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A b s t r a c t .  Suppose a subset of populations is selected from the given k 
gamma G(O~,p) (i = 1, 2 , . . . ,  k) populations, using Gupta's rule (1963, Ann. 
Inst. Statist. Math., 14, 199-216). The problem of estimating the average 
worth of the selected subset is first considered. The natural estimator is shown 
to be positively biased and the UMVUE is obtained using Robbins' UV method 
of estimation (1988, Statistical Decision Theory and Related Topics IV, Vol. 1 
(eds. S. S. Gupta and J. O. Berger), 265-270, Springer, New York). A class of 
estimators that dominate the natural estimator for an arbitrary k is derived. 
Similar results are observed for the simultaneous estimation of the selected 
subset. 
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i .  Introduction 

Let ~rl, ~r2,. . . ,  7rk denote k independent  G(Oi,p) populat ions with densities 

~-p 
(1.1) f i ( x  [Oi,p) = ~ e - X / e ' x  p - l ,  i = 1,2, . . .  ,k, 

l ~p) 

where the 0i's are the unknown scale parameters,  and p is the common known 
shape parameter.  Let 011] _> 0[2] _> "'" _> 0[k] represent the ordered parameters  
(use arbi t rary ordering if some of the 0i's are equal). The populat ion having the 
largest scale parameter  0ll ] is called the best  population.  

Suppose Yi (i -- 1, 2 , . . . ,  k) denote the mean of a random sample of (equal) size 
n from the i-th population.  To select a nonempty  subset  of the  given populations,  
containing the best  population,  Gup ta  (1963) proposed the following rule R: 

Select r i  iff 

(1.2) r~ > cy(,), 

551 



552 P. VELLAISAMY 

where 0 < c < 1, and YO) is the largest of the Y/'s. A selection which contains 
the best population is called the correct selection. The constant c is the largest 
number satisfying the basic probability requirement 

(1.3) In~n P0_(CS ] R ) =  P*, 

where P* is the preassigned probability, "CS" stands for the correct selection, and 
_0 = (01,02, . . . ,  Ok). This value of c is given by (with p' = np) 

/0 k-1  Z (1.4) G,, gp,(z)dz = P*, 

where here (and henceforth) Gp(x) and 9p(X) denote the distribution function and 
the density of a gamma G(1,p) variate. 

Since Y / ~  G(Oi/n, np), we consider without loss of generality the case n = 1. 
Let (X1, X 2 , . . . ,  Xk) denote a random sample, where Xi is from ~ri. Also, X(1) _> 
X(2) _> ""  _> X(k) denote the ordered values of the Xi's. Throughout  the paper, 
X___ and _0 represent, unless stated otherwise, (Xa, X 2 , . . . ,  Xk) and (01,02, . . . ,  Ok) 
respectively. 

Suppose a subset S (of random size) is selected using the aforementioned 
Gupta 's  rule. Then the two problems of interest of the selected subset are the 
estimation of the average worth W and the simultaneous estimation of Q, defined 
by 

W=Pr~_l[(j~_lO(j)/r)l(X(r+l)_ _ < c X ( 1 ) < - - X ( r ) )  (1.5) 

and 

(1.6) 
k 

Q =pEO(r)f(X(r+l) <~ cX(1 ) _~ X(r)), 
r = l  

where 0(~) is the parameter associated with X(i), 0 (r) = (0(1),0(2),..., 0(r)) and I 
is defined in (2.1). Observe that  both W and Q are random, and 

O(i) =Oi if X i = X(i), j = l , 2 , . . . , k .  

We mention here that  when c -- 1, the rule R selects the population corresponding 
to X(1) and W in this case is the mean of the selected population. This prob- 
lem has t of late, been receiving a lot of attention. For some recent papers, see 
Cohen and Sackrowitz (1982, 1989), Sackrowitz and Samuel-Cahn (1984, 1987) 
and Venter (1988). 

Estimation after subset selection has been initiated and studied by 
Jeyarathnam and Panchapakesan (1984, 1986) for normal and exponential popula- 
tions. In this paper, the estimation of the selected subset from gamma populations 
is considered. In Section 2, the natural estimator is shown to be positively biased 
and the uniformly minimum variance unbiased estimator (UMVUE) is derived 
for an arbitrary k. Also, a class of estimators that  dominate the natural estima- 
tor, for the squared error loss, is obtained. Similar results are observed for the 
simultaneous estimation of Q in Section 3. 
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2. Estimation of average worth W 

2.1 Natural estimator 
Let I (A)  denote the indicator function of an event A, tha t  is, 

1 i f X E A  
(2.1) I ( A ) =  0 elsewhere. 

(This notat ion will be followed throughout  the paper.) 
A natural  est imator of W is 

(2.2) 
k r 

T:r~l[(j~_lX(j)/r)] I(x(r+l) <cz(1) 

When,  for example, k = 2, W and T reduce to 

p--1 W 

and 

X1 1 
01 if ~ > -c 

01 n t- 02 Xl  1 
if c <  < -  

2 - X 2  - c 

X1 
02 if O <  ~22 < c  

X1 
X~ if ~ > c 

T = X l  + X2 if c "( X l  _( 1 
2 - X2 c 

X1 
X2 if 0 < ~-~2 < c. 

The bias BO__(T) of T as an estimator of W is defined by 

Bo(T) : Eo_(T - W) .  

We now have the following lemma. 

LEMMA 2.1. The bias of the natural estimator T,  when k = 2, is 

(2.3) .o(v)-  (ol + 02) { (co)p (c/o)p } 
- 2B(p,p)  (1 + cO) 2p + (1 + c/O) 2p ' 

where 0 = 01/02,  and B(. ,  .) denotes the usual beta function. 

PROOF. Write 

(Xl  (x11) 
D(01,02) = Eo(X1 - p 0 1 ) I  > + xEo(X1  - p 0 1 ) I  c < - -  < . 

- - X 2  - 
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Let Z l  and Z2 be i.i.d. G(1,p) variables, and Z = Z1/Z2. Then 

(2.4) D(01,82) 
= O I { E ( Z I - p ) I ( Z > ~ ) + ~ E ( Z I - p ) I ( o < - Z < - - ~ )  } 

z ~-~{E(P- gx)I(g ~ -~) -{-E(P- gl)l(g ~ ~)} • 

It is easy to note that byinterchanging the role of (X1,01) and (X2,02),we obtain 
D(O2,01) so that 

(2.s) Bo_(T) = D(Ol, 02) + D(02, 01). 

We now proceed to evaluate D(Ol, 02). For t > 0, 

- = ( p -  Zl)gp(Zl)dZl gp(z2)dz2 
J 0  k J0  

= p {ap(tz ) - ap+ (tz2)}gdz2)az2. 

Using the fact 

for x > 0, we obtain 

Gp(x) -Gp+l(x) = g p + l ( x )  

(2.6) 
1 t p 

E(p - Z1)I(Z < t) = B,p,p(( ) 
(1 t )2p"  + 

The lemma now follows from (2.4)-(2.6). 

It is now clear from (2.3) that the bias of the natural estimator, Bo_(T) > 0 
for all 8_ -- (01, 02). In fact, the bias becomes infinite as, for example, 02 tends to 
infinity along the line 02 = b01, b > 0. 

Remark 2.1. The above lemma for the case p = n, a positive integer, is 
proved in Jeyarathnam and Panchapakesan (1986). Their proof is rather involved, 
and uses much notation and a large number of results. In contrast, the proof of 
Lemma 2.1 given above, which applies to any p > 0, is simple and straightforward. 

2.2 The UMVUE of W 
We now derive the UMVUE of W using the UV method of estimation (Robbins 

(1988)). 
Let X be a G(a,p) variate with p known. Then for any given u(x) for which 

v(x) = x 1-p u(t)tV-ldt 
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exists, we have 
E~(v(X))  = aE~(u(X) )  for all a .  

The following lemma is a straightforward generalization of the above fact to k 
independent  gamma variables. 

LEMMA 2.2. Suppose X 1 , X 2 , . . . , X k  are k independent random variables 
with densities defined in (1.1). Let u(x_) be any real-valued function defined on 
R k such that 

(i) Eo_Iu(X)I < cc 
(ii) the indefinite integral 

~0 xi hi(x__) ---- U(Xl,--- ,  Xi--1, t, X i+l , . . . ,  Xk)tP-ldt 

= 

exists for all xi E R 1. Then 

(2.7) 

satisfies the condition 

( 2 . 8 )  Eo_(v(X)) = O,Eo_(u(X)) for all 0_. 

The above lemma, which will be exploited throughout  the paper,  is very useful 
in obtaining unbiased est imators  of certain functions of X_ and _& 

We first find an unbiased est imator for the random quant i ty  pO(1)I(X(r+l) < 
cX(1 ) <_ X(r)) , 1 < r < k. Let 

ql,r(_O) = pEo_[O(1)I(X(~+I)< c X ( 1 ) _ ~ / ( r ) ) ] ,  

where 1 < r < k. Observe that  

k 

ql,r(_~) ~-- ~-~pOiPo_(X(r)i < cXi  ~_ X(r_l ) i ;  X i  > X(1)i) 
i= l  

k 

= ( s a y ) ,  
i : l  

where c~ _= X(o)i > X(1)i _> X(2)i _> "'" _> X(k-1)i > X(k)i -- 0 denote the order 
statistics of X1, . . . , X i_  l , Xi+ l , . . . , X k .  

Define now 

U l , r : l ( X )  = { P  
0 

Let 

and 

if X E  A = { X  " X(r)l  < cX1 < X ( r - I ) I ; X I  > X(1)1} 
otherwise. 

zl<x  mio{Xl !X.1.} 
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Then the corresponding Vl,r:l(X___) given by (2.7) is 

) tV-'dt S(ll(X) > 12(X___)) Vl,r : l  (X____) ---- pX 1-p \J 12 (X___) 

=x l -p[{min (X l ,~X(r - l ) l ) }P-{max(X(1 ) l ,~X(r ) l ) }  p] 

X [ (rain (X1, ~X( r -1 ) l )>  max (X(1)1, ! X ( r ) l ) )  • 

An application of Lemma 2.2 shows that Vl,~:l(X) is an unbiased estimator of 
01Eo(ul,,:l(~___)) = q1,,:1(_0), for all _0. 

For 2 < j < k, let Vl,r: j ( x )  be defined by 

Vl,r:j(~____) = Vl,r:l(Xj, X2,.. ., Xj-1, X1, Xj+l,.. . ,  Xk), 

that is, Vl,r:/(X__) is obtained from Vlx:l(X) by interchanging X1 and Xj. Then 
it is easy to note that 

for all 0. 

k 

(2.9)  = 
j = l  

=X~I)P [{min(X( l ) , !X(r) )}P-{max(X(2) ,~X(r+l) )}  p] 

xI(min(X(1) ,~X(r))  >max(X(2),~X(r+l)))" 

Consider next the unbiased estimation of pO(j)I(X(d+l ) < cX(1) ~_ X(j)), where 
2 <_ j <_ k. Let, as before, 

qj ,5 :~(0)  = pOiPo(X¢¢)l < cx(1)l < x~ <_ x(j_l)~). 

Then an unbiased estimator of qj,j:l(_0) can be seen to be 

hj,j:l(X___ ) yl-p[gp = ~*1 [~'1 - (cX(1)I)P]I(X(j)I ~ c X ( 1 ) l  < X l  ~ X ( j - 1 )  1) 

wl-p[wp 
-~-~'1 [ ~ ( j - 1 ) l  -- (cX(1)I)P]I(X(J) 1 ~ cX(1)  1 ~ X ( j - 1 )  1 ~ X l ) "  

Following the arguments just preceding (2.9) and rearranging the terms, we get 

vl-pfYP - (cX(2))P]I(X(j+l) < cX(2) < X(j)) (2.10) hj,j(X)~-~'(1) [''(j) 

-t- (r,Z...~ X~) p [X~) -  (cX(1))P]I(X(j+I)< cX(1)_< X(j)) 
ks---2 

E0_(Vx,r:j ( X ) )  = ql,r:j (_0) 

Therefore, an unbiased estimator of ql,r(_0) is 
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as an unbiased estimator of 

qj,j(O_) = Eo_[pO(j)I(X(j+I) < cX(1) <_ X(j))]. 

Similarly, it can be shown, after some lengthy calculations, that  

(2.11) hj , r (X)  -----  y i - p f y p  p "'(1) t"(j) -- X(j+l)]I(X(r+l) < cX(2) ~ X(r)) 
J 

(s~= 2 l--p) p _ Xf4.4_l , ]JT(X(r+l)  < < -k X(s ) [X(j) (j , cX(1 ) X(r)) 

is an unbiased estimator of 

q;,~(o) = E o ~ o o ) ~ ( X u + l  ) < c X ( , )  < xu))], 
where j + 1 < r < k, and 2 < j < k. 

Since (X1, X 2 , . . . ,  Xk) is complete sufficient, the following theorem is now 
established. 

THEOREM 2.1. The UMVUE of W is given by 
k r 

where hj,~(X), 1 <_ j < r < k, are given in (2.9)-(2.11). 

As the form of the UMVUE for a general k is rather complicated, we give 
below the explicit expressions of H~(X) for some special cases of interest. 

After some simple calculations, it can be shown that  

X ( 2 )  
H21(X_) if 0 < ~ < c 

H~(X) = 
H22(X) if c < X(2) < 1 

- -  - X ( 1 )  

and tedious but  straightforward calculations lead to 

{ H21(X) + H31(X__) if X(2) < cX(1) 

H3(X__) = H22(X) + Hal(X__) if X(3) < cX(1) <_ X(2) 

H32(X__) if 0 < cX(1) <_ X(3 ), 
where 

H21(X)=X(,) T x ( , ) }  + ~T~I~} J' 

- -  2 2 x('l \ ~ j  + x(~) k ~ J  J ' 

H~I(X) = ~ Lk x(,) } - \~--k-~(~),] j/(x(~) > ~x(~)) and 

Ha~(X) = X(1) + X(2) + X(a) 
3 

cP [X(1) (X(2) "~P (X(1) ~P (X(1) ~'1 
3 \ ~ 2  + x(~) \ Z ~ ]  + x(~) \ 2 - ~ ]  j" 
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Remark 2.2. When p = n, a positive integer, H2(X__) coincides with the 
UMVUE of the subset selected based on a random sample of size n from two 
exponential populations, derived by Vellaisamy and Sharma (1990). The ad hoc 
approach followed there is difficult to apply and, in fact, does not extend to an 
arbitrary k. An advantage of the method used in this paper is that it yields the 
UMVUE of W for any k although its explicit form is rather complicated even for 
moderately large values of k. 

2.3 Inadmissibility of the natural estimator 
We now establish the inadmissibility of the natural estimator of W for squared 

error loss defined by 
L(T, W) = (T - W) 2. 

In fact, we find a class of estimators that are better than the natural estimator for 
any k. 

Consider the class of estimators of the form 

(2.13) 

aXo)  
r 

To= Z(X(j) /r  ) 
j = l  

if 0 < X(2) < cX(1) 

if X(r+l ) < cX(1 ) _~ X(r), r -- 2 , . . . , k ,  

where 0 < a < 1 and X(k+l) = O. Observe that  the natural estimator T corre- 
sponds to the choice a = 1. 

THEOREM 2.2. Assume Ta is an estimator of the form (2,13). Then for 
(p - 1)/(p + 1) <_ a < 1, Ta dominates T as an estimator of W with respect to 
squared error loss. 

PROOF. Let A(_0) denote the risk difference 

A(O_) =- R(Ta, 0_) - R(T, 0_). 

It is easy to see that 

(2.14) A(_0) = Eo{ (aX(1 ) -pO(1 ) )2 - (X( t ) -pO(1 ) )2} I (X (a )  < c) 
- \ X ( 1 )  

< : (a  -- 1)Eo_{(a -{- 1)Xgl  ) - 2pO(1)X(1)}Z \ X ( 1  ) } 

Let 
f pXi if c X  i > X(1)i  u / ( X )  

otherwise, 

where X(1)i denotes, as before, the maximum of X1, . . . .  Xi-1, X i + l , . . . ,  Xk. Ap- 
plying Lemma 2.2, we have 

v i ( X ) - p + l  \ c~i  / j \ 
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as the unbiased estimator of pOiEo_[XiI(cXi > XO)i) ]. Therefore, an unbiased 
estimator of 

()((2) < c) = p ~ OiEo_[XiI(cX{ > X(:)/)] POo)X(:)I \X(1) i=1 

can be seen to be 

pP+ 1x 1)[1 
Hence, the unbiased estimator 6(X___) of A(8_) is 

(2.15) 
( 

5(X__) ( a -  1)X~l)/(a  + i) 

× I(cX(1) > X(2)). 

2p [1 ( X(2, ~p+:] 
(v+ 1) - ]} 

It is immediate that ,  when 

(a + 1 ) >  2p _ sup 2p [ ( ]-'] 
- p + l  ~ c n ~ - ~  1 -  \cX~o)] ] I(cxO) > X(u))' 

6(X__) <_ 0 and 6(X___) < 0 with probability Po(cX(:) > X(2)) > 0 for all 0. 
Hence, when (p - 1)/(p + 1) _< a < 1, 

Eo(6(X)) = A(_O) < 0 for all _8. 

This completes the proof of the theorem. 

Remark 2.3. Let a0 = p/(p+ 1). A consequence of the above theorem is that  
T~o improves upon T for squared error loss. A similar result has been established 
by Vellaisamy and Sharma (1990) for the selected subset from two exponential 
populations. The technique used there is that  of Brewster and Zidek (1974), 
which is difficult to apply for an arbitrary k. 

3. Simultaneous estimation of the selected subset 

Another problem of interest is the simultaneous estimation of Q, the param- 
eters associated with the populations that  are in the selected subset. That  is, we 
consider the estimation of 

(3.1) Q = pO (') if X(~+l) < cX(:) <_ X(~), 

where O (r) = (0(1) . . . . .  0(r)), 0(i) is the parameter associated with X(i) and r = 
1 , 2 , . . . , k .  
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This problem has not received much attention and to the knowledge of the 
author, there is hardly any literature on this topic. The problem is of importance 
especially when one is more interested, as in fact is often the case, in estimating 
the individual performances of the populations contained in the selected subset. 

A natural estimator of Q is 

U -- X (~) if X( r+ l  ) < cX(1 ) ~ X(r ) 

with X (r) = (X(1) , . . . ,  X(~)) and r = 1, 2 , . . . ,  k. 
Alternatively, we can write 

and 

Define now 

k 
Q = P Z  o(r)I(X(r+l) "~ cX(1) ~ X(r)) 

k 

U = ~-~X(~)I(X(~+I) < cXo) <_ X(~)). 

C (~) (X__) = (h l ,~ (X ) , . . . ,  h~,~(X)) 

and 

q(r) (_0) = (qi,r(_0),..., qr,r(O_)). 

The following theorem for the estimation of Q is an analogue of Theorem 2.1. 

THEOREM 3.1. For the estimation of Q, the estimator 

k 
Gk(X) = G(r)(X), 

r~l 

is unbiased and is more concentrated about qk(_0) = Erk~l  q(~)(0) than any other 
unbiased estimator. 

The proof of the above theorem is immediate by noting that  G (~) (X___), 1 _< 
r < k, is unbiased and is more concentrated about q(r)(_0) than any other unbiased 
estimator of q(~)(_0) (cf. Lehmann ((1983), p. 291)). 

Consider next the estimation of Q with squared error loss, i.e., for example, 
the loss involved in estimating Q by U is 

k ] 
L(U, Q) = ~ (X(/) -p0( i ) )  2 I(X(r+x) < cX(x) _< X(r)). 

r=l  Lj=I 

Considering, as in Subsection 2.3, the estimator 

k 
u~ = aX(1)I(X(2) < cX(1)) + ~-~ X(r)I(X(r+l) < cX(1) <_ X(r)), 
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0 < a < 1, the difference A*(_0) of the risk of Ua and that  of U is 

A*(o_) = R(Uo,  O_) - R(U,O)  

= EO_{(aX(1) -pO(1)) 2 - (X(1) -pO(1))2}I(X(2) < cXo)), 

which is the same as A(_0) defined in (2.14). Thus, we have the following theorem 
for simultaneous estimation after selection. 

THEOREM 3.2. The natural estimator U of Q is inadmissible and Ua, for 
(p - 1)/(p + 1) ~_ a < 1, improves upon U for squared error loss. 

It follows that, as a special case, U~ o dominates U. 

Remark 3.1. The above theorem asserts that when X(2) < cX(1), (p/(p + 
1))X(1) dominates XO) as an estimator of 8(1). However, it can be checked, by the 
same procedure adopted above, that the same thing is not true when, for example, 
X(3) < cX(1) _< X(2). Similar remarks apply for the estimation of 8(2) and etc. 

4. Concluding remarks 

We have seen in particular that Ta0 and Ua 0 respectively dominate the natural 
estimators T and U (of W and Q) for squared error loss. Suppose instead the loss 
function is scale invariant, i .e,  for example, 

Then the method followed in this paper does not go through. However, we believe 
that the above result is still true for scale invariant loss also. 

It is well-known that in the usual estimation problem of p01 with k = 1, the 
best scale invariant estimator pX1/(p + 1) is admissible when the loss is squared 
error. But, for the simultaneous estimation of_0 = (01,. . . ,  Ok), where no selection 
is involved, the estimator ~(X) = (~ I (X) , . . .  ,~k(X)) with ~i(X___) = p X j ( p  + 1) 
is inadmissible for k _> 2. For an improved estimator, see for example, Berger 
((1980), p. 560). It would be interesting in this context, and moreover in general, 
to investigate the admissibility of the estimators Tao and Uao. Our feeling is that 
these estimators could further be improved. 
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