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e main purpose of this work is shortly to give the average sample number function a�er a sequential probability ratio test on
the index parameter alpha of stable densities, which we give a mean of the number of data required to take decision in the case1 < � < 2, we use the fact that the tails of Levy-stable distributions are asymptotically equivalent to a Pareto law for large data. Stable
distributions are a rich class of probability distributions that allow skewness and heavy tails and havemany intriguingmathematical
properties.
e lack of closed formulas for densities and distribution functions for all has been amajor drawback to the use of stable
distributions by practitioners, but few stable distributions have the analytical formula of their densities functions which are Gauss,
Levy, and Cauchy.

1. Introduction

Because it has a large application in many �elds, stable
distributions have been proposed as a model for many types
of physical and economic systems [1–3].
ere are several rea-
sons for using a stable distribution to describe a system. 
e
�rst is where there are solid theoretical reasons for expect-
ing a non-Gausian stable model. 
e second reason is the
Generlized Central Limit
eorem which states that the only
possible non-trivial limit of normalized sums of independ-
ent identically distributed terms is stable.
e third argument
for modeling with stable distributions is empirical: many
large data sets exhibit heavy tails and skewness. 
e strong
empirical evidence for these features combined with Gener-
alized Central Limit 
eorem is used by many to justify the
use of stable models. 
ere are now reliable computer pro-
grams to compute stable densities, distribution functions and
quantiles. With these programs, it is possible to use stable
models in variety of practical problems [1, 2].

In Section 1, we give some de�nitions, arithmetic prop-
erties of stable laws, and the numerical calculation of sta-
ble densities, distribution functions Mittnik et al. [4] and

Nolan [1, 2], and simulation algorithm [1, 5]. In Section 2, we
propose a method to calculate the likelihood ratio appliying
the pareto limit of stable densities for large data, with discuss,
Finally we interests of the number of observations needed to
take decision about the best value of index parameter by its
averange sample number function in the case 1 < � < 2,
when moment of order one exists.


ere are now reliable computer programs to compute
stable densities, distribution functions and quantiles. Nolan
[2] creates algorithms for generate general stable densities
based on integral representations of the densities which were
derived by Zolotarev [6], then Nolan [2, 3] provides a useful
program named “STABLE”.With these program, it is possible
to use stable models in variety of practical problems. For
Wald’s SPRT [7] approximatios, Raghavachari [8] gave exact

formulas in the case of an exponential density �−1 exp(−�/�)
for testing �0 versus �1, provided �0/�1 > max(�, �/�). For a
sequential probability ratio test, Under other distributions A.
Wald’s approximations [7] are o�en used, but how about sta-
ble distributions? there are not closed formula for the densi-
ties to calculate the likelihood ratio, we compare the �t of two
pareto stable models using sequential probability ratio test.
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2. Stable Distributions

De�nition 1. Arandomvariable�has a distribution in�nitely
divisible if and only if for all �, ∃�1, . . . , �� independent with
the same even law such as

� �= �1 + ⋅ ⋅ ⋅ + ��, (1)

where
�=means equality in distribution.

Remark 2. 
e random variables �� did not even law as �.
However, as we see in the following examples, they belong to
the same family of distributions.

Example 3. 
e characteristic function of normal distribu-
tionN(�, �2) is written as

N(�,�2) (�) = exp{��� − �2�2
2 }

= [exp{��� � −
�2/�
2 �2}]

�

= [N(�/�,�2/�) (�)]�,

(2)

as �th power of characteristic function of a normal distribu-
tionN(�/�, �2/�).
Example 4. 
e characteristic function of Cauchy distribu-
tion �(�) is written as

�(�) (�) = exp {−� |�|} = [exp (− �
� |�|)]� = [C(�/�) (�)]�,

(3)

as �th power of the characteristic function of a Cauchy dis-
tributionC(�/�).
Example 5. 
e characteristic function of Poisson distribu-
tion �(�) is written as

P(	) (�) = exp {� ("�
 − 1)}
= [exp{�

� ("�
 − 1)}]�

= [P(	/�) (�)]�,
(4)

as �th power eme of the characteristic function of a Poisson
lawP(�/�).
Example 6. 
e characteristic function of Gamma distribu-
tion Γ(0, �) is written as

−(�,	) (�) = 1
(1 − ��/�)� = [ 1

(1 − ��/�)�/�]
�
= −(�/�,	) (�) ,

(5)

as �th power eme of characteristic function of a Gamma dis-
tribution −(0/�, �).


e same is true for the exponential law (Exp(�) = Γ(1,�)) and the law of 32 = Γ(�/2, 1/2)).

Remark 7. A mixture of �nished normal distributions is not
divisible in�nitely.

�eorem 8. A random variable � is the limit of a sum of �
random variables i.i.d. if and only if � is divisible inde�nitely.

Proof. 
e demonstration was detailed in Shiryayev [9].

De�nition 9. A random variable� is stable if for�1,�2 two
independent random variables that have same law as � and
any two real positive constants 4, 5, then

4�1 + 5�2 = �� + 6, in distribution (6)

satis�es for some � ∈ R
+ and 6 ∈ R.

De�nition 10. A random variable � is stable distribution if
and only if, for all � and any independent identique family�1, �2, . . . , �� which have the same law that�, there is 4� > 0
and 5� ∈ 9, as

�1 + �2 + ⋅ ⋅ ⋅ + ��
�= 4�� + 5�. (7)

Proposition 11. If � is stable, � is divisible inde�nitely. �e
inverse is false (see the example below, the Poisson distribution).

Proof. Just take the random variables:� = (��−5�/�)/4�, � =1, . . . , �.
As �� are independent, :� are also independent, and by

substitution, we have

:1 + :2 + ⋅ ⋅ ⋅ + :� �= �. (8)

Remark 12. 
is de�nition is coinside of the central limit
theorem if� is following a normal law.

�eorem 13. � has domain of attraction; that is, there is
a sequence of random variables �.�.6.(��)�∈, a sequence of
positive real numbers (4�)�∈N, and a sequence of real numbers(5�)�∈N, such as

1
4�

�∑
�=1

�� − 5� ?→ �, �� 6�A�0�5B��C�. (9)

Proof. 
e demonstration is detailed in Shiryayev [9].

Corollary 14 (Levy-Khinchin). �e characteristic function of
a stable random variable� admits the following form:

D� (�)

=
{{{{{{{{{{{{{

exp [−��|�|� (1 − �I ⋅ sgn (�) ⋅ �J (�K
2 )) + ���] ,

� ̸= 1
exp [−� |�| (1 + 2

K�I ⋅ sgn (�) ⋅ ln |�|) + ���] ,
� = 1,

Mℎ"0" sgn (�) = {{{{{
1, � > 0
0, � = 0
−1, � < 0.

(10)
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Proof. 
e demonstration is detailed in Gnedenko and Kol-
mogorov [10].


e random variable� is a stable law with parameters �,I, �, and �; we note that
� ≡ P� (I, �, �) ,

where 0 < � ≤ 2, −1 ≤ I ≤ 1, � ≥ 0, � ∈ R. (11)

But this representation of the FC, called parameterization
standard, has the disadvantage of not being continued in
all of its parameters. In fact, there is discontinuity in the
points where � = 1 and I = 0; otherwise, there are other
parameterization of the FC more adapted to di�erent pro-
blems. Consider

�� (
)

=

{{{{{{{{
{{{{{{{{
{

exp [−��|
|� (1 + �� ⋅ sgn (
) ⋅ tan ��
2 ) (|�
|1−� − 1) + ��0
] ,

� ̸= 1
exp [−� |
| (1 + 2

� �� ⋅ sgn (
) ⋅ ln |
| + ln�) + ��0
] ,
� = 1.

(12)


is representation of Zolotarev’s U parameterization
notes � ∼ P0�(I, �, �0). 
e parameters �, I, and � are the
same as those of the standard parameterization, but � and �0
are related by

� = {{{{{
�0 − I� tan �K

2 , � ̸= 1
�0 − 2

KI� ln�, � = 1. (13)


is parameterization is very important because the char-
acteristic function and the cumulative distribution function
are continuing in relation to the four parameters. P0 is well
conditioned numerically by calculation.

Another parameterization P1 is given by the following:

D� (�)

=
{{{{{{{{{{{{{

exp [−��2 |�|� exp (−�I2 ⋅ sgn (�) ⋅ K2W (�)) + ���] ,
� ̸= 1

exp [−�2 |�| (K
2 + �I2 ⋅ sgn (�) ⋅ ln |�|) + ���] ,

� = 1,
(14)

where

W (�) = � − 1 + sgn (1 − �) = {�, � ≤ 1
� − 2, � ≥ 1, (15)

x
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Figure 1: pdf plot for di�erent values of alpha.

where parameters � and � are the same as for standard
parameterization; other parameters meet the following rela-
tionships:

�2 =�(1 + I2tan2�K2 )1/2�,
tan(I2KW (�)

2 ) =I tan
�K
2 , � ̸= 1,

�2 =2�
K , I2 = I, � = 1.

(16)

Remark 15. 
e main disadvantage is that the densities of
stable laws are unknown except in three cases.

(1) 
eGaussian distribution P2(0, �, �) where X(�, 2, 0,
�, �) = (1/2�√K) exp(−(� − �)2/4�2), � ∈ R.

(2) 
e Cauchy distribution P1(0, �, �) where X(�, 1, 0,
�, �) = (2�/K((� − �)2 + 4�2)), � ∈ R.

(3) 
e Lévy distribution P1/2(1, �, �) where X(�, 1/2, �,
�) = (�/2K)1/2(� − �)3/2 exp(−�/2(� − �)) ⋅ []�,∞[(�).

But since the implementation of the fast Fourier trans-
form, stable densities are easy to calculate. We can approach

this method density X(�) = (1/2K) ∫+∞−∞ "−�
 D�(�)6�.
2.1. Interpretation of the Parameters of the Characteristic

Function of a Stable Law

(1) 
e parameter � known as an exponent characteristic
or a stability index describes the form of distribution
or the degree of thickness of the tail distribution (0 <� ≤ 2). If � is smaller, then the tails of the distribution
are thick. In otherwords, themore small� is, themore
we see the existence of very large �uctuations (see
Figure 1). A Gaussian distribution that has the maxi-
mum value of � is � = 2.
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Figure 2: pdf plot for di�erent values of beta.

(2) 
e parameterI gives an idea of asymmetric distribu-
tion.
is is the parameter of asymmetry. If I is equal
to −1 (resp., 1), distribution is totally asymmetrical
le� or right.WhenI = 0, then the distribution is sym-
metric around � (see Figure 2).

(3) 
e parameter � is called a scale factor. � is more
grand, if more data are volatile (see Figure 3). 
e
parameter � has the possibility to bend more or less
the body of the distribution.

(4) 
e parameter � location corresponds for � > 1 to
the mean of the distribution. If I = 0, then � is the
median. In other cases, � cannot be interpreted.

2.2. Arithmetic Properties. Stable random variables P�(I, �,�) have the following properties.
(i) �1, �2 are two independent random variables that

follow, respectively, stable laws P�(I1, �1, �1), P�(I2,�2, �2); then, �1 + �2 follows a stable law P�(I, �, �)
with

� = (��1 + ��2 )1/�,
I = I1��1 + I2��2��1 + ��2 ,
� = �1 + �2.

(17)

Note that, if I1 = I2, then I = I1 = I2.
(ii) If� ∼ P�(I, �, �), 4 ∈ R, then�+4 ∼ P�(I, �, �+ 4).
(iii) If �1,�2 follows a stable law P�(I, �, �), 4 ∈ R

+, 5 ∈
R
+, � ∈ R, then

4�1 + 5�2 + � �= P� (I, �(4� + 5�)1/�, �(4� + 5�)1/� + �) ,
(18)

where “
�=” means “has the same distribution.”

� = 0.5
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Figure 3: pdf plot for di�erent values of sigma.

(iv) � is a symmetric random variable around � if and
only if the law of � is P�(0, �, �). We note that P�P
is a symmetric stable random variable with � = 0.

(v) Let � be a random variable law P�(I, �, �) with � ∈(0, 2], then
` (|�|!) < ∞ if b ∈ ]0; �[ ,
` (|�|!) = ∞ if b ∈ ]�;∞[ . (19)

(vi) Let � be a random variable law P�(I, �, �) with � ∈]1, 2[, then
` (�) = �. (20)

In this section, it is assumed that the samples �1, �2,. . . , �� are independent and equally distributed stable ran-

dom variables, such that�� ef P�(I, �, �), � = 1, �.
2.3. �e Asymptotic Behavior

�eorem 16 (see [11]). For 0 < � < 2, −1 ≤ I ≤ 1, � ≥ 0,� ∈ R, If � ∼ P�(I, �, �), then
lim →∞��� (� > �) = �� (1 + I) ��,

Mℎ"0" �� = (2∫+∞

0
�−� sin (�) 6�)−1

= 1
KΓ (�) sin(�K

2 ) ,
(21)

by derivation, for large data,

X (�, �, I, �, �) ∼ ��� (1 + I) sin(�K
2 ) Γ (�)

K �−(�+1), (22)
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or Γ denotes the Gamma function de�ned by Γ(�) =
∫+∞0 "−
��−1 6�.

As � → ∞,�(� > �) = ��(1 + I)���−� ⇒ k(�) =�(� ≤ �) = 1 − �(� > �) = 1 − ��(1 + I)���−�, then by

derivation X(�) = (k(�))# = ���(1 + I)���−�−1 = ���(1 +
I)���−(�+1).
2.4. Parameter Estimation

2.4.1. Tail Exponent Estimation. 
ere are many methods to
give estimators of the index exponent of stable distributions,
but we describe here the regression method, which is based
on the e�ect that, for large enough values of �, the tails of
stable laws come in a power of alpha; see (22); then, we con-
sider a linear regression as

ln� (� > �) ∼ ln�� (1 + I) �� − � ln�, (23)

where the slope of the line will be an estimator of −�.
2.5. Simulation of an �-Stable Distribution. To simulate the
stable laws, there is an algorithm developed by Chambers
et al. [5]. It can generate a law P�(I, 1, 0); then to obtain aP�(I, �, �) stable law, just make a change of variables.

Step 1. Generate two random variables as follows.
Let l be uniform on ]0, 1[. 
en, m = Kl − (K/2) is

uniform on ]−K/2, K/2[, andn = − ln(1−l) is exponentially
distributed with mean 1.

Step 2. Generate� a P�(I, 1, 0) law.
(i) For � ̸= 1

� = o + sin�m − o cos�m
(cosm)1/�

× (cos (1 − �)m − o sin (1 − �)m
n )((1−�)/�).

(24)

(ii) For � = 1
� = 2

K [(K
2 + Im) tan: − I ln

(K/2) cosm
(K/2) + Im] , (25)

Step 3. Generate a P�(I, �, �) law using these transforma-
tions:

: = �� + �, if � ̸= 1,
: = �� + 2

KI� ln� + �, if � = 1. (26)

For more details see Samorodnitsky and Taqqu, [12, page 43].

3. Probability Ratio Test Applying to
Stable Laws in the Case � → +∞

We will use � for the exponent characteristic and p for the
asymmetry parameter to avoid confusion with the symbols

� and I which were used in type I error and type II error
inWald’s sequential probability ratio test, and for simplifying
the process, let us consider symmetric standard alpha stable
random variables �� ≡ P$(0, 1, 0), � = 1, 2, . . . , q, in other
terms (I = 0, � = 1, � = 0) where � is unknown.

We assume that we have a sample of�1, �2, . . . , �� inde-
pendent random variables which follow the same law � ≡P$(0, 1, 0) with unknown �.

We want to use the sequential probability ratio test SPRT,
for the hypothesis

r0: � = �0,
against the hypothesis,

r1: � = �1,
where �1 > �0 > 0, if we want to get a test as �(Rejectsr0/r0 is true) = � and �(Accepts r0/r0 is false) = I.

We are willing to choose values for � and I as the Wald’s
[7] approximation� = (1−I)/�, � = I/(1−�). Where �, I ∈[0.01; 0.05], at the end of theqth observation:

(i) acceptr0 if ∑%
�=1 n� ≤ ln�;

(ii) acceptr1 if ∑%
�=1 n� ≥ ln�;

(iii) continue the test if ln� < ∑%
�=1 n� < ln�, with n�

de�ned by the relationship in general by

n� = ln
X (��, �1, p, �, �)X (��, �0, p, �, �)

= ln
�1�$1 (1 + p) sin (�K/2) (Γ (�) /K) �−($1+1)
�0�$0 (1 + p) sin (�K/2) (Γ (�) /K) �−($0+1) .

(27)

In our case of symmetric standard alpha stable random vari-
ables, we have

n� = ln
X (��, �1, 0, 1, 0)X (��, �0, 0, 1, 0)

∼ ln
�1 sin (�1K/2) (Γ (�1) /K) �−($1+1)�
�0 sin (�0K/2) (Γ (�0) /K) �−($0+1)�

,
(28)

so,

n� = ln(�1Γ (�1) sin ((1/2) K�1)�0Γ (�0) sin ((1/2) K�0)�
$0−$1� ) , (29)

n� = ln
�1�0 + ln

Γ (�1)Γ (�0) + ln
sin ((1/2) K�1)
sin ((1/2) K�0) + (�0 − �1) ln��.

(30)

In (30), we note that for 1 < � < 2, sin((1/2)K�) > 0, then
%∑
�=1

n� ∼ q ln
�1�0 + q ln

sin (�1K/2)
sin (�0K/2)

+ q ln
Γ (�1)Γ (�0) + (�0 − �1)

%∑
�=1

ln (��) .
(31)
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To summarize, we acceptr0 if

q ln
�1�0 + q ln

sin (�1K/2)
sin (�0K/2) + q ln

Γ (�1)Γ (�0)
+ (�0 − �1)

%∑
�=1

ln (��) ≤ ln� = ln
I

1 − �
⇐⇒ %∑

�=1
ln (��) ≤ 1

(�1 − �0)
× (q ln

�1�0 + q ln
sin (�1K/2)
sin (�0K/2)

+q ln
Γ (�1)Γ (�0) − ln

I
1 − �) def= 4%.

(32)

(i) Acceptr1, if

%∑
�=1

n� ∼ q ln
�1�0 + q ln

sin (�1K/2)
sin (�0K/2) + q ln

Γ (�1)Γ (�0)
+ (�0 − �1)

%∑
�=1

ln (��) ≥ ln� = ln
1 − I
�

⇐⇒ %∑
�=1

ln (��) ≥ 1
(�1 − �0)

× (q ln
�1�0 + q ln

sin (�1K/2)
sin (�0K/2)

+q ln
Γ (�1)Γ (�0) − ln

1 − I
� ) def= 0%.

(33)

(ii) We take an additional observation if

4% < %∑
�=1

ln (��) < 0%. (34)

In practice, we trace the following two parallel lines:

x0: y = 1
(�1 − �0)
× (q ln

�1�0 + q ln
sin (�1K/2)
sin (�0K/2)

+q ln
Γ (�1)Γ (�0) − ln

I
1 − �) ,

x1: y = 1
(�1 − �0)
× (q ln

�1�0 + q ln
sin (�1K/2)
sin (�0K/2)

+q ln
Γ (�1)Γ (�0) − ln

1 − I
� ) .

(35)


en we place on the same graph the points of coordinates(q,∑%
�=1 ln(��)) as long as they are in the band plan de�ned

by two straight, we decides r0 whether x0 is crossed the
band formed by the two straights, and we decides r1 if x1
is crossed. We continue the sampling if the points are in the
band.

Example 17. For a sample of �1, �2, . . . , �� independent
random variables which follow the same law � ≡ P$(0, 1, 0)
with unknown �, we want to use the sequential probability
ratio test SPRT, for the hypothesis

r0: � = �0 = 1.3
against the hypothesis,

r1: � = �1 = 1.5,
where �1 > �0 > 0. Let � = 0.01 and I = 0.05, then� = (1−I)/� = (1−0.05)/0.01 = 95.0,� = I/(1−�) =0.05/(1 − 0.01) = 5. 050 5 × 10−2.
ln� = ln(95.0) = 4. 553 9 and ln� = ln(5. 050 5 ×10−2) = −2. 985 7.
x0: y = −0.503 60q + 14. 929 with thick black line
(straight).

x1: y = −0.503 60q − 22. 770 with red line (straight)
(see Figure 4).

Example 18. We assume that we have a sample of �1,�2, . . . , �� independent random variables which follow the
same normal distribution�(�, �2)with unknown �.Wewant
to use the sequential probability ratio test SPRT, for the
hypothesis

r0: � = �0
against the hypothesis,

r1: � = �1,
where �1 > �0 > 0; if we follow the same steps, we obtain

x0: y = �1 + �02 q + �2
�1 − �0 ln( I

1 − �) ,

x1: y = �1 + �02 q + �2
�1 − �0 ln(1 − I

� ) .
(36)

3.1. E�ciency Function and Average Sample Number Function

De�nition 19. 
e e�ciency function of the probability ratio
test is

� ?→ P$ (Accepts r0) . (37)
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Figure 4: Acceptingr0.

It is possible to obtain additional information on the
sequential probability test, especially on the number of obser-
vations � needed to take decision, which is a discrete ran-
dom variable that admits moments of all kinds; consider the
function average sample number (ASN).

De�nition 20. One calls the following average sample number
(ASN) function:

� ?→ E$ (�) . (38)

�eorem 21. Let a �xed � ∈ Θ. If E$(|n1|) < +∞, then

E$ (�)E$ (n1) = E$ (P) , (39)

where P = ∑
�=1 n� and n� is de�ned by (29).

�eorem 22. Let a �xed � ∈ Θ. If E$(|n1|) < +∞ and
E$(n1) ̸= 0, then

E$ (�) ∼ (1 − x (�)) ln� + x (�) ln�
E$ (n1) . (40)

In the case of stable densities with 1 < � < 2,E(�) = � <+∞, see (v) in arithmetic properties,

E$ (����n1
����)

= E$ (
���������ln

�1�0 + ln
Γ (�1)Γ (�0) + ln

sin ((1/2) K�1)
sin ((1/2) K�0)

+ (�0 − �1) ln�1
���������)

= ln
�1�0 + ln

Γ (�1)Γ (�0) + ln
sin ((1/2) K�1)
sin ((1/2) K�0) + (�0 − �1) � < ∞,

(41)

and with a simple calculation, and for symmetric standard
alpha stable random variable (I = 0, � = 1, � = 0),

E$ (n1) = ln
�1�0 + ln

Γ (�1)Γ (�0) + ln
sin ((1/2) K�1)
sin ((1/2) K�0) . (42)


en,

E$ (�) ∼ (1 − x (�)) ln� + x (�) ln�
E$ (n1) , (43)

where x(�) is the function of e�ciency. With substitution in
(29)

E$ (n1) = E$0 (n1) = ln
�1�0 + ln

Γ (�1)Γ (�0) + ln
sin ((1/2) K�1)
sin ((1/2) K�0) ,

(44)

�nally, underr0
E�0 ()

∼ � ln ((1 − �) /�) + (1 − �) ln (�/ (1 − �))
ln ($1/$0) + ln (Γ ($1) /Γ ($0)) + ln (sin ((1/2) �$1) / sin ((1/2) �$0)) ,

(45)

because x(�0) = 1 − �, and underr1
E�1 ()

∼ (1 − �) ln ((1 − �) /�) + � ln (�/ (1 − �))
ln ($1/$0) + ln (Γ ($1) /Γ ($0)) + ln (sin ((1/2) �$1) / sin ((1/2) �$0)) ,

(46)

because x(�1) = I.
Example 23. Let � = 0.01 and I = 0.05; then, for the index
parameter of symmetric stable distributions �1 = 1.5, �0 =1.3,

E$0 (�) = 28. 907. (47)

In the case of normal distribution � = 2, that is,N(�, 1),
we use the same steps, but here we have the analytic form of
the density function, and the average sample number func-
tion is underr0

E$ (�) ∼ � ln ((1 − I) /�) + (1 − �) ln (I/ (1 − �))
− (1/2) (�1 − �0)2 , (48)

because x(�0) = 1 − �, and underr1

E$ (�) ∼ (1 − I) ln ((1 − I) /�) + I ln (I/ (1 − �))
(1/2) (�1 − �0)2 , (49)

because x(�1) = I, where
E$ (n1) = (�1 − �0) � − 1

2 (�21 − �20) . (50)

4. Conclusion

We use the fact that the tails of the Lévy-stable distributions
are asymptotically equivalent to a Pareto law when 1 < � < 2
for large data as � → ∞,�(� > �) = 1 − k(�) →
����(1 + I)�−�, where �� = (2 ∫∞0 �−� sin� 6�)−1 =(1/K)Γ(�) sin(�K/2) to obtain the probability ratio, and we
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compare the �t of two Pareto stable models using the
sequential probability ratio test which is not possible in the
other cases because of the lack of the analytical formulas of
stable densities; then, we apply the theoremgiving the average
sample number function.

Can one give a bound of the average sample number
function of stable distributions in our case, and in other cases?

Can one say that this amount of data is su�cient to make
the decision that this population follows this stable law with
this alpha parameter or the other laws with the second alpha
parameter?

One can �nd many applications of the Pareto stable dis-
tributions inmany �elds when the data are very large, such as
the �owof pro�ts or revenues in public andprivate companies
with huge capital, such as banks, insurance companies, and oil
companies. Actuaries give speculation of instant transactions
reliability and test hypotheses and advice to guide managers;
however, it would be prudent in their decisions in cases where
the data are incomplete in the sense that themean of the num-
ber of data required to take decision is not achieved. As in the
likelihood, we use the log data, which simpli�es the calculus.
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