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Artin’s conjecture on primitive root was proved by Hooley [1] under
the generalized Riemann hypothesis for certain family of Dedekind Zeta
functions. Its generalization to arbitrary number fields was also obtained
by Weinberger [2] and Lenstra [38]. In another direction, Goldfeld [4]
obtained a “large sieve type” result for the rational case without Riemann
hypothesis. In this paper we shall show that his method can be applied
to obtain the similar result for the case treated in [2], [3].

Let K be an algebraic number field of degree n, and ¢ be a fixed
integral divisor which contains all the infinite primes of K. For A>0
we define a set of non-zero integers of K by

B'(A)={a; |a¥|= A, (v=1, ---, n)},

where a denotes a conjugate element of «. We write a~g for integers
a, 8@ of K if both a and B generate the same principal ideal. We denote
by B(A) a fixed collection of the representatives taken from each equi-
valence class of B'(A)/~. Let h be a ray class modulo g, and define

( 1 ) Na,q,h(x):Na(m) v
=card {p; Np=<z, peh, « is a primitive root modulo .},

and

g(K)=sup >, l/=

1Sz<oco Nag=z

where a denotes an integral ideal of K. We denote

o=
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In the following p always denotes a rational prime, and p, p,, P, prime
ideals of K. We denote by K, the ray class field modulo q over K, and
by Q(,) the kth cyclotomic field. Then our result is:

Theorem. Let 1<A*<z. Then for each D>1

(3) N(@)=C(K, g, b) Li @)+0(-—2% )

log? x

for all @€ B(A) with at most
(4) 0L A0 (g(K)(5 log -+ 1))10s =/ log 4Dz

exceptions, where ¢, and the constant represented by O-symbol are posi-
tive and depend at most on K, q, » and D. And

1 F@)-[QC)NK,: Q]
5 C(K h)= 1— P2 q ,
(5) K 0, B [Kq;K]g( p(p—1) )

where F( ) is defined by

1 if there exists an ideal b of K such
(6) F(k)= that Nb=1(mod k), beh ,

0 otherwise .

We note that B(A) has at least c¢,A" elements as will be proved in
Lemma 1, so that (3) is satisfied actually for “almost all” a € B(A).
Further we note that, by putting K=qQ, d=(p=) our result coincides with
Goldfeld’s one since g(K)=1, K,=Q, and C(K, q, h)=TI, A—1/p(p—1)))
in this case.

In the followings ¢, ¢, --- are positive constants depending only on
K, O-symbol and € may contain constants depending on K, ¢, h and D.

§1. Lemmas.

LEMMA 1. There exist positive constants ¢, €3, and c, depending only
on K such that

(7) c;A"<|B(4)|=c,A"
Jor all A=c,.
PROOF. Note first that
| B(A)| émiél“ 1=cA".
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Let 7, 7, be the numbers of the real or the imaginary infinite

primes of K respectively. Let {e, ---, €,,,1} be a system of the funda-
mental units of K. We denote for ¢ € K

log |@¥] , =1, ---, 7

l<"’a={
2log ||, i=r,+1, -, 7,
where the indices ¢ are chosen so that {1, .---, 7}, {r+1, ---, r,+7}

corresponds to the complete set of real or imaginary primes of K respec-
tively. Set

r

¢, =€exXp (’,‘i‘ 25 2. |1 ) ,

=1 j=1

<

-

©
Il

where r=7r,+7,.
Let a be an integer of K satisfying |Na|=(c;'4)". Put

v=1%a, =1 ---, 7,

r—1
log A—2) [ =1, ---, 7,
Y= —
2log A3 |l i=r+1, -, 7,
=

and
sl‘“s, 1=1, , T 7=1, , T
U ;=10 =1, ,T—1, 5=r
(1 1=7r; j=1r

Since the matrix U={u,;} is regular, there exist real numbers z,, ---, 2,
satisfying
lﬂzl Y— ¥
-l =l .

| :
L 2y Y,— xr-‘
By putting n;=[z;] (the integer part) we have
r—1 r—1 r—1
Yi—®= 2 Wiji = X Uy — 3, Uy
j=1 j=1 J=1

for 1=1, ---, »—1. This inequality is also valid for ¢=7, since

r—1
Y,— %= z‘i urjzj+zr
i=
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and

Thus we have

r—1 r—1

xt""gl u¢5n5§y¢+j§1 %44
for =1, ---, r, which yields a-&}'---¢ € B(4). Hence we have

[B(A)lz 3 1zcA
Nas(eylan
« principal

if A=e,.

Let k be a positive integer and set f=kq. We denote by I, the
group of all the fractional ideals of K having no common divisor to f
and set

(8) H;={(a) € I;; N(@)=1(mod k), a=1(mod q)} ,
where () denotes the principal ideal of K generated by «a.

LEMMA 2.

9 . H]=[K,: K]-—_2&)
( ) [If Hf] [ q ] [Q(Ck)an: Q] ’

where p(k) is Euler function. If k is square free, we have

1 . :K: p—l *
(10) Wy HA=1K: KN 1L oy ke al

PROOF. (10) is a simple consequence of (9) since Q(,)NQ(,)=Q for
different primes p and p’. According to class field theory [I;: H,]=
[K,(C: K]. Since K (&,)=K,-Q(¢,) we have

[Kq(Ck): K] = [Kq(Ck): Kq] ¢ [Kq: K]

— . . . — [QE): Q1 JK: K
[QG0): Q) N K- [Ky: K=ol e 8l [k K]

= K:K—————¢<k) ,
e K K q]

which yields Lemma 2.
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Set
w(x; k)= >, 1.

Npsz,peh
Np=1{mod k)

The following lemma is an easy consequence of the theorem of
Goldstein [6].

LEMMA 3. For arbitrary D=1 we have

(x; k)=r1%<Li (x)+O(R—g%3m_:—v)) ,

of k=Zlog? x.

Next we quote a large sieve inequality of Huxley ([7]; Theorem 4)
in a slightly modified form which is appropriate for our purpose. Let
1 be a positive integer and set

B(A)*={a;- - -a; a,€ B(A) (i=1, ---, 1)} .

LEMMA 4. Let a(a) be a complex valued function defined on B(A)*,
then for x=0
23 a(@X(a)f
Nasz ymoda aeB(A)#

Se (A4 x“)aw%w la(@)? ,

where the sum X\ moa. 18 taken over all the primitive characters modulo
a.

Let

Similarly to the rational case (ef. Hua [8]), we get the following
estimate.

LEMMA 5. For y=0 and nonnegative integer 1,
2 Tu(@)sy-g(K)(log y+ 1) .
asy

LEMMA 6. F'(k) is a multiplicative function.

PrROOF. Let k£ and %' are relatively prime. If F(kk')=1, clearly
F(k)=1 and F(k')=1 by the definition. Suppose F(k)=F(k')=1, then
there exist integral ideals b, " of K such that
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(11) Nb=1(mod k) , beh; Nb' =1(mod %) , beh.

let ¢ be an integral ideal in A~*. Then there exist integers a, a’ of K
such that

(12) be=(a) , a=1(mod q) ; be=(a') , a’'=1(mod q) .

Since a=a'(mod q) and (k, ¥’)=1, there exists an integer 8 of K satisfying
B=oa(mod qk) , B=a'(mod gk') .

Now set b*=(g8)c?, then clearly b*c h. Furthermore we have

(18) NB=Na(mod k) , NB=Na'(mod ') .

But N(a)=Na and N(B)=Ng since both a and B are totally real.
Therefore we have Nb*=1(mod kk') from (11), (12), and (13), which proves
Lemma 6.

§2. Proof of Theorem.

Let a be an integer of K. For a prime ideal pfa we denote by e.(p)
the least positive integer m satisfying a™=1(modp), and put f.(p)=
(Np—1)/e.(p). Then we have

No(2)= 3 (k) Pula, ),

where

Pz, k)= >, 1,

Nypsz,peh
kIS q(p)
and (k) is the Mobius function.
We show first
(14) 3, P&, B)=0("log 7),
>z3/4

for o€ B(A). Since
I »l 10 (a"—1)

k>z3/4 Npsz msx
kifqlp)

and Np=2, we have
(15) (2, Pox, k) log2< 3, log |N(a™—1)| .
k> x8/4 m<xl/4

But by A"<Zx,
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(16) log |N(a"—1)|=3, log o= 1|
é?.‘.; log (1+|a™|™)
<cymlogx .
Therefore we obtain (14) from (15) and (16). We have thus proved
a7 N, (x)= ,;‘,3/4 p(k)P,(x, k)+O(x* log x) .
Let X,, be a character modulo p of order k. Since

k k if o is a kth power residue modulo p,
SV K ()=

v=1 0 otherwise,
we obtain
k

(18) Pir, )= 3 =3 %@

Np<z,peh k y=1

Np=1(mod k)

= {n(w; k)+Sula, k)+Ollog |Na)} ,

where

k—

Sdw =3 Z %@ .

Nps=z,peh y=
Np=1(mod k)

Thus we have from (17) and (18) that
N@=3, MBreiy+ 3 LES @ k)
ksw3d isz3t ko
+O(x"* log x) .

We denote the first sum by 3, and the second by >,,. It follows from
Lemma 3 that

- pk)-Fk) 1. _x 1
(19) Zl—ksgg.pw I H ] Li (oc)+0< Tog™" 7 ks%,,p,, k)
!i(_@_-yr(w; k)

logDs<ksa34¢ [

—Li (k) F'(k) @
—Ll(x)k§§épz k[If: Hf] + O< ].Og Dy )

using
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w(x; k) K > 1L

X
msz,m=1(modk) k
for k>log”x. Furthermore, since

k

[1;: H]>p(k)= cor—r—n
log log k

we have for any ¢>0

o pE)F() _ p(k) (k) s
kz=1 k[I,: H;) kséﬂz k[1,: H,] + O< (logPx)!—* )

Combinning this with (19) we obtain,

S =Li@)3 M’Q_+O< © )

k=1 [[I,: H] log? x
=C(K, ¢, h)Li(x)+ o( lo;” - )

using Lemma 2 and Lemma 6.

To complete the proof it is sufficient to show
=0 —% _
22-0( log”m>

except some a € B(A) indicated in (4). The number of a’s such that
>.=x/log” « does not exceed

(20) > 1=lg’r s g,
acB(4) X aeB(A)
Sg(z)2xilog Dz
where
(21) S.@)= % LIS, k)l -
Pre

It follows from Cauchy-Schwarz’s inequality that

>, 18:@, BISIBAM( S, 1S, BIF) .

aeB(A) B(A4)
Since X3! ,-X,*2, is principal only if p,=p,, we get using Lemma 1,

(22) 1Sa(2, k)| < A™(xk)"

ae B(A)

+A 3 > X3 X,
Npyszyp1€h  Npgsz,p9€h % a€B(A)
Nypy=1(mod :);\;pzsl(mod k)

1¥92
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where the sum 3, is taken over all the primitive characters modulo
p.p, of order k. Let

T=| >, 22 X X(a)|

Nyp;sz,p1€h PaSZ,p % a€B(4)
Nypj=1(mod k) sz l(mod )
p1FPo

Applying Holder’s inequality we have for each positive integer g -

T@ (S, WD HIPIRICIORE
Ny sz,pyeh NpgsSz,pech a€B(A4)
Npl 1(modpk;‘1’\;p2.-1(mod k)
1

Let a.(@) denote the number of ways a can be written as a product of
¢ elements of B(A). Then we have

(3 Uay=_ 3 ad@¥@).

ae B(4)

By Lemma 4 we obtain

T1/2<<x1—1/2;1((An;1+w4) Z ) a/y(a)2)1/4F .
aeB(4A)

Note that a.(@)=<7.((a)) and N({(a))< A" for ae B(A)*. Therefore we
obtain

(28) T o=/ {( A+ o) A™((log A+ 1)g(K))“ ..

Now we take p¢ as an integer satisfying

4logx 4log x

24 1.

24) nlogA =< nlogA+

It follows from (22), (23), and (24) that

> 1Su(w, k)|
aeB(A)
& Ay + A% 5(g(K)(5 log o+1)—2EL 41 .
nlog A

Combining this with (20) and (21), we see that

> 1ACI(g(K)(5 log i+ 1))iose/miostinis

aeB(A)
To>z/logDa

which completes the proof of Theorem.
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