(RFF WG +HI

NA NA/c A/c 1

F
(R W.F ;H 1 <)

- A/c NA/c +HI

P0(H 1< C)

8



Conditional on J(Xl,...,X F ), W F is a P0 -martingale (with unit

NA/c NA/c
+ r

expectation with respect to 3(X F ,...,X F ). Therefore the

A/c A/c

numerator in (3) is equal to E RFF
NA/c

Results of Lai and Siegmund (1977) yield that, with K(y) = I/C,
0'

P 0(H1 < -13(X 1 ... ,X )) P 0(W F > A/RFF

NA/c NA/c +r NA/c

for some 1 < r < CI3(X1,. *9X F
NA/c

approximately f K(y) dF 1 (Y)

A/RFF
FNA/c

Therefore

(4) P0 (H1 < approximately EA-
1 

f K(y) RFF dF 1 (Y)

NA/c

= A
- 1 f K(y) E (R F dFl(y))0 N F

A/c

A- K(y) EN dF(y)
0 A/c

EoRFF
OF
0NF

= A/c f K(y) dF(y)
A

where the equality (4) follows from the definition of dF1 (y) and the

n ynl Zl

fact that k e - n is a P -martingale (with zero expectation)

with respect to F(XI,...,Xn). It now follows from (3) that

EN - EoRF approximately A/f K(y) dF(y)
EO NA -E0 RF AfKy Fy

NA

which is the heart of the content of Theorem 2.

9



The turning of these heuristic arguments into a rigorous proof

requires the ten lemmas presented in the sequel. The method involved

is linear and nonlinear renewal theory (cf. Feller (1971), Stone (1965),

Woodroofe (1976), Lai and Siegmund (1977)). For a survey see Woodroofe

(1982).

PROOF OF THEOREM l(i), THEOREM 2(i). Note that under P0 both R Y}- n
0 n

and RF_ n are martingales with zero expectation with respect to
n

SDenote

7 A minjn max exp {E Z y } > A}
kfl,...,n ifk

7t = min n max f exp E Z y  
dF(y)> A

A.fil,...,n 1ifk

It is well known that E0 Ii
y  < 00, E0 n < - (cf. Iorden (1971)).

SneNA~y  <i y~ a F< F it follows that EO NA} < €o and
Since N <} < He nd FRf N} an

A Ny and E (RF -N) exist. Since
E0 NA  0 f eceE( y} -N A  0 An oR_

NA

R j[< A, IRFI<A on [N > n)" fN, >n) respectively, it is easy to

see that

lim inf J YIR-njdPo - 0 , lim inf IRF-njdP0 " 0

A A

Hence by the martingale optional stopping theorem (cf. Chow, Robbins,

Siegmund (1971), Theorem 2.3 (p. 23)) E 0 (R [y}- N A 0 and

I0

A

10



0(R _-NF)A 0. Therefore, E0 N > A and E Ne E R > A.

AA A

This completes the proof of the first parts of Theorem 1(i) and

Theorem 2(i).

For the second part of Theorem 1(i), let S = 0 and define

S recursively for i > I by
- I i

n
Si - minfnin > Si_ 1, J (0, log A)}

juSil+l

Then AY -< E C S where C = min-iiE S E [log A, log(2A)]).
A - 1=1 i iSil +1 j

By Wald's lemma,

S1

E 0 TrA < EoSI/Po ( E Zy } 
E (log A, log (2A)I)

j=l J

Now

S

P 0( zY E log A, log (2A)]) = z 01' .f X)dX l..dx
S=l n=l ff1=n,C=l} f n n

> (1/(2A)) E Y ( .. *,Xn)dX 1-.dx-- n, L slnCl fy(l

SI

(i/(2A))p~y~t (Y) Z y } c [log A, log (2A)I)
J=l

As A l , lrm sup E0 S1 < -, and, by the renewal theorem

(Y) 1 y }

lim inf P E j c [log A, log (2A)]) > 0

from which Theorem l(i) now follows.

11



To prove the second part of Theorem 2(1), choose wl'w2 in the

interior of Q such that F([wI,W2]) > 0. Without loss of generality

n 1

assume that ( I > 0. Denote: 10  0, rI = mZn{nlE iri-l+1 Zj < 0

or exp{l Z [y) dF(y) A) , Y =min{iij exp{E~+ z (y

1 ~ 1- 1jr +

F Y
dF(y) > A). Clearly NA < E r Hence

(5) EO RF ENF < ErlEoY

F A A 1NA

Now

n { W 1
(6) Eo < E0 min{nj Z z1 < O} < 0.

j=l

In a manner similar to Theorem 1 of Pollak (1983) one can show that

AP 3 (Y1 (631p(Y n f
(7) A0P(Y-l) -1> (E/C )PY y  ( i  > 0, n-l,2,.. .)dF(y)

A- J I  i=l

A0
Therefore for given A0 there exists a constant CF  such that if A > A0

then

A0
(8) P0 (Y=l) > EOrl/(ACF )

Note that

(9) EoY - l/P 0 (Y1)

Now (5), (6), (8), and (9) complete the proof of Theorem 2(i).

PROOF OF THEOREM 1(ii), THEOREM 2(11). Let A > CA > 0 be fixed.

Define: L0 - 0. For J-1,2,..., define:

12



r E n f Y)
L - uln~n > L E *ei-k I dy)>Al

i- j -L +1 CA~y

Zi i L L

n Y L Li
+1 k-i-k 1 dF(y) if n> L

vJ,n Li L J Z{Y

E e ik dF(y) if n- L
Sku.Lj _1+1 i-

Ili -minfnln> LjV.V IAJ

w CD if no such n exists

J - u~f l,Mj > A}

A J

n ~ Z{)

Rj.n e '- .dF(y) for n>L-

i i-kZ i i Li zf31
d~~) E adF(y) E e df(s)

I-j-+ / k-Lj -1 +1

-probability maure, with unit mss atfy

13



1(0) indicator function of the set 0

F fyi
IA = minfnif exp{ Z Z Y )dF(y) > A, n > I}

i-i

= if no such n exists

F AP F(TF <

A 0OA

K(y) = /C>'

G = I K(y)dF(y)
F

By Theorem 3 of Pollak (1983), I A  G as A

Until further notice, we will assume that the support of F is

contained in a compact interval [a,b], 0 < a < b < I, 1(b) < -.

LEMMA 1. For arbitrary 0 < n < 1, and arbitrary probability measure

* whose support is contained in [a,b], 0 < a < b < 0, there exists

B0 > 0 independent of * such that if B > B0 then

I-

(10) l-n < --I < 1+ .

PROOF. This is the content of Theorem 1 of Pollak (1983).

LEMCA 2. For arbitrary 0 < n < 1, 0 < c < 1 there exists

A1 - A1 4(r,c) and C - C(n,c) such that if A > A, and one chooses

CA - C, then

01-n. < P H< 1+n >1-C

14



PROOF.

1if RjL

IA RJL/A Rif<

(11).L Po(Hj <iL <o j A

In a manner analogous to Theorem 1 of Pollak (1983b), replacing

W 1,cW2 by a,b respectively in (7), one gets the confergence in (7)

to be uniform in measures F whose support is contained in [a,b].

A
O

Therefore, the constant C in Theorem 2(i) can be replaced by a

constant C(A0 ) which is independent of Fj (it is only dependent on

a,b). Hence for A > 0

SRj,L C(A)

P0 (Rj,L > A/CA) :- ii/ic a

Choosing A to be large enough, Lemma 1 in conjunction vith (11)

complete the proof of Lemma 2.

LEINA 3. For any C* > 0 there exists 6 > 0 such that if one chooses

CA - C and if A> C, then

E 0fR L; R JL > 6 <C

PROOF. Let X be distributed as 1, under Poo

15
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I~b [:  Li -.I "Lri _

E oRj; RLj, I Z . bX 1+ ed_ ). EeTe-i - Z IdF(y ) ;

kALa i+l

bbx -I FilZ I C

< E e x + E .] ebX[ ij-r-y > k]

-- b ; bX __A A

m [+IJE [oe ; e >+A/ •

This can be made to be less than £*A/CA by choosing 6 to be large

enough.

LEMKA 4. Let U - U(0,1) be independent of XlX 2, . For c > 0 let
uE A ,(R = TE,A' T,A j  E,A' c,A

(R, > u (ej U > Y( 2 )) where y(1) (2) are

defined by P(QA )  C. Then for X > 0 there exists an c > 0 such

that E0 (RjLj; QCA)/EoRj,Lj < X uniformly for all A,CA such that

A> CA'

PROOF. Choose E* < X. Let 6 be as in Lema 3. Let c > 0 satisfy

C8 +c* < X. Then

E0 (Rj.Lj; 'A)= E0[RJLj; [(RJ'LJ < 6 A u (6 A-"Rj LJ)

< A A < A < 0 RJ,L

16
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LEMIA 5. For arbitrary 0 < n < I there x.ist A. A2(0) and C C(h)

such that if A > A2 and one chooses CA = C, then

-n) GFORL < Po(OJ < ) < (1+tn) OFL

PROOF. Choose 0< a < n. By Lema 4, one can choose c > 0 such that

whenever A > CA

Eo0(RjLt QC A) "

(12) <0 R , 1GFEO Rj,L

where Q ,A is as defined in Lemma 4. By Lemma 2, there exist A1 and C

such that if A > max(A1,C) and one chooses CA = C. then

(1  PO (J < 
" '3 L )  "+ }/

"H- << 41. < 14uaY-C G Fj R J,L /

has a P0-probability P0 (K) > 1-C. Note that since P0(Qc,A ) > P 0((K )c),
_ c ,Ac S*

for any set S c (K.)c n (, there exists a set S * QcA n K1 such

that P0 (S) < P0(S ). Obviously R ,L on S is larger than R J,L on S,

and therefore

(13) O(RJL; (KE)c) < E-(RJL QE.A )

Also note that because of the mrtinple property of

EkuL 1+1 (Eim 4'U Z)- (n- L~) under F(given -1 for n>L

it follows that

17
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(14) E0 RjL Gl - E0RjL f K(Y)dF (y)

m E fK (y) E1  {imkE dF(y)
0 k-Lj 1 1  -

a E 0 (Lj - Li1  K(y)dF(y)

- E0 RILj GF

Therefore, by (12), (13), and (14),

p 0(H < - E 0["(PO(H< WI;;L ) ; K,: U (K,:))

" (1+ct)E0RJ L G F I/A + E 0tR JL j A (K,:))

"(1+a)E 0RIjL GF /A + EO0(R ,Lj /A; Q:A

" (1+cz)E 0 Rj L G F/A + (in- ) E0 R1 Lj GFp/A

U + ) A/ GFR ,L

Likewise,

> (1 cs)E o(RJ,Lj G Fj/A; K)C

> (I Qcz(RL GF /A) - KOt[R Lj /A; ,)c

>(1 ac)EO0Rj ,L1 G7I/A - EO (Rj ,Lj /A -;c



4M

> (_1-E OJ,LJ G F/A - 0- OJR ,LJ G1 A

- 1-n) A/ o RiL/

LE-"I& 6. For arbitrary n > 0 there exist A3 = A3 (n) and C - C(TI)

such that if A > A3 and one chooses CA - C, then

E0 (VJ H H ' 1 < -)
l-n<< 1 +n

A/F

PROOF. Note that E0 (Vj H < 00) - EOR L and so

E0 (Vj ,Hi IjH< W) a E0 Rj ,LJ/P 0(j <C). An application of Lans 5

completes the proof of Lemma 6,

LEIA 7. For arbitrary 0 < TI < 1 there exist A4  A A4 (n) and C - C(n)

such that if A> A4 and one chooses CA = C, then

E- 0 .H lvj,' i H ' A)

l -r lI < 1 < + n

F

PROOF. Let A be large enough.

Eo(vjiw . vj. H A)

( 15)., IvJJ_ A)>,M ->A)

Clearly, Z0 (VJ Mj; v., V A) < ,o(V 4 .j; j< -.), P0(V ,J-M A)

-< 0o(H j and <P(Vj j >A) PO(HJ <  )o(Lj+1 < Hj < Denote

SII19



QG(f ) P. PY()dG(y). For x > 0
al

Po(x+ Lj <H <c) - 3oPo(X+ L < H < L)

F
< EoQ(T >x) R /A
SOF A/R j,L

= o(i) E0 Rj.Lj/A - o(i) PO(Hj < 0) .

where o(i) 0 as x -* uniformly in 3 , A for fixed CA = C.
xj x2CA.

Also, P0(LI<_Li + x) P0(L = X n P (Rn > A/CA)<_x CA/A. So,
0oL~<jx p0(L1 - n- 0 n A

for x > 0

Po(Lj+I<sHj < P< _ 0o(X<_LJ Hj < + + P0 (Lj I<.s j < )<

+ P0 (Ljj <Hj < x)

< 2P 0 (x<H < -) + P0 (Lj+I < x)

< o(1) Po(Hj<-) + x2 CA/A .

Since (by Lemna 5 and Theorem 2(i)) P0 (Hj < -) is of the order of

magnitude of i/CA, choosing A, CA large enough will cause

Po(Lj+I< Hj< )/Po(Hj< -) to be arbitrarily small, i.e.,

Po(Vjxj >A)/P O (Hj < -) to be arbitrarily close to 1. Similarly,

E (jM- < , H <Fj > N

S VJMj , 0 QFjTA/R,L N JL

VOM <A 04 in -H <o A

20 o(i) P(j<i) " A ,
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where o(l) - 0 as A + . Therefore, choosing large CA and very large

A one can get E0 (Vj M" V JM > A)/E 0 (V H Hj < -) to be arbitrarily

close to 1. Hence, one can make

H (V . >iA) /EO (VH H< W)

(16) 0~ J'1 JIJ,
P0(VJM > A) / P0(Hj < -)

be arbitrarily close to 1. Lama 7 nov follows from (15), (16), and

Lema 6.

LEMMA 8. For arbitrary 0 < n < 1 there exist A A5 A(n) and Cm C(l)

such that if A> and one chooses CA - C, then

EoVjM Mj

IGF

PROOF. Denote VO VIM -0 0.

(17) EoVjN " J f j V dP0

a" j-l P 0

tV imi<A, i-0,...,J-l; Vj , > A)

a E fVM dP0"'I
21
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J Vim dPo

J { V i <A, i-0,...,J-2; VjlM_,IjM IjA

Note that

(18) E dP0
J-2JiMM>A

IV i'm <A, iuo,...,J-2; Vj19M 1> A, mj>A

Now, P j f2 PViM <A, i=O,...,J-2; Vj_..j~.lM AI

(19) E VMdP 0

{V i <A. i=--1,0,..-.,J-2; Vj> A)

= J~l O vj~jljmj P0( ' < A, i=--1,0,. ..,J-2; V>jA)

m EO0(V "' ' l j A)1+ E p 0 iHm< A, - -1,, ... ,J-2;

vi1,mii>1A, V~mj >A]

22



(20) E PO(Vi'm < At i -- ,0,..,J-2; V 1 >A, V >A)
J=2 i P0Vi1

- [1+EOJ]P0(V1, >A, V2,M> A) .

Denote: J - minfnln odd, Vn >A, Je - uinfnln even, V,>A.

odd n , n IA},' even mn>A)

Since J - min{J odd, even} < Jodd + Jeven'

4

(21) E0J < E 0odd + Jev < Po(V,>A)

Therefore, because of (17)-(21), it only remains to show that

P 0 (VM > A, V 2, > A) can be made to be sufficiently small.

(22) P0(Vl!A, V2 ,IA) - P 0 (V,M>A, R2,M<A, V2,M2A)
'M2 "A

P0(v,,MI 2A, , -> ,V, ->A•

Suppose that A/CA > A0 where A0 is a constant, as in Theorem

2(i). Note that on fR2 , < A/CA)

EO(R2 ,L21R 2,M, V', > A)

M, L2 y) L 2 L 2  ty
Ei-k z y  2 i Zk zi

- e0  + Z e
01 lkLl+l ek.Ml+1

S dF(y)IR2, , Vi > A

23



< R2,Ml +EOR 2,L2

A 1 + AO

~CA I CA)

where C(A0 ) is a constant as in the proof of Lema 2. Therefore,

(23) P0(Vjl>A, R2 ,M< VA>A)

0 2,Ml'1 A 22

< P0(V22>AlV ,  >A, R,M 1 < A )P(V > A)

0 .O[2M 2,M1C A 0 vlm 1

<_M 1--I. A, R2,M P0(Vl.l_ > A)

1 + C(A0 )

CA 0 I',-

Now for any x > 0

(24) P0(VI >A, R > A__ V2 >A)
9 - 2,MI - CA '2 2

< P0 (VIM > A, R2  > -L MI< L,+x)
' 1 ',M1- A

A
S0 (V1R > A, R2 M >> , ++ x)

<_ 0(R2 -,Kj, 4_L 1 +x) + P0(VH >_A, H1>L-1+x),

A F K
2

(25) Po(R 2 M, , , + XL+) <n r Po(R > < x 2

24
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and as in the proof of Lemma 7,

(26) P0(V IM > A, M1 > LI+x) < P0 (L 1
+ X < H <w) =o(l) P0 (Hj < 0)

where o(1) - 0 as x uniformly in L large A, for fixed CA C.

Now (17)-(26) in conjunction with Lemma 5 and Lemma 7 and its proof

complete the proof of Lemma 8.

LEMMA 9. Let X > 0. There exist C = C(X) and A6 = A6 (X) such that

if A > A6 and one chooses CA = C then

Mi M j y

(27) E0 f E exp{ E Z.y}}dF(y) < XA

k=Lj+l i=k -

The sum in (27) is understood to be zero if M = L .

PROOF. It is enough to prove that under the conditions described

(28) Eo(R2,MI V1M 1 > A) < XA

for then

Mj M {y
E0 f E exp( E Z dF(y)

k=LJ +1 i=k

M M

odd odd
<E 0 f E exp{ Z Z l }dF(y)

ok=Lj +1 i=k3
odd

M H
Jeven even

+ E0  E exp{ E Z dF(y)

k-Ljeven+1 i-k

< 2XA
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where Jodd and Jeven are as in the proof of Lemma 8.

On {A/C < R ,L < A)

(29) Eo(R2,M VIM1 M A) - Eo(R2,M H1 < L2 )

Let x > 1. Note that {H1 < L2} = H < L1 +x < L 2 ) u {H I< L2 < L +x)

u {L +x < H1 < L 2} u 1 +x H = L 2. We will analyze the expectation

in (29) on each of these four events separately. Note that R 2,H < A/CA

<R2,1 on {H1 < L2}.

(30) E0 (R2,HI; H1 < L1+x < L2 ) < Eo(R 2,H H 1  1 +x) < Eo(R 2 L+X) = x .

(31) Eo(R2,H H 1 < L2 < L1+x) < E0 (R2 ,L2 H1 < L2 < Ll+x) < Eo(R2 L) = x

(32) Eo(R2 H; L+x < H1 < L ) < (A/CA) Po(LI+x < H < 0)

0 ', 1 11 2 A 01 1

(Later we will let x be large and will evaluate (32) as in the proof

of Lemma 7.) Denote: H = I(Ll+x) v (k-1) < HI-2). Given-k,x ~ x klH

...,XL

HH

(33) Eo(R 2 ,; L1+x < H1 = L2) = f exp{ E ZZ f}l(yk )dF(y)

1= 1k=L +1 i=k 0

H 1 1

(34) EE f exp{ H1 z1Y:7 kdFdyy

k-i HI

= fexp{- k z i I exp{ E Z i  I(Ekx)dPo dF(y)

i=L +l i=L +1

6k-i )d
ELI+l exp(- Z Z i }l(5kx

d F y
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k-i
(Y) (Y { Y}

.f'I +1 
y

L +1 (exp{- nE Z 11(E k x )IXL +l ....Xkl)dF(y)
1 1 i-L1+1 l

m f .(Y) expi-E+1 i -L +1'k,x XL +1, . k )dF(y)i.tLl+l 1. 1 X-1

- I Eo r 1~xXy +

1 ( 1 xH .XL +,• ..,Xk_)dF(y)

Let q(a) > h > 0. Let c > 0, ]0 
= 

(log A) For large enough A

there exists e > 0 such that for all J > Jo P L+ X > (J-l)h/b)

< expf- lJ}. On L+I1 X i < (J-1)h/b}: for n > J-i + LI,
I iML 1 +1 an -

V < exp(j(h-O(a)} r exp{y.+ - (n-J-Ll+1)0(y))dFl(y)R Let

l,n- i-L +j1 lll~)dlyR 1 L e

k - LI+j. Let H = min{nfn > k, V > A}. E 
(y ) 

(H - k)
1l1k l,n - L 1+1ll,k

> (J-1)(O(a) - h)/*(y)b). So, for large enough A, for a < y < b, there

exists P(Y) - k < ,iJ-l)(*(a) -

2 > 0 such that for all L 1 Jo +1 I,k

h)/(*'(b)b) < exp{-e 2J) for all a < y < b (see Pollak and Siegmund (1975)

for an example of the considerstions involved). Since

b 
n

L 2 < min{nf a exp{y E - (n-k-l)*(y)}dF(y) > A/C A}, there exists
i-k

E2 > 0 such that for all J > Jo P(Y) (L -k > (J-1)(i'(a)-h)/('(b)b)
-- Li+l 2

< exp{-£ 3J) for all a < y < b if A is large enough. Therefore, for

J > Jo, k = L1+J, if A is large enough,

E P(Y) 0
0 11+1 -k,xXL +1X"'Xk-l)

E L P7+(Y) ((k-l) v (L+x) < L2  H

0 1 1 2=l,k[ 1 +l _ ) X.

< exp{- 1 J} + exp{-C 2 J} + exp{-E 3J)

and so
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(36) E0(R2 ,H1 Ll+x < H1 ML2) <- JO + E (exp{-cJI + exp{-C2j + expf-C 3J
)).

i-jo

By letting x be large enough - such as (log A) - one gets by virtue

of (30) - (36) that Eo(R2,M; ViMI > A)/A is arbitrarily small for

large enough A, from which (28) follows.

LEMMA 10. Let X > O. There exists C - C(A) and A7  A 7(A) such that

if A> A7 and one chooses C A a C, then

0< ERF, - EoVJ,. < XA
NA

PROOF. Clearly,

(37) -A J j,M3 + J e dF(y) + VJIMAkLj+1 JM =l

Therefore, by Lemma 9, it suffices to show that E0  j 1 V < X A

for appropriately chosen C. Let Jodd and Jeven be as in the proof of

Lmma 8.

J-1

(38) E0  Z. VJM - EO(VjMj; j < J- 1)

= j-l Eo(VJM ; j < - 1)

J-1
= E 0  E! V -

J-1 J-1

"E 0 £ ,VJ + Eo 2VMj

Jodd Jeven

28
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d odd -1 Jwv~m1

-o ~ ' "JI 'M0 in

Jodd even

3even 2

E V J VJ0 ~ IJ J !2~ j-2

dodd Jeven

- E(V yV 1,M I A)EO(J(dd-
2 + Jen -2)

E5 E0 (V 1 14,IV 1' < A)( 0 odd + EO Jever?

I 45. E0 (V py V 1 M < A) p 0 (V >M AT

NOV

(39 E( ;V HA- V-- (V( ;HMco)
0 H. ,1i0 1,H 01 01 tm

E 0 (V 1 ,; 1 )E 0 V V > A)

E1L ' V11 1

m (E ORiL o(1)
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where o(1) * 0 as A as in the proof of Lemma 7. Since (as in the

proof of Lemma 7) P0 (VIM >A)/P0 (Hl<C) * 1 as A , (38) and (39)

with Theorem 2(i) and Lemma 5 complete the proof of Lamma 10.

PROOF OF THEOREM 2(11). Since (see (37)) Ri* > VjM > A, it follows
A

that N* >NFand soA
A -A

(40) E0 NF <E N* E o A

0NA  -=j+ 0~ Aj
Denote J max[JIL Fand V < A or L < NF.

j A i-1,L J-1 A

NF NF .{Y

A* AIJJ-

A o(I)

F + e dF(y)+ Z V FNF J*NA Jku*+1 iJ

Since V JM < A for i <~ J *-I and since

* J* 1 * F3 9 1 V NF; N~>j A A E0(ZJ 1  V JN*; NA> NA), it follows (since

A A

-~i N*) that

3-1 3-1
E0 J V EF . E V J M

which in turn is bounded as in Lemmia 10 (see (38), (39) above) by

A o(1).

A E i-k zi NA Ei-k i

E0 E edF(y) E- e dF(y);

NF <
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F;A
+ E e k i dF(y);

N*F,

F A {y)

S e 
dF(y); 

<C < NA*

for large enough A, by virtue of Lemma 9,

F N
N EA Z{y)

EOtI'L*+
E e ik dF(y); IR NA AJ

"i E,=k Z.y F

f M~ Mi {Y}

E E eik dF(y)

< d(C)

F
Hence,.*for large enough A, E^(RF - F < 2A/C.

u r j ,N
NAA

Let e>, A 2/(CC). Since R _V > 0, it follow

NP J*,F
A 'A

that P0 (R - V > XA) < 2/(XC) - C. Hence, given e > 0, by

A 'A
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choosing C to be large enough X would be arbitrarily small, and

P (RF _ > < c for all large enough A. I.e., for large

J ,

A 'A
enough A,

> P (V _< RZF _ XA) > P (V < (1-X)A)- -o

A A 'A

Let N ) denote N- when one chooses C(lX)A - (1-X)CA.

It follows that for large enough A, with CA - C as above,

FA

P0(NI_) <N ') > 1- C

Therefore, if C was chosen to be large enough,

FF> *( **

(41) EONA - EO(NA; A-N + E0 Nj; A 
< NC_)A

0Ni A-(-)) 0 A (-)

- ** F ** )+ E( F. N< N**
> E(N 1 X)A; NA> N(I_)A 0 0N' A (_X) A)

F* * F F

(-?)A EO(N(I_X)ANA; NA N A)A)

> E0N -A E R + EoN**1

-0 (I-X)A 0 E[ 0 1 ,L 0o(I-X)AI

**
> (1- 20E 0oN (_X)A

for all large enough A. Since C and X can be arbitrarily small, the
• * F0 ~*

fact that EN(EOR F, coupled with (40), (41), Lemma 10,fact 0 ha O(IX)A N "(I*)

and Lemma 8 complete the proof of Theorem 2(11) for the case where

the support of F is contained in [a,b], 0 < a < b < 0.

If (0,m) C S, a - 0 and/or b - w: If one replaces dF by

--1F * nF*

dF 1 (-,n)dF, then NA < N (letting NA have the obvious meaning,

32
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despite Fn not being a probability distribution) 
and so

ZNF< A Ch(1+r(1)), were o(1) +0 as A a + , an co0 is the constant

in Theorem 2(11) (as described 
after the statement of the theorem).

For arbitrary a > 0 define F,, = (l+t)F5 .

In~ N A (y)

n A }A z )F A

t E e i-k i dF(y) + k e i-k i dF(y)
0O k-l fk-l

mE NF /JdF(y) + dF(y))

Therefore,

O[Jo A ehi-k ziA dF(y) + E e dF(y) > XA
0 0 k-l k=1

1/n

dF(y) + dF(y) EONF

< f. Fn T-

which, for any A > 0, can be made arbitrarily 
small by taking n to be

large enough. Nov for A sufficiently small

F 
H FA

-- N AN 
F; 

F 0  k =l/ N A r d (y)

n. P F NedF(y) >.A

F l E

<+ e i-k i dF(y)

- 0 k-I
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FF

i-k
+ In k-i NAe dF(y)>XAJ

In other words, for arbitrary e > 0, P0 (N > NAn ') > 1 - E for large
F

enough n and A. It is easy to see that E (n,0 - NFIN n ,a > N F

0OA A A -A
F F F

< E N 
n
'
a

'
. Hence E N > E N

- OA 0QA- 0 A

Letting C -+ 0, a - 0 completes the proof of Theorem 2(11) for

(a,b) C (0,0).

If w = supfyly E Q} < - and I(y) - as y - w, a similar

proof is valid, letting b approach w instead of -. I

The proof for (a,b) c (-,-) is similar.

PROOF OF THEOREM l(i). The proof of Theorem 2(11) can easily be

adjusted to be a proof of Theorem l(i). In the general non-

arithmetic case, Stone's (1965) results can be replaced by the stand-

ard renewal theorem. (There is no need for uniformity of the

renewal-theoretic results as the support of the mixing measure

F - in this case is made up of one point.) The details are

omitted.
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IV. THE AVERAGE RUN LENGTH WHEN v I

Define Go k E o j

C'e --E (e) log I + Ee

B
- °  

i=l

2 1 1~

CYe = c2' C3  2  41 3 2

C eF = I ~ log [T('e)2N 0

1 1i

C log I(0)

~e, ej, + 0 ,0 - 0 ,0 6c
C1 C2 +C3 C2 4

The computation of C
y 'o 

is an application of renewal theory. The
3

calculation of Cy
'
e seems to be feasible only with the aid of Monte

2

Carlo.

THEOREM 3. If y,oe c Q, 0 < y i''(0) - (y) < -, and the P 1 -distribu-

tion of log(f y(X 1 )/f0 (XI)) is non-lattice, then

E I) N A 1 [log A + C '
8 

+ o(l)]1 A =yW'(o) - p(y)1

where o(i) - 0 as A4W.
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THEOREM 4. Suppose F'(y) = dF(y)/dy exists, is positive, and is

continuous in an open neighborhood of 8 E Q. Then

E() F 1 0,F
E, NA = )[log A + log log A + C1  0o(1)]

where o(1) - 0 as A -o

PROOF OF THEOREM 4, THEOREM 3. For the proof of Theorem 4, assume

(without loss of generality) that 8 > 0. Consider first the case where

F is concentrated on [0,1] where 0 < < e < 01 < 0 are such that

y'(8) - 4(y) > 0 for 80 < y < e and F has a derivative F' which is

positive and continuous on (eo8l1. For e0 < y < 81 denote

_k-i {y)

Wn 'y i E e 1 i

k=2

Note that W
n

y converges a.s. PM as n -* , to a random variable W
y,8

n+
l y  - n 

' y  expP-y 
(

Since E (W - ni i Xi-n (Y)] i> 0n~m n~m i=1 iM O

. uniformly in y c [090l] , it follows that W is a.s. p(e)

a.s. p@ y uiomyi

continuous in y E f[e0,l1 , and Wn,y - -s -P uniformly in

y E [80,81]. Note that

En Z y}R F :: e 1'l Wnl y dF(y)

n e0

The proof of Theorem 4 now follows the proof of the asymptotic

formula for the expected sample size of power one tests, based on

non-linear renewal theory (cf. Lai, Siegmund (1977)). The details
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presented here follow the proof presented in Woodroofe (1982)

Section 6.3. With minor modifications, the proof is the same.

One difference is that Woodroofe's u n(Y n ) now has (ds)

replaced by Wn ' s W(ds). Note that the upper bound on the newly

defined u (Y) is not uniform in Wn' s , One must show that (13) and

(14) of Section 4 of Woodroofe (1982) are nevertheless satisfied.

One can dispense with (14) by noting that Wn ' s > 1 . To show that

(13) is satisfied, it more than suffices to prove the existence of

a constant c > 0 such that

(42) E ()t 1:: Wy dFCY)]j <

Let c > 0, A = min{nl IXm - 4'(0)I < E for all m > n}. Suppose that

E is small enough so that there exists B > 0 such that Z n Zy > Sni=l1 Z -_>B

if n > A for all e0 < y < el" There exists y > 0 such that [ p(6-y) +

4(y) - (O)I < y for all 60 < y < OI" There exists a constant 5 > 0

such that P a)(A=X) < exp{-SXJ. Choose I > ot > 0 such that oty - 6(1-a) < 0.

Now

r 1 k-1 {y} {k-i zfy)
YOl dF(y)  I 01 +- I + Z e dF(y)

0 o k=2 k- A +1

eelOly+ e e + dF(y) ,

0 6 k 1 -
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e e, k-i zy}

- 1 () I el i dF(y)

E . e dF(y) (ap)

1 1 ei [, eE~(y)+(y)_(e)](k-l)dF(y)

(I A =X) 8 0 k-2

i ( ) X) Y

By Jensen's inequality,

E ) I~:: WYdF(y) = E) E0) [I:: WyedF(y)]j A ]

< xey + p) A )

-Me--1 z: (A=I) 0 i-e- I

The inequality (42) now follows because

CO 
00

S 1 YX a P() ( A - <X) E X eaYX (P( () X) -a"
'M P(8) (A-X)' I 1 a X1

To complete the proof of Theorem 4 for the case that F is con-

centrated on [09,0I  as above, one need only show that (16) of Woodroofe

(1982), Section 4, holds. For this, following Woodroofe's (1982 Section

6.3) proof, it suffices to note that
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(log A)/(21())

P0(NA < (log A)/(21(e))) E: P 0(RF A)

1=1 0

(log A)/(21()

A)

1=1

< o1 (log A) 
2

e- 2 A

and hence

P()(N F < (log A)/(21(e))) < exp{(3/4)A} (log A)2  1

I A - Me- 2 A (og Aj' " o gA

which is equivalent to (16) of Woodroofe (1982), Section 4.

For the general proof of Theorem 4, let F be a measure on the

real line. There exist constants 0 < < 1(0)/2, w0 > 0, and

0 < a0 < 6 < a 1 < - such that y '(e) - (y) > 0 for y c [00,0611

max{y '(8-w) - 4i(y), y '(O+w) - p(y)' < E for y I [0oO1], and F(y)

has a derivative F' (y) for 00 < y < 01 which is positive and continuous

for 0 < y < Since P A)(NAF > (2 log A)/I(e)) is arbitrarily small

when A is large enough, and since for all x > 0 E e(FINF > x) < x +

(2 log A)/I(O) for large enough A, it suffices to show that

in

(44) (log AP(0) /ma6)J z
tn 1, ... (21og A) n(O [eO0,01 ]  k=1

En X -(n-k+l),i(y) -}AY~~kdF(y) > f__
e og Al A+

The remainder of the proof is therefore an analysis of this

expression.
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Let O < 8*<0 << < be such that

0 1 1

max{yi'(O) -P(y) y E(8* ,0 1 < 0

In the same manner which lead to (42) above, it can be shown that

there exists a constant a > 0 such that

F = E1
)

E e dF(y) < CO

and hence by Jensen's inequality

(45) (log A) p max
n=1,...(2 log A)/I(0) IR-[O*,C*]

n eYnk X -(n-k+l) (y) A "
e dFy) log A

k=1

(2 log A)II() (n X_ (n-k+l) ,(y)

(2 log A))/ ( a ) e i=k i dF(y)) (

n=1 k=l

> A a
- (TlogA)

<2 log A P

- 1(9) (A/log A)
a

-- > 0

A-+- 4
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For large enough A

nn

j k iik Xi_ (nk+l)

mak ExdF(y)

n-1,...,(2log A)/1(0) k-i

max e (n+l)
n-l, ... , (2 log A)/I(B)

= -A2/I( e )

< A

log A

Let n > 0 be such that P(e)( (k X /k I (4)'(8- ),*'(B+w)))

1 " -il

< exp{-nk} for all k. Let A > 0 be such that E(8)[zk(X -'(4))] 4

21

< k2 for all k. For large enough A and for n < (2log A)I(B)

n YE n X:I_(n-k+,l),(y)

j(e) 1 E e i-k
I k-i

* n I X1  (],(-aP(~&) A

k t-k+l i-k X l gE(
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6* En
e-1 i-ki

S1  -k+ X x ( (e-w,), (+)) > og Al

s P(e)I max e;

k- P {kl(...-n

k

1 xi (p'(0-w), '(0+>)) A

ili

< p() E (X _,

k 1 e1~

2 2. log log A - kIP'(e) + log(I(0)/2) 1

n A(log A) 1/4

E 2k

k-i log A - log log A - kij'(0) + log(I(O)/2)

n1 k

+1/4 ( 1 k x
k- (log A)A1k 14

-g2 X (log A) 3 4

log A - log (log A )3 14  ( + Iog(I(8)/2) 4

+ e-n(log A)3 / 4  1
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It follows that

0*nY Xi_(n-k+l)*(y )

(47) (log A) P(){ max AX-n ( E e
Ilk-l,...(21loA)() k-l

Lu- El i-k(0-W A 6 ) dF(y) > lgA

i ~-k+l 1

-. 0

In a similar fashion one gets that

S0 nyE n X -(n-k+l) (y)(48) (log A) P@(O) max , 0 e a
() (kl,..., A lo / (loA)II(8) k-l

0

nA
E I dF(y) > f_ A

1n-k+l i-k logA

---- *0

Formulas (45)-(48) account for (44) and so the proof of Theorem 4

is complete.

The proof of Theorem 3 follows along similar lines. The details

are omitted.
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V. MONTE CARLO

A Monte Carlo study was made for the normal model with unit

variance. Letting f0 denote the density of the N(6,1) distribution,

(ol {o1
simulations of N , R were made for 0 = .4, .8, 1.0, 1.2, 1.6,NA N~e

2.0, 2.5, 3.0, 4.0 and * -10, 20, 30, 100 using X~ N(0,1) random

numbers. For each of the 36 combinations of and A, 10,000 realiza-

tions were obtained. The results show the asymptotic formulae (derived

in the previous sections) to give a very good picture of E N 10 even
0OA

for surprisingly low values of A.

As expected, the Monte Carlo estimate of E (R 6  - N{0 ) was0 Nfe} A
e} A

zero: in only one of the 36 cases did (R 
) 

exceed two (Monte

NN OF A

NA

(1977) lead one to conjecture that the linear correlation coefficient

e{8} fe}
beteen N and R { is asymptotically (A c) zero. The Monte Carlo

NA

results support this conjecture - the highest Monte Carlo correlation

fe} fe}
between N and R 1 was .0234. (In 28 of the 36 cases the correlation

between N A and R {,} was not significantly different from zero at aA NAtel
A

5Z level of significance, and in all of the 36 cases this correlation was

not significantly different from zero at a 1% level of significance.)

Therefore, estimates of E N0 were made using a linear combination
0 A

{e} W~
A,e N A + (l - aA,8) R.{8}, where aAO was chosen to minimize

NA
2 (0 2 (0
a Var N + (1-a)2 Var R (the variances being Monte Carlo vari-

A NAf

ances). The results are presented in Table 1.
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TABLE 1: Values of E N predicted by asymptotic theory (TH) and estimated
OA

by Monte Carlo (MC)

AI0 20 30 100

S.D. {e S.D. {e) S.D. 100 S.D.SN A ofMC EN of MC E0  of MC E0N ofMCEoNA o0A CAofOA

TH 12.62 25.24 37.86 126.21 *

.4
MC 13.01 .03 25.57 .05 38.20 .08 126.44 .27

TH 15.91 31.82 47.73 159.09 *
.8

MC 16.51 .07 32.32 .14 48.58 .22 159.61 .68

TH 17.85 35.69 53.54 178.45 *
1.0

MC 18.44 .09 36.23 .21 54.53 .30 178.25 .95

TH 20.00 40.00 60.00 * 200.01 *

1.2
MC 20.98 .13 40.59 .27 60.56 .40 200.71 .40

TH 25.05 50.09 75.14 * 250.47 *
1.6

MC 26.62 .20 52.65 .42 76.00 .60 248.27 1.91

TH 31.21 62.42 93.62 * 312.08 *
2.0

MC 34.54 .32 65.52 .58 93.93 .84 315.47 2.74

TH 40.72 81.44 122.16 407.20 *
2.5

MC 48.27 .46 89.65 .87 128.39 1.22 406.78 3.91

TH 52.52 105.04 157.56 525.21 *
3.0

MC 72.75 .71 127.08 1.25 180.15 1.80 533.15 5.23

TH 83.93 167.87 251.80 839.35
4.0

MC 189.58 1.86 315.25 3.10 428.10 4.30 1099.02 10.96
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(In Table 1, TH represents the theoretical value one would expect

for E N eusing Theorem 1(ui); MC represents the estimated based on the
0 A

Monte Carlo trials. The (Monte Carlo) standard deviation of this esti-

mate is given under the heading of "1S.D. of MC." The starred cells

in Table 1 are those where TH - MC did not exceed 2 (Monte Carlo)

standard deviations of TH.)

TABLE 2: Ratios of asymptotic theory predictions of E N 1)to Monte
0OA

Carlo estimates (THIMC)

10 20 30 100

.4 .97 .99 .99 1.00

.8 .96 .98 .98 1.00

1.0 .97 .99 .98 1.00

1.2 .95 .99 .98 1.00

1.6 .94 .94 .99 1.01

2.0 .90 .95 1.00 .99

2.5 .84 .91 .95 1.00

3.0 .72 .83 .87 .99

4.0 .44 .53 .59 .76
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The results show a surprisingly good fit, even for low values

of A (as long as 0 is not too large). (Table 2 presents the ratio

between the theoretical value of TH and the Monte Carlo estimate MC.)

It seems clear that for most practical purposes the asymptotic formula

could be safely applied. (Shewhart control charts using "3a limits"

- often used in practice - have a Po-expected stopping time of 741.)

For an indication of how well one may expect the formula of

Theorem 4 to fit, see Pollak and Siegmund (1975). One would expect

the formula presented there to hold as well as the formulae presented

here, provided that E )N is large enough for the distribution of
1 A

logil + k exp{-i k z {)J to have approximately reached its limit-logl +k=1 exp- I z

ing distribution.
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VI. REMARKS

1. In Theorems 1, 3, 4 if 1(6) = , it is possible to show

that EON l} /A-0 as A 0 - and E 8 ) N /log A - 0 as A-*w.
Aa1 A

2. Using the method involved in showing the validity of

Remark 1, one can show that Theorem 2 remains valid with

F({yJl(y) < -}) > 0.

3. It seems reasonable to conjecture that Theorem 2 remains

valid if the P Y)-distribution of X is just assumed to be non-lattice.
1 1

The proof given above for Theorem 2 breaks down because the uniformity

of a renewal-theoretic convergence used in the proof of Lemma I need

not exist if the strongly non-lattice assumption is dropped.

4. In the lattice case, even a version of Theorem 1 seems to

be difficult to formulate. Despite XI'S being lattice, Rn is not, and

the proof presented here - which conditions on NA/C - does not yield
A/C

an expression for the non-lattice part of the asymptotic P 0-distribution

.{0}

of log R log A.
NA
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