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Abstract 

A mathematical description of a flowing fluid with entrained particulate solids is presented 

within the context of Mixture Theory. The mixture is considered to consist of a linearly viscous 

fluid and a granular solid. The balance of mass and balance of linear momentum equations for 

each component are averaged over the cross section of the flow to obtain ordinary differential 

equations describing developing flow between parallel plates. The resulting coupled equations 

describe the variation of the average velocities and volume fraction in the direction of flow, 

and represent a simplified approximate set of equations which are easier to use in engineering 

applications. 

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi- 
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, of 
process disclosed, or represents that its use would not infringe privately owned rights. Refer- 
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- 
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 
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1. Introduction 

Multicomponent flows have become the subject of considerable attention because of their impor- 

tance in many industrial applications. Flowing mixtures consisting of solid particles entrained in 

a fluid are relevant to a variety of applications such as fluidized beds and pneumatic transport of 

solid particles. The importance of these complex flows is discussed, for example, by So0 11989, 

19901 and Marcus et al. I19901 who provide up-to-date accounts of multiphase fluid dynamics 

and pneumatic conveying of solids. Many of the articles published concerning fluid-solid flows 
typically employ one of two continuum theories developed to describe such situations; Averaging 

or Mixture Theory ( theory of interacting continua ). 
In the averaging approach (cf. Anderson and Jackson [1967], Drew and Segel [1971], and 

Drew [1983]) point-wise equations of motion, valid for a single fluid or a single particle, are 

modified to account for the presence of the other components and the interactions between 

components. These equations are then averaged over time, some suitable volume which is large 

compared with a characteristic dimension (for example, particle spacing or the diameter of 

solid particles) but small compared to the dimensions of the whole system, or an ensemble. 

Terms which appear due to the process of averaging, which are not present in the equation 

being averaged, are usually interpreted as some form of interaction between the constituents. 

Constitutive relations to represent these interactive forces, as well as the stress tensors for each 
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constituent, are required to make the theory complete. A comparison of recent formulations of 

multiphase flows is provided in two review articles by So0 [1990b71991]. 

Anderson and Jackson [1967], in one of the early applications of this method, obtain a set 

of equations describing the fluid mechanical aspects of fluidized beds. They propose simple 

constitutive relations in order to close the system of equations. They further assume that the 

form of the stress tensor for the granular solid constituent is analogous to that of a Newtonian 

fluid, with the coefficients of viscosity depending on.the local mean voidage. Drew and Segel 

[1971a,b] use a different averaging technique to obtain equations of motion for a broad class 

of two-component flows. They consider the application of these equations to the specific case 

of flow in fluidized beds. The constitutive equations they use for the stress relations are very 

similar to those used by Anderson and Jackson [1967]. 

The second method of modeling multi-component systems is mixture theory. This theory, 

which traces its origins to the work of Fick [1855], was first presented within the framework 

of continuum mechanics by Tkuesdell [1957]. It is a means of generalizing the equations and 

principles of the mechanics of a single continuum to include any number of superimposed con- 
tinua. The fundamental assumption of the theory is that at any instant of time, every point 

in space is occupied by one particle from each constituent, in a homogenized sense. The his- 

torical development and details of Mixture Theory are given in the review articles by Atkin 

and Craine [1976], Bedford and Drumheller 119831, Bowen [1976], and several appendices in the 

recent edition of Rationu2 Thermodynamics [Thesdell, 19841. Like Averaging, Mixture Theory 
also requires constitutive relations for the stress tensor of each component of the mixture and 

for momentum exchange between the components. 

We recently proposed a mathematical description for a flowing mixture of solid particulates 

and a fluid within the context of Mixture Theory [Johnson et al., 1990bJ. The mixture is modeled 

as a two-component mixture of a Newtonian fluid and a granular solid, in a manner that the 

equations reduce to those describing a linearly viscous fluid when the solid volume fraction goes 

to zero, and to those describing a flowing granular solid when the fluid volume fraction goes to 

zero. Boundary value problems were solved numerically for steady, fully developed flow of this 

mixture between parallel plates and through a pipe [Johnson et al., 1990b,c]. 

In our formulation of the problem we use a constitutive equation of a Newtonian fluid for 

the fluid consitituent. This could describe either a liquid or a gas. From a practical point of 

view, a dense suspension of solid particles in a fluid shows different characteristics for different 

suspending media. For example, So0 [1987] shows that a steady flow in a dense gas-solid 

suspension is not expected; the flow is often turbulent. So0 [1984] also indicates that “the 

minimum suspension velocity of the same solid particles and the pressure drop are much lower 

in a liquid than in a gas at  similar temperature and at useful working pressures.” Also, gas-solid 

mixtures have become increasingly important in many of the chemical processes and energy 
related technologies such as pneumatic transport, flow of pulverized coal in feeder lines to 

surfaces, and fluidized beds. 

In suspensions of gas-solid flows, particleparticle interaction has also received much attention 

(cf. So0 [1967]). 

Cross-sectional or radial variations of flow properties, such as velocity and density, are very 

difficult to measure in gas-solid flows. In many cases the measurements are restricted to cross- 
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sectionally averaged quantities. A review of measurement techniques for two-phase media is 

given by Hewitt in the book by Hestroni [1982]. The purpose of this report is to apply mixture 

theory to steady developing flow, and by averaging the equations over the cross section of the 

flow derive equations governing the average volume fraction and the average velocities of each 

component. First, we review briefly the basic principles of mixture theory and discuss consti- 

tutive equations for the mixture components and for the interactions between components. We 

then average the balance of mass and balance of linear momentum equations over an appropriate 
control volume. 

2. Theory of a 

2.1 Introduction 

Single Continuous Medium 

The mechanics of a single continuous medium is discussed as an introduction to mixture theory. 

Mixture theory follows conceptually as the superposition of two or more continuous media. The 

discussion here is restricted to purely mechanical systems; thermal effects and chemical reactions 
are ignored. 

2.2 Kinematics and Notation 

Consider a body in an arbitrary fixed reference configuration. Let X denote a typical particle 

in the reference configuration. The motion of a particle of the body is given by the one-to-one, 

invertible mapping: 

where, as noted above X is the position of a particle in the reference configuration, t the time, 

and x the spatial position occupied at  time t by the particle that was at position X in the 

reference configuration. The invertibility of X ensures that a single particle cannot occupy 

two positions at once nor can motion occur such that two discrete particles occupy the same 

postion at the same time. In general, sufficient smoothness is assumed to make any necessary 

mathematical operations correct. The velocity vector corresponding to the motion (1) is: 

x = X(X, t ) ,  (1) 

DX 
Dt ' 

v = -  

where is the material time derivative (i.e. 

quantities associated with the above motion are given by: 

% with X fixed) and the other kinematical 

dV L = -  Dv 
Dt ' ax ' 

a = -  

1 '  1 
D = s ( L  + LT), w = -(L 2 - LT), 

where v denotes velocity, a acceleration, L is the velocity gradient, D the stretching 

W the spin tensor. $ denotes differentiation with respect to t, holding X fixed. 

(3) 

(4) 

tensor, and 
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2.3 Basic Equations 

Since we are interested in a purely mechanical problem, the appropriate balance laws are con- 

servation of mass, balance of linear momentum, and balance of angular momentum. We will 

consider an arbitrary fixed region R in three-dimensional Euclidean space of volume V bounded 

by a surface dR of area a. All equations are postulated at the current time t and all field quan- 

tities are functions of x and t .  Let denote the reference configuration of the body and IRt 

denote the configuration of the body at time t .  Conservation of mass is given in its Lagrangian 
form as: r #- 

p det FdV VPo 00, 1FbPodV = Lo 
where po is the reference density of the material, p is the current density, and F is the deformation 
gradient given by: 

dX 
F=- 

d X '  

If the integrand is sufficiently smooth, we immediately get the local form for the balance of 

mass: 

po = p det F. 

The conservation of mass is given in Eulerian form by: 

where, again, p is the current density of the material, from which we immediately get the local 
Eulerian form for the balance of mass: 

@P - + div (pv) = 0, 
at 

The balance of linear momentum is: 

J pvdV = ipt Tnda + /p, pbdV 
Dt Pt 

vpt c at, 

(9) 

where b is the body force vector, n is the unit normal to the surface, and T is the Cauchy stress 

tensor, which leads to the local form: 

Dv 
Dt 

p- = divT + pb, 

The balance of angular momentum (in the absence of couple stresses) yields the result that 

the Cauchy stress is symmetric: 

T = T ~  
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3. Mixture Theory 

3.1 Introduction 

Materials such as steel, water, or rubber are usually regarded as a single continuum. In many 

applications such as a fluid containing particulate solid, however, it is useful to describe the two 

components as separate, interacting continua. A general mixture theory, or theory of interacting 

continua, can be used to derive balance equations for any number of continuous bodies occupying 

the same space. The details and historical development of mixture theory are found in review 

articles by Atkin and Craine[4], Bedford and Drumheller[5], Bowen[G], and several appendices 

in the recent edition of Rational Thermodynamics[40]. 

3.2 Kinematics and Notation 

The underlying assumption of mixture theory is that the mixture may be regarded as n super- 

imposed continua, each having its own motion. At any time, t ,  each position in the mixture is 

occupied by one particle from each constituent of the mixture. As in the case of a single con- 

tinuum, each constituent of the mixture is assigned an arbitrary fixed reference configuration. 

The motion of a particle of constituent CY is a one-to-one, invertible mapping denoted by: 

where X, is the position of a particle of the ath body or constituent in its reference configuration, 

t the time, and xa the spatial position occupied at  time t by the particle that was at X, in 

the reference configuration. In general, sufficient smoothness is assumed in order to make any 

needed mathematical operations correct. The velocity vectors corresponding to the motions are: 

denotes differentiation with respect to t ,  holding X, fixed. Note that there is no sum on a. 

The densities of each component of the mixture, measured per unit volume of the mixture, are 
written pa. The mean velocity of the mixture, V, is defined through: 

n 

PV = PaVa, 
a=l 

where p is the mixture density, defined by: 

n 

P = Pa. 
a=l 

Consider the special case of a two component mixture consisting of a Newtonian fluid and a 

granular material. The fluid in the mixture will be represented by SI and the granular solid by 
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S p .  Let XI and X2 denote the positions of particles of SI and 5’2 in the reference configuration. 

The motion of the constituents is represented by the mappings: 

XI = X1(Xl, t ) ,  and x2 = X2(X2, t ) .  (17) 

where the subscripts 1 and 2 refer to the fluid and granular solid, respectively. The kinematical 

quantities associated with these motions are: 

D2X2 
v2 = - 

Dt ’ 
DlXl 

Dt 
v1= -, 

D2v2 
a2 = - 

D t  ’ Dt ’ 
DlVl 

a1 = - 

where v denotes velocity, a acceleration, L is the velocity gradient, D the stretching tensor, and 

W the spin tensor. 

Also, p1 and p2 are the densities of the mixture components in the current configuration 

given by: 

where pf is the density of the pure fluid, ps is the density of the solid grains, and u is the volume 

fraction of the solid component and Q is the volume fraction of the fluid. For a saturated mixture 

q5 = 1 - u. The mixture density, pm is given by: 

P1 = +Pf, P2 = VPS, (23) 

Pm = P 1 +  P2, (24) 

and the mean velocity v of the mixture is defined by: 

3.3 Basic Equations 

Balance equations for the mixture, and its constituents, may again be in either integral form or 
in differential form. Conservation of mass for the fluid and granular material is: 

and: 

6 



where eland e2 are the mass supplies to the first and second constituents, respectively, These 

equations take the local form: 

dPl - + div (plvl)  = cl, at 

and: 
aP2 - + div (p2v2) = c2. 
at 

(29) 

Let TI and T2 denote the partial stress tensors of the fluid SI and the solid S2, respectively. 

Then the balance of linear momentum for the fluid and solid are given by: 

or: 

and: 
D2v2 

p2- = divT2 + p2b2 - fI + c2v2 
Dt 

(32) 

(33) 

where b represents the external body force, and fI represents the mechanical interaction (local 

exchange of momentum) between the components. 

The balance of moment of momentum implies that: 

The partial stresses need not be symmetric, however. 

3.4 Boundary Conditions 

One problem in using mixture theory is specifying the boundary conditions. Boundary condi- 

tions can be prescribed based on the tractions acting on the boundary, known displacements (or 

velocities) on the boundary, or some combination of the two. 

The difficulty in specifying tractions is that one must ultimately determine how much of the 

total traction is supported by each constituent. Rajagopal et al.[25] have addressed this issue 
for a certain class of boundary value problems. The problems considered here belong to the 

second class in which the velocities are specified at the boundaries, for instance the adherence 

boundary condition or a slip condition that is specified on the basis of experiments. 
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4. Constitutive Equations 

We shall assume that the fluid and solid phases are dense enough to be modeled as homogeneous 

continuous media so that we may exploit the theory of interacting continua. Based on our 
knowledge of modeling in the theory of granular materials and a linearly viscous fluid, it would 

be natural to assume all the constitutive functions depend on [cf. Rajagopal et al., 19901: 

and possibly other vectors and tensors. Then, using methods that are now standard in continuum 

mechanics (cf. Shi et al. [1981] and Atkin and Craine [1976]), we can obtain restrictions and 

forms for such constitutive expressions. Here, we discuss an alternative approach, which is to 

postulate the constitutive expressions by simply generalizing the structure of the constitutive 

relations from a single constituent theory. In general, the constitutive expressions for Tf and 

T, depend on the kinematical quantities associated with both the constituents. However, we 

assume that T, and Tf depend only on the kinematical quantities associated with the solid and 

fluid, respectively. This assumption is sometimes called “the principle of phase separation” and 

was first used in mixture theory by Adkins [1963a,b]. 

In the majority of fluid-solid mixtures, the fluid is either a gas or water. Therefore, it is 

appropriate to assume that the fluid behaves as a linearly viscous fluid, whose constitutive 

equation is: 

where p is the fluid pressure, Xf and pf are the viscosities, D1 is the stretching tensor for the 

fluid defined in equation (21), and I is the identity tensor. If the fluid is incompressible, then p 

is one of the unknown quantities in the problem that would have to be calculated. If the fluid 

is compressible, an equation of state is needed. In general, p ,  Xf, and pf are functions of p1. 

There are basically two different ways of deriving a constitutive relation for the stress tensor of 

granular materials - the continuum approach and the statistical approach. We use the continuum 

approach in our analysis. In this study, we assume that the stress tensor for a granular material 

is given by [cf. Goodman and Cowin, 1971,1972; Savage, 1979; Rajagopal and Massoudi, 19901: 

where 0 denotes the scalar product of two vectors and @ denotes the outer, or tensor, product 

of two vectors. The spherical part of the stress in equation (37) can be interpreted as the solid 

pressure p, .  The material moduli $1 and $4 are material parameters that reflect the distribution 

of the granular particles, and plays a role akin to pressure in a compressible fluid and is given 

by an equation of state. The material modulus p 2  is a viscosity akin to the second coefficient of 

viscosity in a compressible fluid and g3 denotes the viscosity (i.e., the resistance of the material 
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to flow) of the granular solids. Recently, Rajagopal and Massoudi [1990] have outlined an 

experimental/theoretical approach to determine these material moduli. Based on the available 

experimental measurements of Savage [1979], Savage and Sayed [1984], and Hanes and Inman 

[1985] and the computer simulations of Walton and Braun [1986a,b], it is clear that granular 

materials exhibit normal stress effects. The above model (equation 37) is a simplified version 

of the model proposed by Rajagopal and Massoudi I19901 which predicts the possibility of both 

the normal stress differences. Furthermore, Boyle and Massoudi 119901, using Enskog’s dense 

gas theory, have obtained explicit expressions for the material moduli /%, through g4. 

A mixture stress tensor is defined as (cf. Green and Naghdi [1969]): 

Tm = Ti + T2, 

where: 

TI = (1 - v ) T f ,  and T2 = T,, (39) 

so that the mixture stress tensor reduces to that of a pure fluid as v + 0 and to that of a 

granular material as 4 + 0.’ T2 may also be written as T2 = v T s ,  where Ts may be thought of 

as representing the stress tensor for some (quite densely packed) reference configuration of the 
granular material. 

The mechanical interaction between the mixture components, fI, is written as [Johnson et 

al., 19901: 

fI = Algradv + A2F(v)(v2 - VI) + A3v(2trD:)-iDl(v2 - VI)  

f A4V(W2 - wl) (v2 - v1) f 

where am is a properly frame invariant measure of the relative acceleration between the mixture 

components and F(v)  represents the dependence of the drag coefficient on the volume fraction. 

The terms in equation (41) reflect the presence of density gradients2, drag, ‘slip-shear’ lift, 

‘spin’ lift, and virtual mass, respectively. Muller’s [1968] work indicates that a term of the form 

A I  grad I/ must be included in the interactions in order to get well-posed problems. The term 

multiplying A3 is a generalization of Saffman’s [ 1965,19681 single particle result first proposed 

in this form by McTigue et al. [1986]. One of the earliest studies examining the effect of lift 

force is discussed by So0 [1969] and So0 and Tung [1972]. 

INote that 4 -+ 0 is equivalent to v 4 1 only in a saturated mixture. Thus the theory allows for the case of 

the mixture tending to a pure granular material without v -+ 1 but to some value v,, strictly less than unity, 
usually referred to as the maximum packing fraction. We are interested here, however, in the case when there is 
a sufficient amount of both the constituents and hence we are not close to either of the limiting cases. h t h e r ,  
in keeping with the usual weighting procedures in multiphase flow we shall represent T, as: 

where Ts is discussed above. 

2The actual form of this interaction should include the terms a1 grad p1 + a2 grad p2 where a1 and a 2  are 
constants. If we assume that the system is a saturated mixture with incompressible components, this expression 

simplifies to A1 gradv where A1 = a2-al. Since no information concerning the coefficients a1 and a 2  is available 
and a term of the same form arises in the balance of linear momentum from the granular solid stress tensor, this 
term will be neglected in the present work. 
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5. Averaging 

5.1 Conservation of Mass 

Consider a box shaped fixed region R in three-dimensional Euclidean space of volume V bounded 

by a surface aR of area a. The box has unit depth in the z direction and surfaces BRt, dRb, 

aR1, and dR2 as indicated in Figure 1. All equations are postulated at the current time t and 

all field quantities are functions of x and t. 

n = j  

I 

9 aR1 
n = -1 
c 

I 

R 

I 

L-,, BRb - -  J 

IC Ax - t n = - j  

Figure 1. Control Volume 

The appropriate balance of maw for a control volume is given by: 

where pa is the density of the ath constituent, va is the velocity, n is the unit normal to the 

surface, and c, is the mass supply. Suppose there is no chemical reaction, i.e. c, f 0, and that 

the flow is steady and unidirectional, i.e. v,  = v,(x, y, z)i. Equation (42) implies that: 

Denoting the entrance boundary as dR1 and the exit as aR2, we find: 

Let dR1 be located at z and dR2 be located at z + Ax. Also let us suppose that the 

cross-sectional area is constant. Then (by the mean value theorem3): 

p,v,da = p:v:A, (45) 

3&!an Value Theorem for Integrals. If f is continuous on [a, b],  then there is a number c in [a, b] such that: 
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where the asterisks represent some average value on dR1. Using Taylor's expansion: 

d 
pavada M p:v:A + z(p:v:A)Ax, k 

Thus equation (44) implies: 
d 

dx 
-(p;vAA) = 0. 

(46) 

(47) 

5.2 Balance of Linear Momentum for the Fluid 

The balance of linear momentum for the fluid is: 

d - J plvl dV = - plvl(v1 n) da + LRTln da + k ( p l b l +  f I +  clv1) dV (48) ai! R L R  

where R represents a control volume, d R  represents the surface of that control volume, p is 

density, v1 is velocity, bl is the body force, fI is the interaction between the components, T1 is 

the stress tensor, c1 is the mass supply, and n is the unit normal to the surface of the control 

volume. The subscript 1 refers to the fluid component. With the assumptions of steady flow 

and no chemical reaction the above equation reduces to: 

We now derive the averaged form of equation (49) by considering each term individually. 

Convective Term The velocity fields of the fluid and solid are assumed to have the form: 

VI = w(x,y)i, and v2 = u(x,y)i, (50) 

then: 

The Mean Value Theorem implies that: 

plv 29 L da = ~ ; ( w ' ) ~ A  i, k (52) 

where the asterisks denote average values (i.e. averaged over the cross-section) and A is 

the cross sectional area of the control volume. Assuming that Ax is small and applying 

Taylor's expansion yields: 

plw2ida x [p;(w')'A + dz d [p;(w')aA] Ax] i, 

Combining equations 51, 52 and 53 gives the following result: 

a 
pvl(v1 0 n) da = - [p;(w*)'A] Ax i. 

dx 

(53) 

(54) 
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Body Forces The effect of the body force can be averaged over the control volume to yield: 

Interactions In general, the interactions between the mixture components will include density 

gradients, drag, lift, and virtual mass. Because we are considering the interactions to be 

averaged in the y direction, lift and density gradient interactions can be neglected. Drag 

and virtual mass interactions will be considered here so that the interaction term has the 

form: 

fr = a3(u - v)  + a6aun, (56) 

where a- is a frame-indifferent relative acceleration given by: 

With our assumptions about the velocity fields the interaction force vector becomes: 

and: 

L f I d V  = [a;(u* - v*) + ai - .*E)] A Ax i. 
BX 

(59) 

Stress Tensor: Isotropic Part The fluid stress tensor is given by: 

T1 = [-pf + X t r  D1]I + 2pD1, (60) 

where D is the stretching tensor, I is the identity tensor, pf is the fluid pressure, p is 

the first coefficient of viscosity of the fluid, and X is the second coefficient of viscosity. 

Following the same procedure as above, we have: 

where: 

da = [ -p ;  + A*=] A,  

and: 

i&[ -pf+X- ax "] da= [ -pf+X*- * ~ ] A t $ [ - p ; + X * ~ ] A A x ,  (63) 
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so that: 

i, [ - p f  + Ag] I n d a  = $ [ -p ;  f A*g] AAxi  

Stress Tensor: Viscous Part 

2pD1 n da = - 2 p -  dV i d a  + kR2 2 p z  dV i da - 1, dV ay p - i d a + i f i p a y i d a  dV 
J,R L R i  dX 

av a v  * 
2p- da = 2p*- A, J,, ax dX 

da = 2p*- dV* A + - [zp*$A] Ax. 
dX d x  

The shear force of the fluid on the upper and lower surfaces of the control volume is defined 

as: 

F, = Tf Ax = (68) 

and: 

dV p - j d a .  dV (69) 

L R l  da + 1% dy 

d 

L dx 
2 p D l n d a = -  A x i - r f A x i -  

Thus the balance of linear momentum for the fluid phase in the x-direction becomes: 

- d [ p ; ( ~ * ) ~ / l ]  AX = - d [ -p ;  +A*%] AAx + -& b p * g A ]  AX 

d x  dx  

u*”)] f 3 X  A A x .  

and in the y-direction, we have: 

d V  + pf(bl),AAx = 0 

13 



5.3 Balance of Linear Momentum for the Granular Solid 

The balance of linear momentum for the granular solid is: 

where R represents a control volume, dR represents the surface of that control volume, p2 is 

density, v2 is velocity, b2 is the body force, fI is the interaction between the components, T2 is 

the stress tensor, c2 is the mass supply, and n is the unit normal to the surface of the control 

volume. The subscript 2 refers to the solid component. With the assumptions of steady flow 

and no chemical reaction the above equation reduces to: 

The solid stress tensor is given by: 

T2 = [ -ps  + $2 t r  D2]I + $3D2 + $4grad v C3 grad v, (74) 

(75) 

where: 

also, D is the stretching tensor, I is the identity tensor, the p's are the material coefficients of 

the granular material, and @ denotes the outer or tensor product of two vectors. The following 

results are analogous to those for the fluid: 

h ,. 
p s  = -Po - Plgrad v 0 grad v, 

pv2(v2 0 n) da = - d [ p l ( ~ * ) ~ A ]  Ax i, 

dx 

LfIdV = [az(u* - v*) fa; ( v*- du* d X  - .*E)] d X  AAxi,  

where T~ is defined in an identical fashion to ~f in equation (68) through: 

14 



The solid stress tensor has an additional term not found in the fluid equation. To simplify 

the following calculations, we define: 

M = grad v @ grad v, (82) 

I which for our assumed form of the density field becomes: 

The additional term in the solid balance of linear momentum is: I 

Proceeding as before, we have: 

The shear force of the solid on the upper and lower surfaces of the control volume due to 

the normal stresses is defined as: 

and: 
- avau 

& J M n d a = d  [ B ; ( g ) 2 A ]  Axi -TnAxi+  P4-- j da 
d x  L R z  axay 

Thus the balance of linear momentum in the x-direction becomes: 

15 



+ [fii ( A] A x  - T,AX +p;b,AAx - 

(89) 

d x  

and in the y-direction, we have: 

Combining equations 54, 55,  59, 64, 69 with 49 and 76, 77, 78, 79, 80, and 88 with 73, and 

treating the averaged values for the variable as the variable, yields (in the x-direction): 

d2v* 1 

d x  dx d x 2  A 
+ ( A *  + 2p*)- - -T! + p ; b z  

d dP; - (/)iV*2) = -- 

++* - v*) + a; 

d d2u* 1 

d x  d x  
- (p;u*2) = -7s + P;bz 

- d v * d 2 u *  1 

d x  dx2 A 
+ zp;--- - -7-, - a;(u* - v*) - cy; 

where 6 ,  is the x-component of the body force and: 

Tf = - ” 1 z d a ,  
A x  a& dy 

rs = - ’’ J e d a ,  
A X  aRt dy  

r, = - d a .  (95) 

In many applications (cf. So0 [1967]), the equation of interest is the fluid-particle (or mixture) 

momentum equation. This equation is obtained by. adding equations (91) and (92): 

d2v* 

dx 

16 
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6. Summary and Conclusions 

(93) 

(94) 



which can be rewritten as: 

d2v* 

d x  

In the spirit of previous work in this area, the balance of momentum in the y-direction is 

not included in the averaged equations. Of course, the terms in the y-direction are such that 

the pressure field adjusts itelf to satisfy the governing equations. 

17 
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