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Averaged pulse dynamics in a cascaded transmission system
with passive dispersion compensation
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A theory of optical pulse propagation in cascaded transmission systems that are based on the dispersion-
compensating fiber technique is developed. The existence of two scales associated with fiber dispersion and
system residual dispersion leads to a simple model for the averaged pulse dynamics. In the particular case
of practical importance, the averaged pulse dynamics is governed by the nonlinear Schrödinger equation. The
pulse transmission stability is examined.  1996 Optical Society of America
The application of dispersion-compensating fibers
(DCF’s) to overcome fiber chromatic dispersion in
optical transmission systems has been the subject of
intensive investigations during the past few years.1 – 6

This approach is very promising inasmuch as it is
simple. It is compatible with the present concept
of the all-optical transparency of the system and is
cascadable. Most investigations to date focused pri-
marily on point-to-point transmission lines operating
in a linear regime. They showed the great potential
of the dispersion-compensating method, especially
taking into account its high-capacity, low-error bit rate
and large amplif ier spacing. However, the theory of
optical pulse propagation in such systems is not de-
veloped. Here we present a model describing optical
pulse dynamics in the cascaded transmission system
based on DCF. As a result of our research, the new
concept of breathing solitons is introduced.

A cascaded transmission system containing optical
amplifiers was investigated in recent experi-
ments.4,5 In this research a 40-Gbitys nonreturn-
to-zero bit stream was sent over 600 km, and an
80-Gbitys bit stream was transmitted over 400 km
with a bit-error rate below 10211. In this Letter we
use the system design described in Refs. 4 and 5 as
a typical example of a cascaded system based on the
dispersion-compensating technique.

Let us examine a transmission line composed of
periodic alternating fiber sections and lumped optical
amplifiers. Each section includes a piece of DCF
with normal dispersion DDCF and pieces of f iber
with anomalous dispersion DTF , as shown in Fig. 1.
Ideally, the dispersions should be fully compensated;
however, in practice there is always some residual
dispersion. For example, in the experiment presented
in Refs. 4 and 5, the residual dispersion was approxi-
mately equal to kjDjl , 0.5 psy(nm km), whereas
dispersion of the transmission fiber was D . 1s16–18)
psy(nm km). Thus for the system we can identify
three characteristic dispersion scales: the disper-
sion length ZDCF , corresponding to the chromatic
dispersion DDCF . 2s65–80) psy(nm km) of the
0146-9592/96/050327-03$6.00/0
DCF; the dispersion length of the transmission fiber,
Zdis; and the dispersion length corresponding to the
residual dispersion of each section, ZDR. Therefore,
in the first approximation, pulse propagation in the
transmission line can be described as follows (see
Fig. 1): During the f irst stage, propagation through
the DCF, pulses broaden dispersively and acquire a
positive dispersion-induced frequency chirp C . 0; in
the second stage—evolution through the transmis-
sion fiber—pulses compress because the sign of the
dispersion has been reversed and the condition for
compression b2C , 0 is satisfied (see, e.g., Ref. 7).
Thus the pulse experiences breatherlike oscillations.
During both stages the amplitude of the propagating

Fig. 1. Schematic of the transmission system with passive
dispersion compensation along with typical behavior of the
pulse amplitude Aszd, pulse width T szd, and dispersion Dszd
along the fiber transmission line.
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pulse is reduced because of f iber losses. Therefore
after pulses propagate through both pieces of f iber
they must be amplified by an optical amplifier. This
entire process, including amplif ication, is then re-
peated many times. The Kerr nonlinearity over one
cycle of this process is negligibly small; therefore,
dispersion and fiber losses are the main factors. The
inf luence of the residual dispersion appears at a
distance of ZDR and alters the shapes of pulses. For
the transmission system to have a sufficiently small
bit-error rate, the amplitude of the incident pulse must
not be too small; therefore at distances of the order of
ZDR the inf luence of Kerr nonlinearity might come into
play. Thus, in the description of a slow evolution of a
pulse, it is necessary to take into account not only the
residual dispersion but the nonlinearity as well.

Let us introduce the following characteristic scales
into this problem: Za, the amplification period; Zdis ­
2t2

0yjb2j, the dispersion length corresponding to the
standard monomode fiber (SMF) (as mentioned above,
in the system under consideration there exist, in fact,
several dispersion lengths); and ZNL ­ 1ysaP0d, the
nonlinear length. Here t0 and P0 are the incident
pulse width and peak power, b2 is the group-velocity
dispersion, and a is the nonlinear coeff icient. The
evolution of optical pulses in a f iber is described by the
nonlinear Schrödinger equation:

iEz 1
ZNL

Zdis
dszdEtt 1 jEj2E ­ iGszdE ,

GszdE ­ ZNL

"
2g 1 r

NX
k­1

dsz 2 zkd

#
E . (1)

Here E ­ Est, zd is an envelope of electric f ield nor-
malized by

p
P0; t and z are the time and the coordinate

along the f iber, normalized by t0 and ZNL, respectively;
g describes fiber losses; zk ­ kZayZNL sk ­ 1, . . . , N d
are the amplifier locations; and r is the coefficient of
amplification that compensates the f iber losses over
the distance Za. Chromatic dispersion dszd is normal-
ized to the SMF dispersion coeff icient.

We would like to point out a difference between the
problem that we consider and a soliton propagating
in the ultralong communication systems with varying
gain and dispersion studied in Refs. 8 and 9. Note
that, in the case of a guiding-center soliton, the evo-
lution of the pulse between the amplifiers also can be
described by linear theory. The difference is that in
the case that we analyze here sZNL .. Za, Zdisd, both
the dispersion and the losses affect the pulse propaga-
tion. In the case of the guiding-center soliton only the
fiber losses are significant (the dispersion and the non-
linearity can be treated as perturbations), causing the
amplitude oscillations, while the form of the pulse re-
mains unchanged. In the guiding soliton concept the
slow changes occurred under the inf luence of nonlin-
earity and dispersion at distances of the order of the
soliton period sZa ,, ZNL , Zdisd.

Note that ratios ´1 ­ Zdis yZDR and ´2 ­ ZayZNL
are two independent small parameters of the problem.
The existence of these small parameters allows us to
decompose the solution of Eq. (1) into the sum of slowly
and rapidly varying functions. Following Refs. 8 and
9, we transform E into a new function q by taking
out rapid oscillations of the amplitude that are due
to periodic amplification E ­ qst, zdexpf

Rz
0 Gsz0ddz0g.

The equation for q reads as

iqz 1
ZNL

Zdis
dszdqtt 1 cszdjqj2q ­ 0 . (2)

Here cszd ; expf2
Rz

0 Gsz0ddz0g can be presented
as a sum of rapidly varying and constant
parts cszd ­ kcszdl 1 c̃szd, where kc̃szdl ­ 0 and
kc̃szdl ­ f1 2 exps22gzadgys2gzad. We also write dszd
in a similar form, dszd ­ kdszdl 1 d̃szd, where kd̃szdl ­ 0
and kd̃szdl ø Zdis yZDR ,, 1. The average value is
defined here as k f l ­ 1yza

Rza
0 f szddz.

In the limit Za, Zdis ,, ZNL, one may treat the
nonlinearity as a perturbation. In the lowest order,
the solution of Eq. (2) is qsz, td ­

R
1`

2` dvqv expfivt 2

iv2sZNLyZdisd
Rz

0 d̃sjddjg. Here qv does not depend on
z. Nonlinear effects come into play on a larger scale
than with Za, namely, at the distances proportional
to ZNL. Therefore to describe the inf luence of the
nonlinearity on the pulse propagation we assume that
qv varies slowly with z. The evolution of qvszd is
governed by the equation

i
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≠z
2 v2 ZNL
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kdszdlqvszd 1 cszdQszd ­ 0 , (3)

Q ­
Z 1`

2`

dv1dv2dv3qv1qv2qvp
3 dsv1 1v2 2v3 2 vd

3 exp

"
isv2 2 v2

1 2 v2
2 1 v2

3 d
ZNL

Zdis

Z z

0
d̃sjddj

#
.

(4)

To obtain an equation for the slow evolution of qst, zd,
we average Eq. (3) over the interval Za. Since the
function qsv, zd is assumed to vary slowly on the
amplification distance, it can be placed outside the av-
eraging integral. After straightforward calculations
we obtain the following equation:

i
≠qv

≠z
2 v2 ZNLkdl

Zdis
qv

1
Z 1`

2`

dv1dv2dv3dsv1 1 v2 2 v 2 v3d

3 F sv1, v2, v3, vdqv1qv2qp
v3

­ 0 , (5)

with the function F given by

F ­
1 2 expf22gZcs1 2 igAdg

2gs1 2 igAd

1
expf22gZcs1 2 igAdg 2 expf22gZcs1 1 igkdldg

2gs1 1 igd
,

(6)

where g ­ sv2
1 1 v2

2 2 v2
3 2 v2dys2gZdisd and A ­

jDDCFyDTF j. The principal results of our Letter are
based on Eq. (5). This equation describes averaged
dynamics of breathing pulses. Let us consider the
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evolution of a localized pulse. By normalizing the
frequency in Eq. (5) to the characteristic spectral pulse
width vcr [here v2

cr ­ ZdisysZNLkdld , ZDRyZNLg, we
find that g , v2

crysgZdisd. In the limit v2
crysgZdisd ,,

1 one can approximate the function F by the first terms
of the Taylor expansion sg ,, 1d. In the time domain,
the leading-order equation describing the averaged
dynamics of breathing solitons is

iUz 1
ZNL

Zdis
Uttkdszdl 1 kcszdljU j2U ­ R2 . (7)

Here U ­ U st, zd ­
R

1`

2` expsivtdqvszddv it the slowly
varying part of the f ield E. In Eq. (7) the term
R2 describes higher-order corrections. To derive
higher-order corrections to the averaged nonlinear
Schrödinger equation [left-hand side of Eq. (7)] one
can use either the Lie transformation technique8 or
a combination of the approach exploited in Ref. 9
and the procedure developed in Ref. 10. In the
leading order, Eq. (7) has the usual soliton solution
U st, zd ­ U0 sechstytdexpsizy2d, with U 2

0 kcl ­ 1 and
t2 ­ 2kdlZNLyZdis, if the residual dispersion kdszdl has
a positive sign. Therefore the sign of the residual
dispersion kdszdl in Eq. (7) represents a criterion for
the stability of the data stream.

The amount of continuous radiation generated
during the propagation of a breathing soliton and
its dependence on system parameters can be de-
termined by the higher-order correction of Eq. (7).
We will relegate the discussion of these corrections
to another publication. Equation (7) leads to the
following algorithm of optimal dispersion manage-
ment:

PN
j­1 skdlj 2 kdld2 ! min with respect to

all possible permutations of DCF and SMF compo-
nents. Here kdlj is the residual dispersion of the
jth transmission element and kdl is the normalized
mean value of the whole system dispersion. This
algorithm is in many ways similar to the algorithm
proposed in Ref. 11 and provides the minimal variation
of dispersion. The case that we considered here is
of practical importance. The values of parameters
corresponding to the pulse width t0 , 25 ps and
the peak power P0 , 2 mW are Za , 36 km,
Zdis ­ 2t2

0yjb2j , 73 km, and ZNL ­ saP0d21 ­ 300 km,
where b2 ­ 220 ps2ykm and a ­ 1.66 km21 W21

are typical for conventional silica fibers at
l0 ­ 1550 nm.7 We take the value of the disper-
sion length corresponding to residual dispersion as
ZDR , 200 km.
In conclusion, we have shown that breathing soli-
tons can propagate in cascaded transmission lines with
periodic lumped amplification and periodic dispersion
compensation if ZNL .. Za, Zdis. In the span between
two amplif iers, a pulse experiences strong attenua-
tion and large oscillations of its width. We have de-
rived the equation describing propagation of averaged
pulses in such systems. In the limit gZdisZNLyZDR ­
gDRysaDTFP0d .. 1 this propagation can be described
by the nonlinear Schrödinger equation. Note that the
pulse width does not enter into the f inal form of our
criterion; therefore the theory is applicable to both
return-to-zero and nonreturn-to-zero signal formats.
Our results complement the concept of guiding-center
solitons and demonstrate that the concept of averaged
dynamics can be applied in this modif ication of the
original system. This is a further confirmation of the
robust nature of optical solitons.
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