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SUMMARY

Although averaging is a simple technique, it plays an important role in reducing variance. We use this
essential property of averaging in regression of the DNA microarray data, which poses the challenge of
having far more features than samples. In this paper, we introduce a two-step procedure that combines
(1) hierarchical clustering and (2) Lasso. By averaging the genes within the clusters obtained from hier-
archical clustering, we define supergenes and use them to fit regression models, thereby attaining concise
interpretation and accuracy. Our methods are supported with theoretical justifications and demonstrated
on simulated and real data sets.
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1. INTRODUCTION

In this paper, we present a way to improve the regression of gene expression measurements through
coupling with the hierarchical clustering method. The DNA microarray data consist of several thousands
of genes (predictors) and only a few hundreds of or less than a hundred experiments (observations). Since
we focused on supervised methods, we assumed that there is also a response variable; a regression was
performed using the continuous response, such as the survival time. Analyzing such data requires special
treatment, in particular, overcoming the collinearity among the predictors, which results in large variance
of the estimates and inaccurate prediction. We propose a simple yet efficient method of averaging to solve
this problem. By averaging, we could also extract a subset of genes with essential predictive power and
partition the subset into groups, within which the genes are coherent.

An overview of our method is as follows: We first applied hierarchical clustering (Eisen and others,
1998 or Chapter 14 of Hastie and others, 2001b) to the genes to obtain a dendrogram that reveals their
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nested correlation structure. At each level of the hierarchy, we created a unique set of genes and supergenes
by computing the average expression of the current clusters. We then used the different sets of genes and
supergenes as inputs for regression, in particular, Lasso (Tibshirani, 1996).

Hierarchical clustering is an especially attractive clustering method in our approach because it pro-
vides multiple levels at which the supergenes can be formed. Due to the simple fact that the Euclidean
distance measure among the genes is a monotone function of their correlation (when the genes are prop-
erly standardized), hierarchical clustering provides flexibility in model selection in such a way that the
genes are merged into supergenes in order of their correlation. Lasso yields a sparse fit; the useful prop-
erty of automatic gene selection motivated us to present Lasso as an ideal procedure for regression. We
achieved clearer interpretation and accuracy by combining an unsupervised method with a supervised
method. As an alternative to hierarchical clustering, we may also use known facts about the gene as-
sociation. We present an example of grouping the genes based on the Gene Ontology (GO) (available at
http://www.geneontology.org and introduced in various publications, such as Ashburner and others, 2000;
GO-Consortium, 2004) and using the principal components as supergenes. Although we did not signifi-
cantly expand on this method, the GO database provides useful information that may be helpful in various
applications.

Defining the average expression from a certain cluster to be a new feature, we in effect forced every
component of the cluster to play the same role in prediction; in other words, all their coefficients were
constrained to be the same. This restriction, depending on the correlation structure of the predictors, re-
duces the variance in prediction, and this idea has been explored in various settings. For instance, ridge
regression (Hoerl and Kennard, 1970), by penalizing the size of the L2 norm of the coefficients, allows the
predictors with strong correlation to bear similar coefficients. In Hastie and others (2001a), the authors
proposed the “tree harvesting” method that used 2p − 1 (where p is the number of genes) average expres-
sion profiles from the hierarchical clustering dendrogram as potential features. In the forward selection
stage, the model was sequentially augmented by adding a new univariate feature or an interaction term
to the preexisting ones; in the following backward deletion stage, the feature causing the least improve-
ment was removed, thereby generating an order for the final model selection. We used the same strategy
of obtaining the averaged features from hierarchical clustering, but applied different methods to handle
them in a model. Zou and Hastie (2005) proposed “elastic net,” an automatic way to let the correlated,
important variables have comparable coefficients and to leave out unimportant variables. The elastic net
regression is a regularization scheme with a penalty that combined that of ridge regression and Lasso.
Bair and others (2004) introduced the supervised principal component (SuperPC) method by which the
principal component directions were found using only the predictors related to the outcome variable;
through the principal component analysis, the correlated variables were automatically collected and their
coefficients were constrained to be similar. Yu (2005) also suggested different approaches to forming over-
lapping/nonoverlapping gene clusters; the resulting information was used for providing groups of genes
as predictors in regression.

In the following sections, we illustrate and support our approach in more detail with examples and
justifications. We explore the use of averaged gene expressions for regression in Section 2 and illustrate
the method with a microarray data example in Section 3. In Section 4, we present several experiments
that used the GO. We conclude with a summary and possible extensions of our studies in Section 5. The
appendix contains the proof.

2. HIERARCHICAL CLUSTERING AND AVERAGING FOR REGRESSION

In this section, we investigate the hierarchical clustering and averaging method in regression settings.
In particular, we focus on Lasso (Tibshirani, 1996; Efron and others, 2004 for algorithm), a regression
method with L1 penalization of the coefficients. Since we aim to fit a model for gene expression data,
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we assume that the number of predictors is large, although many are unimportant. Fitting a Lasso would
shrink down the coefficients of noisy predictors, assigning nonzero coefficients to only the significant
variables. We present a detailed description of the algorithm, which is followed by a justification of when
and why our method works.

2.1 Algorithm

Let (xi , yi ) for i = 1, . . . , n denote pairs of a gene expression profile (xi ∈ Rp) and the corresponding
response variable (yi ∈ R). First we apply hierarchical clustering of the genes to yield their nested cor-
relation structure. With p different levels of hierarchy, we create a unique set of genes and supergenes at
each level by averaging the gene expressions within the current clusters. We regress y on every set of the
predictors (genes and supergenes) using Lasso. For each fit of Lasso, we obtain a set of solution paths
of the coefficients to which we usually apply cross-validation and select the optimal degree of shrinkage.
Algorithm 1 summarizes the steps.

Algorithm 1: Hierarchical Clustering and Averaging for Regression

1. Apply hierarchical clustering of the genes to yield the nested correlation structure.
2. At each level of hierarchy, create supergenes by averaging the gene expressions at each cluster. This

gives p different sets of genes and supergenes that represent each level.
3. For every set of the predictors (genes and supergenes), fit Lasso, using y as the response variable.
4. Using cross-validation, find the optimal degree of shrinkage and level of hierarchy.

2.2 Two-way factor for goodness of the fit

We have a two-way factor that affects the goodness of the fit; a bias-variance trade-off occurs as the
granularity of clustering or the amount of shrinkage changes. While this bias-variance trade-off occurs,
we observe a monotonicity in the minimizing criterion with respect to the two factors. Lasso minimizes
the following loss + penalty measure:

‖y − Xβ‖2
2 + λ‖β‖1. (2.1)

Let us compare the following objective function values:

M1 = min
β∈R

n∑
i=1

(yi − βx1i − βx2i )
2 + λ1(2|β|), (2.2)

M2 = min
β1,β2∈R

n∑
i=1

(yi − β1x1i − β2x2i )
2 + λ1(|β1| + |β2|), (2.3)

M3 = min
β1,β2∈R

n∑
i=1

(yi − β1x1i − β2x2i )
2 + λ2(|β1| + |β2|). (2.4)

It is easily seen that M1 � M2, while M2 � M3 for λ1 � λ2. This monotonicity will be demonstrated
with data sets in Sections 2.5 and 3.

To find the most desired fit, we optimize the two parameters simultaneously by drawing a one-
dimensional path on the two-dimensional space. If we start from the topmost level of hierarchy with λ
large enough to shrink the single coefficient close to zero, move in a descending direction of the objective
function, and end at the bottommost level with λ = 0, infinitely many paths can be drawn. Once the
path is specified, we cross-validate along the curve, hoping that a near-optimal point will be found on
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the way. Finding a path so that either the correlation factor representing the hierarchical level increases
(i.e. the height decreases) or the shrinkage factor (λ) decreases along the curve ensures that the path is
searching in a descending direction. We define an appropriate path by adjusting the relative rate between
the increment in the correlation factor and the decrement in the shrinkage factor.

2.3 Improving in accuracy

Our method is advantageous when there exist multiple variables with strong positive correlations. In fact,
in the case of ordinary least-squares (OLS) method, if the sample correlations of the predictors are high
enough, an averaged predictor yields the coefficient estimates with lower expected squared error than the
raw predictors. The following theorem illustrates this fact.

THEOREM 2.1 Let X1, X2, . . . , Xm , columns of X, be predictors with the sample correlation structure,
corr(X j , Xk) = ρ > 0 for j �= k. Without loss of generality, assume that the predictors are standardized
so that XT X is a symmetric matrix with the diagonal elements being 1 and all the off-diagonal elements
being ρ. Let y be the response variable such that yi = ∑m

j=1 β j X ji + εi where εi ’s are iid with mean 0

and variance σ 2. Let β̂ be the OLS estimates of the coefficients

β̂ = (XT X)−1Xy.

Let β̂ A be the OLS estimate of the coefficient when y is regressed on the sum of the m predictors. β̃
denotes the corresponding vector of estimates for the original predictors

β̃ = (β̂ A, . . . , β̂ A)T ,

where β̂ A =
∑n

i=1 X.i yi∑n
i=1 X.i 2

and X.i =
m∑

j=1

X ji .

Then Ey|X [(β̃ − β)T (β̃ − β)] < Ey|X [(β̂ − β)T (β̂ − β)] if and only if

ρ > 1 − σ 2

∑m
j=1(β j − β̄)2/(m − 1)

, where β̄ =
m∑

j=1

β j/m. (2.5)

This theorem claims that if the true coefficients of the predictors are similar, thereby making the
ratio

∑m
j=1(β j − β̄)2/σ 2 small, then the range of ρ to improve the fit by averaging is large. Figure 1

illustrates the range. The curves represent different numbers of variables (m), and for each curve, we
expect improvement in the upper left-hand region. Although β̃ yields a larger bias than β̂, the former is a
more accurate estimate due to a smaller variance.

The theorem can easily be generalized to a block-diagonal correlation structure. The average features
within each block may yield a more accurate fit than the individual predictors.

2.4 An example of underlying model

We present a data structure for which the averaged predictors are the optimal features to regress on. As-
sume the following scenario: U1 and U2 are independent random variables; X j are (fixed) linear functions
of U1 for m1 different j ′s and linear functions of U2 for m2 other j ′s, and y, the response, is a linear com-
bination of U1 and U2. Both y and X are functions of U ′s, which are unknown. If σ 2

X (the error variance
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Fig. 1. If the true coefficients of the predictors are similar, thereby making the ratio
∑m

j=1(β j − β̄)2/σ 2 small, the
range of ρ to improve the fit by averaging is large. We expect improvement in the upper left-hand region.

Table 1. Correlation matrix of the simulated data: the average sample correlations for all the pairs of
the blocks

Variable label 1–30 31–60 61–90 91–200

1–30 0.678 −0.060 0.047 0.000
31–60 −0.060 0.336 −0.022 0.001
61–90 0.047 −0.022 0.118 −0.003
91–200 0.000 0.001 −0.003 0.000

of X) is small enough, any linear combination
∑m1

j=1 w j X j (without loss of generality, assume that w j � 0

and
∑

w j = 1) may be a reasonable predictor replacing U1, and the same applies to
∑m1+m2

j=m1+1 w j X j for
U2. However, we must choose w j = 1/m1 (w j = 1/m2 for the latter) to minimize the variance of the
weighted average. We present a realization of this scenario and its result through a simulation.

2.5 Simulation

Setting. A data set with n = 100 and p = 200 was generated according to the scheme described above.
Among 200 predictors, 90 were significant; they were divided into three blocks (30 each), predictors in
the three blocks being functions of the latent variables U1,U2, and U3, respectively. The response variable
y was a function of all three latent variables: y = 2U1 − 2U2 + 3U3 + ε.

This simulation yields the correlation structure shown in Table 1. Each entry of the matrix is the
average sample correlation between two blocks. The average correlation within the first block was high
enough that we expected all 30 components to be present in a tight cluster; however, the components in
the third block would naturally be split into subgroups.

Result. Figure 2 is the dendrogram from the hierarchical clustering of the predictors based on the average
linkage. The nodes belonging to the groups 1, 2, and 3 are labeled with 1, 2, and 3, respectively; the noisy
variables are unlabeled. The horizontal dotted line (where 98 clusters are formed) indicates the optimal
level selected based on the cross-validation. We next describe the cross-validation procedure.
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Fig. 2. The dendrogram from the hierarchical clustering of the predictors based on the average linkage. The labels
represent the corresponding blocks. The horizontal dotted line (where 98 clusters are formed) indicates the optimal
level selected based on the cross-validation.

The left-hand side of Figure 3 is the contour plot of the loss + penalty (2.1) values in terms of λ and
the height. We used height2, since it is linear in the corresponding correlation score. Six different paths
were drawn on the plot so that λ ∝ (height2)d with d = 0.5, 1, 1.5, 3, 5, 7 from the left to the right,
respectively. We noticed that the paths with larger d favored instances with higher levels of hierarchy.
The contours of the cross-validation errors were illustrated on the same two-dimensional plane, on the
right-hand side of Figure 3. From the contours, we anticipated that the optimal model would be selected
somewhere along the paths with d = 5, 7. In practice, we would avoid assessing the cross-validation
errors all over the plane, but restrict our search to the given paths. We have shown the level sets all over
the plane for a clearer demonstration of our strategy.

The six solid curves in Figure 4 connect the cross-validation errors through the respective paths shown
in Figure 3. The dotted curves connect the mean squared errors along the same set of paths. We found
the minimum from all the values of the cross-validation errors shown on the plot and selected the optimal
model (optimal λ and height) according to the one standard error rule. The chosen λ and the height are
marked by a solid dot on both Figures 3 and 4.

Figure 5 presents the coefficient paths for the optimal models selected: the optimal Lasso fits on the
averaged predictors and on the original predictors. The (dotted) vertical lines denote the chosen shrinkage
levels. As for the fit on the averaged predictors, the three coefficients with relatively large absolute values
were assigned to the three blocks with positive correlations; all 30 predictors from the first block, 27 from
the second block, and only 7 from the third block were averaged to form the three major features. The
other nonzero coefficients were for single or double predictors belonging to the third group. Few noisy
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Fig. 3. (Left) The contours of the loss + penalty values in terms of λ and the height: Six different paths are drawn

on the plot so that λ ∝ (height2)d with d = 0.5, 1, 1.5, 3, 5, 7 from the left to the right, respectively. (Right) The
contours of the cross-validation errors illustrated on the same two-dimensional plane.

variables were in the active set. On the other hand, for the fit on the original variables, 45 coefficients were
nonzero, 8 of which were assigned to noisy variables.

The results are summarized in Table 2. The optimal Lasso fit on the averaged predictors correctly
identified 78 (30/27/21 from the three groups) out of 90 true predictors, and the 78 were grouped into 18
clusters; however, regular Lasso only recovered 37 (8/14/15 from the three groups) significant predictors.
The comparison of R2 and the P-values on the test data of size 200 shows that the fit on the averaged
predictors not only yields a model that is more interpretable but also explains a much higher percentage
of the variation in response.

3. MICROARRAY DATA EXAMPLE

In this section, we discuss the implementation of our method in a microarray data set. We used the data
set of van’t Veer and others (2002), which consists of 295 samples; we divided it into 147 for training and
148 for testing. van’t Veer and others (2002) measured the gene expressions for 24 481 genes to analyze
their relationship to the survival time/time to metastases of the breast cancer patients. We used the survival
time recorded in 2004 as the response variable.

To reduce the number of genes to a reasonable size and to remove insignificant genes, we first fit
24 481 univariate Cox proportional hazards models and selected the 3017 most significant genes based on
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Fig. 4. The six solid curves connect the cross-validation errors through the paths shown in Figure 3. The dotted curves
connect the mean squared errors along the same set of paths. We found the minimum from all the values of the cross-
validation errors shown on the plot and selected the optimal model (optimal λ and height at the solid dot) according
to the one standard error rule.

the rankings of their P-values. The choice of this cutoff P-value could be another parameter for the whole
procedure, but here we did not tune it separately. Instead, we used a large cutoff value (0.15) so that we
do not eliminate any features that are potentially significant.

After standardizing the genes, we applied hierarchical clustering and fit Lasso. As can be seen in
Figure 6, the loss + penalty (with squared error loss) quantity has a monotone pattern in terms of both λ
and the correlation score. We investigated five different paths, as indicated on the same contour plot: for
these curves, λ ∝ (height2)d with d = 2, 6, 7, 9, 13.

In Figure 7, cross-validation errors are connected along each path. The dotted curves are the mean
squared errors along the same five paths. Based on this display of the cross-validation errors, we found
the minimum cross-validation error and applied one standard error rule; we selected the model that fits
the clusters defined at the height of 1.30 with λ = 6.57. The optimal height and λ are marked by a solid
dot on Figures 6 and 7.

We compared this model with the regular Lasso fit using 3017 individual genes and, in addition, tested
the model by fitting the Cox proportional hazards model with test data. Table 3 summarizes the results.
When tested by fitting the Cox proportional hazards model on 148 test samples, R2 was larger, and the
P-value was smaller for the fit with averaged genes than the original predictors.

In addition to applying the averaging strategy to Lasso, we did so to the Cox proportional hazards
model with L1 regularization as well. As proposed in Tibshirani (1997), we incorporated variable selection
into the Cox model by maximizing the log partial likelihood subject to an L1 norm constraint on the
coefficients. We used the “coxpath” algorithm proposed by Park and Hastie (2006) and the cross-validation
method proposed by Verweij and Van Houwelingen (1993) to choose an appropriate level of shrinkage.
The third and the fourth rows of Table 3 refer to Cox Lasso with averaged genes and that with single
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Fig. 5. The coefficient paths for the optimal models selected: (left) the optimal Lasso fit on the averaged predictors,
and (right) the optimal fit on the original predictors. The (dotted) vertical lines denote the chosen shrinkage levels.

Table 2. Comparison of optimal Lasso fits on the averaged and the original predictors

Optimal Lasso fit on Averaged predictors Original predictors

Number of nonzero coefficients 18/98 45/200
Number of significant variables in the model 78/90 37/90
R2 on the test data 0.866 0.171
P-value on the test data 7.1×10−08 0.857

genes. As we incorporated the censor status and fit Cox models, Cox Lasso with averaged genes and that
with individual genes performed slightly better than Lasso with averaged genes and that with original
genes, respectively.

We also compared the performance to those of the tree harvesting (Hastie and others, 2001a), elastic
net (Zou and Hastie, 2005), and SuperPC (Bair and others, 2004) methods. Although tree harvesting is
similar to our method, its forward stepwise selection procedure searches over a large model space in a
greedy manner compared to Lasso. It only selected one cluster of size 32, and augmenting the model fur-
ther increased the cross-validated deviance score. Although tree harvesting performed comparable to our
method, the number of gene clusters it might discover was limited because of its selection method which
is less smooth. Elastic net, by adding the L2 penalty term as a grouping device, showed an improvement
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Fig. 6. The contour plot of loss + penalty (with squared error loss) values in terms of λ and the height: Five different

paths are drawn on the plot so that λ ∝ (height2)d with d = 2, 6, 7, 9, 13 from the left to the right, respectively.

from Lasso with original predictors. The SuperPC method performed slightly better than our method, us-
ing two leading principal components. However, to discover gene clusters through the SuperPC analysis,
one must make a strong assumption that all the groups form orthogonal directions with one another. If this
assumption is not true, then the SuperPC model is likely to identify only a few of the groups.

Table 4 contains more information on the 17 supergenes in the active set of the optimal model. As a
way to validate coherence among the genes forming each cluster, especially the large ones, we used the
GO. The GO database (available at http://www.geneontology.org and introduced in various publications,
such as Ashburner and others, 2000; GO-Consortium, 2004) contains information on genes or the inter-
connected gene products that form a directed acyclic graph (DAG) structure. There are three nonoverlap-
ping ontologies: molecular function, biological process, and cellular component. Using a related device,
Go-TermFinder (Boyle and others, 2004), we investigated whether each of our clusters is significantly as-
sociated with any node in GO, which in turn would imply that there is a common factor within the cluster.
For a given cluster, Go-TermFinder gathers all the nodes in which the genes of our cluster are relatively
abundant compared to the background of all the other genes. It computes (corrected) P-values based on
the hypergeometric distribution for all the possible nodes. All the clusters in Table 4 that are larger than 13
were significantly abundant (Bonferroni corrected P-value < 0.05) in at least one of the GO annotations,
although it was hard to expect a statistical significance for groups of size 2 or 3.
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Fig. 7. The six solid curves connect the cross-validation errors through the respective paths shown in Figure 6. The
dotted curves connect the mean squared errors along the same set of paths. We found the minimum from all the values
of the cross-validation errors shown on the plot and selected the optimal model according to the one standard error
rule (optimal λ = 6.57 and height = 1.30 at the solid dot).

Table 3. Comparison of different methods

Nonzero coefficients R2 P-value

Lasso with averaged predictors 17/35 0.105 3.61×10−05

Lasso with original predictors 62/3017 0.037 1.66×10−02

Cox Lasso with averaged predictors 15/28 0.116 1.92×10−05

Cox Lasso with original predictors 9/3017 0.086 2.71×10−04

Tree harvesting 1/6033 0.116 1.96×10−05

Elastic net (λ2 = 1) 12/3017 0.056 2.35×10−04

SuperPC Two leading components 0.136 1.33×10−05

Table 4. The 17 features in the active set of the optimal Lasso fit with averaged genes. All the clusters that
are larger than 13 were significantly abundant in at least one of the GO annotations

Size Coefficient Size Coefficient Size Coefficient

2 0.307 12 0.377 54 14.656
2 5.343 68 −8.099 12 −8.289

13 0.847 71 −3.154 53 6.943
42 −8.689 11 1.335 96 −0.894
10 −9.203 24 15.065 7 10.302

3 −3.761 9 5.039
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4. USING THE GO DATABASE

We previously used hierarchical clustering under the assumption that the genes with highly correlated
expression levels are likely to be involved in the same functions or processes. As an alternative to the
hierarchical clustering method, we propose a more direct way of grouping, using the GO introduced in
Section 3. We used the GO annotations to replace the clustering step in our original algorithm.

Using the GO database, we found all the clusters or the gene products representing a function, process
or a cellular component, in which more than one of the genes in our data set were included. In an ideal
situation, every gene in our list would have been annotated in GO, but it was not true. Thus, we illustrated
our strategy using all the genes that belonged to at least one of the GO clusters. Since the genes in the
predefined GO clusters were not necessarily highly (positively) correlated in their expression levels, we
used the first principal component as a supergene instead of the average expression.

In this application, we fit regression models using the principal components from all the clusters
simultaneously. Because the gene products in GO form a DAG structure instead of a nested structure, as
in hierarchical clustering, we did not choose any one level of granularity. However, we filtered the clusters
based on the following:

• Size of the clusters,

• Variation along the first principal component direction.

Once the principal components were achieved, we fit either a Lasso or a Cox proportional hazards model
with variable selection.

Table 5 summarizes the number of genes in our data set that were found in three different ontologies,
as well as the number of clusters to which they were assigned. The other rows of Table 5 show how
many genes were left after the two-stage filtering and how many of the coefficients were nonzero in Lasso
fit/Cox Lasso fit with penalization.

The performance of Lasso (the first row) and penalized Cox model (the second row) on the test data
is summarized in Table 6 to provide a comparison. The third row contains the result from fitting Lasso on
the union of the genes that belonged to the clusters that we used. The figures in Table 6 can be compared
to the results in Table 3, Section 3. The first two fits using the clustering information from the GO (the
first two rows) yield P-values that are comparable to the previous method of using hierarchical clustering.
Lasso fits on several thousand individual genes (the third row) yield larger P-values than all other methods
with grouping procedures.

Using the GO not only provided an automatic grouping of the genes but also revealed to which func-
tions/processes/components the selected groups were associated with. Table 7 lists the eight GO terms
from the biological process ontology whose corresponding principal components had nonzero coefficients

Table 5. The number of genes in our data set that were found in different ontologies. Starting with row 1)
the number of genes in our data set that were found in the GO database; 2) the number of unique clusters
to which the genes were assigned; 3) the number of clusters left after the two-stage filtering; 4) the number

of nonzero coefficients in Lasso fit; 5) the number of nonzero coefficients in Cox Lasso fit

Ontologies Function Process Component

Total number of genes included 14 802/24 481 13 874/24 481 10 241/24 481
Total number of clusters 2491 2916 555
Number of clusters after filtering 534/2491 625/2916 99/555
Nonzero Lasso coefficients 11/534 8/625 7/99
Nonzero Cox Lasso coefficients 7/534 11/625 7/99
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Table 6. R2 and the P-values for the test set performance are listed. 1) Lasso fit, 2) L1 penalized Cox
model fit, and 3) Lasso fit on individual genes included in any clusters from the GO database

Methods (number of genes used/24 481) R2 P-value

GO clusters—Lasso Function 0.074 3.51×10−04

Process 0.101 6.49×10−05

Component 0.111 1.95×10−05

GO clusters—Cox Lasso Function 0.077 5.88×10−04

Process 0.082 3.87×10−04

Component 0.106 4.53×10−05

Individual genes from the GO clusters Function (4828) 0.064 0.00126
Process (3769) 0.021 0.0722
Component (1136) 0.041 0.0116

Table 7. GO terms from the biological process ontology whose corresponding principal components had
nonzero coefficients in the Lasso fit. The pairs of numbers in the size column indicate the number of

components that our data contained and the total numbers of genes in the nodes of the GO

GO term Size Function description

GO:0009267 3/116 Cellular response to starvation
GO:0016579 3/87 Protein deubiquitination
GO:0000076 5/57 DNA replication checkpoint
GO:0007064 2/48 Mitotic sister chromatid cohesion
GO:0051293 2/60 Establishment of spindle localization
GO:0015788 2/3 UDP-N-acetylglucosamine transport
GO:0006529 2/30 Asparagine biosynthesis
GO:0030330 4/19 DNA damage response, signal transduction by p53 class mediator

in the Lasso fit. The column labeled “size” contains pairs of numbers, indicating the number of compo-
nents that our data contained and the total numbers of genes in the nodes of the GO. Lasso selected the
clusters of rather small sizes, which means that the clusters of larger sizes contained many noisy genes,
possibly assigning spurious loadings to the first principal component. Although the regression fits us-
ing the GO showed reasonable performances, it would have been more impressive if larger clusters had
been chosen. The relationship among the genes contained in a node of the GO is reflected in the gene
expression, for instance through high correlations among the elements; however, the correlations may be
insignificant depending on the granularity of the node.

5. DISCUSSION

In this study, we introduced a simple, but effective, method of combining multiple variables into a repre-
sentative feature and using the new feature in regression. We first used hierarchical clustering to obtain
the sets of correlated variables; we averaged the variables within each cluster and input the averages as re-
gressors to Lasso. When the variables were measured in comparable units and were positively correlated,
their average was a strong feature, yielding a fit with lower variance than the individual variables.

The gene expression data often satisfy the conditions for improving the fit through averaging. Mi-
croarray data are composed of a large number of genes (predictors) that are often divided into blocks;
within each block, the genes are highly correlated. These data are the main target of our technique.
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In the following paragraphs, we describe several directions in which our method may be modified for
wider applications.

Although we applied hierarchical clustering with the average linkage for all the analyses, two other
popular choices are the complete linkage and the single linkage. As illustrated in Theorem 2.1, averaging
reduces the variance but increases the bias of the coefficient estimates; the amount of change depends
on the group sizes and the correlations. The complete linkage tends to yield smaller clusters with higher
correlations among the elements compared to the single linkage; therefore, these different dissimilarity
measures will cause a different amount of changes in variance and bias in resulting Lasso models. Com-
plete linkage is favorable because it generates clusters with stronger correlations; but because of the small
group sizes, the variance reduction might not be as large as in the case of the single linkage. We used the
average linkage as a compromise.

All three dissimilarity measures of the hierarchical clustering method mentioned above only detect
positively correlated elements or groups of elements. The dissimilarity may be characterized more gen-
erally so that the elements with highly negative correlations are merged simultaneously. However, before
averaging two negatively correlated variables, one of them must be multiplied by −1; an analogous ad-
justment is necessary when averaging more than two variables with negative correlations.

Another way to modify the clustering scheme is to incorporate the relationship of the predictors with
y in the dissimilarity measure. By adding a flavor of supervised learning, one can form the clusters con-
sidering the correlations of the predictors with y in addition to the correlations among the predictors.

We proposed using the averaged features as inputs for Lasso a regression method. The idea can be
extended to other situations, such as classification and clustering. By averaging the initial variables, we
can provide a smaller number of features with lower dimensions for classification and clustering.

In Section 4, we used the clustering result available in the GO rather than discovering the structure
from the data. Similarly, other qualitative facts about the genes may replace or accompany the clustering
step in our procedure.
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APPENDIX

A.1 Proof of theorem

It can be easily shown that β̃ is equivalent to the least-squares estimate of β when all m elements are
constrained to be the same. Thus, defining an m × (m − 1) matrix

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0

−1 1
. . .

...

0 −1
. . . 0

...
. . .

. . . 1
0 · · · 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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and β̃(λ) = argminβ(y − Xβ)T (y − Xβ) + λ(βT J )(βT J )T ,

β̃ = lim
λ→∞ β̃(λ).

For any positive λ,

β(λ) = (XT X + λJ J T )−1XT y

= (XT X + λJ J T )−1(XT X)β̂

= (I − λ(XT X)−1 J (I + λJ T (XT X)−1 J )−1 J T )β̂.

Letting λ → ∞,
β̃ = (I − (XT X)−1 J (J T (XT X)−1 J )−1 J T )β̂.

Letting Z = (XT X)−1 J (J T (XT X)−1 J )−1 J T ,

Ey|X [(β̃ − β)T (β̃ − β)] − Ey|X [(β̂ − β)T (β̂ − β)] = σ 2trace[(XT X)−1(−2Z + Z2)] + βT ZT Zβ

= −σ 2 m − 1

1 − ρ
+

m∑
j=1

(β j − β̄)2.

The above equations imply that Ey|X [(β̃ − β)T (β̃ − β)] < Ey|X [(β̂ − β)T (β̂ − β)] if and only if

ρ > 1 − σ 2

∑m
j=1(β j − β̄)2/(m − 1)

, where β̄ =
m∑

j=1

β j/m.
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