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Abstract: Recently we proposed a novel polarimetric method, based on 

Stokes polarimetry, enabling the characterization of the linear retardance 

and its flicker amplitude in electro-optic devices behaving as variable linear 

retarders. In this work we apply extensively the technique to parallel-

aligned liquid crystal on silicon devices (PA-LCoS) under the most typical 

working conditions. As a previous step we provide some experimental 

analysis to delimitate the robustness of the technique dealing with its 

repeatability and its reproducibility. Then we analyze the dependencies of 

retardance and flicker for different digital sequence formats and for a wide 

variety of working geometries. 
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1. Introduction 

In recent years liquid crystal on silicon (LCoS) displays have become the most attractive 

microdisplays for all sort of spatial light modulation applications, like in diffractive optics [1], 

optical storage [2], optical metrology [3], reconfigurable interconnects [4,5], or quantum 

optical computing [6], due to their very high spatial resolution and very high light efficiency 

[7,8]. Among the different LCoS technologies, parallel aligned LCoS (PA-LCoS) are 

especially interesting since they allow easy operation as phase-only devices without coupled 

amplitude modulation. From a modeling point of view PA-LCoS displays can be assimilated 

to linear variable retarders [7,8], then the magnitude of interest to characterize these devices is 

their linear retardance. 

It is known that LCoS and more specifically PA-LCoS exhibit some flicker or fluctuations 

[9–14]. This is generally true in digital backplane devices due to the pulsed digital signal 

addressed [10,11,15,16]. Typical methods used to characterize linear variable retarders may 

provide erroneous results [17,18] since they typically assume that the birefringence in the 

waveplate has a constant value, no fluctuations, during the measurement process. 

Furthermore, the amplitude of the retardance fluctuation becomes a magnitude of interest for 

a more accurate characterization and modeling of the device under test. Recently appropriate 

techniques to obtain both retardance and flicker values have been demonstrated by our group 

[18] and by Ramirez et al. [19], based respectively on the classical linear polarimeter and in a 

combination of linear and circular polarimeters. These are easier techniques to implement, 

specially the extended linear polarimeter in [18]. However, a more detailed characterization 

can be obtained by the average Stokes polarimetry method we recently proposed in [20]. This 

technique in combination with a Mueller matrix based model allows us to predict the response 

of the device for every gray level and any kind of state of polarization (SOP) at the system 

entry. 

A first parameter to be evaluated in the performance of a digital backplane LCoS is the 

sequence format addressed. This may affect the number of available quantization levels and 

also the amount of flicker exhibited by the device [16]. Another important aspect is the 

working geometry where the LCoS is used: angle of incidence, use of a beam-splitter, may 

change the retardance dynamic range, linearity in the response [21]. 
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In this work we apply the average Stokes polarimetry method for the evaluation of the 

linear retardance and flicker amplitude in PA-LCoS devices. We present a study about the 

robustness of the method, focused on reproducibility and repeatability capabilities of the 

technique. Then, a complete analysis of the performance of the PA-LCoS for a series of 

different sequence formats addressed and for various working geometries is undertaken. 

2. Theory and characterization method 

The average Stokes polarimetric technique [20] is based on the Mueller-Stokes formalism 

[22], which enables to deal both with polarized and with unpolarized light. The approach is 

valid for the modeling and characterization of linear variable retarders whose linear 

retardance exhibits instabilities, such as PA-LCoS displays. In principle the Mueller matrix 

( )RM Γ  of a linear retarder with a retardance value Γ, with its fast axis along the X-axis is 

given by, 

 ( )

1 0 0 0

0 1 0 0

0 0 cos sin

0 0 sin cos

RM

 
 
 Γ =
 Γ Γ
 

− Γ Γ 

 (1) 

We showed in [20] that a reasonable assumption in the case of PA-LCoS is that temporal 

evolution of fluctuations ( )tΓ  can be approximated by triangular time-dependent profile, 

characterized by its average retardance Γ and its fluctuation amplitude a , defined as half the 

maximum-to-minimum value for the fluctuation. Taking into account this time-dependent 

linear model we can describe the averaged matrix for the linear retarder as: 

 
( ) ( )

( ) ( )

1 0 0 0

0 1 0 0
( , )

0 0 sin cos sin sin

0 0 sin sin sin cos

RM a
a a a a

a a a a

 
 
 Γ =
 Γ Γ
 

− Γ Γ 

 (2) 

This expression provides a more realistic and precise model of the linear retarder, where the 

average retardance and its fluctuation need to be characterized. 

Since PA-LCoS displays are reflective devices, in order to analyze the output SOP, an 

inversion of the horizontal axis must be considered between the corresponding forward and 

the backward (right-handed) reference systems, which in the Mueller-Stokes formalism is 

expressed by the inversion matrix as follows, 

 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Inv

 
 
 =
 −
 

− 

 (3) 

Then, the averaged reflected SOP outS  can be calculated as, 

 ( , )out R inS Inv M a S= ⋅ Γ ⋅ , (4) 

where inS  corresponds to the input SOP. We may find specific input SOPs which may proof 

useful to measure the two parameters in the model, Γ  and a  [20]. In this sense, if the beam 

impinging the retarder corresponds to linearly polarized light at + 45° with respect to the X 
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axis, i.e. (S0 = 1, S1 = 0, S2 = 1, S3 = 0), the average SOP and the degree of polarization, DoP, 

at the output of the device will be expressed as follows: 

 
( )

( )

1

0

sin cos

sin sin

outS
a a

a a

 
 
 =
 − Γ
 

Γ 

 (5) 

 ( )sinDoP a a=  (6) 

We note that the output S1 component is zero independently of the retardance and its 

fluctuation amplitude. The expression for DoP is also straightforward and is directly related to 

the fluctuation amplitude. Equations (5) and (6) can be used to measure both the average 

retardance value Γ  and its fluctuation amplitude a . This can be easily accomplished using 

Eq. (6) to obtain the fluctuation amplitude a , and the ratio between the 3rd and 4rth Stokes 

vector components, i.e. 3 2 ( )S S tg− = Γ , to obtain Γ . 

3. Calibration and robustness results 

3.1 Calibration and comparison with instantaneous values from the linear polarimeter 

The model and the accompanying calibration technique may be applied to any device which 

can be modeled as a variable waveplate retarder. We apply the technique to a commercial PA-

LCoS display, model PLUTO distributed by the company HOLOEYE. It is a nematic liquid 

crystal filled, with 1920x1080 pixels and 0.7” diagonal, and digitally addressed. By means of 

a RS-232 interface and its corresponding provided software, we can configure the modulator 

for different applications and wavelengths. Besides, different pulse width modulation (PWM) 

addressing schemes (digital addressing sequences) can be generated by the driver electronics 

[10,16]. We have selected two electrical sequences exhibiting a clearly different scale of 

fluctuations, whose configuration files are provided with the software. They correspond to the 

configurations labeled as “18-6 633 2pi linear” and “5-5 633 2pi linear”. 

The averaged polarimetric measurements have been obtained with a Stokes polarimeter, 

model PAX5710VIS-T distributed by the company THORLABS. This is a rotating 

waveplate-based polarimeter, which belongs to time-division mode polarimeters [23]. Its 

software allows different time interval options so as to obtain an averaged signal. When 

enough rotations are considered, and if the periods of fluctuation and half-rotation are not 

multiple, then for each angular position of the rotating waveplate the amount of samples 

collected is representative of the time-varying SOP generated by the fluctuations in the 

device. The polarimeter averaging time considered in the paper, 600 ms, is much larger than 

actually needed to obtain fully stable and repeatable SOP measurements. Note that the time 

period (frequency) for the fluctuations in our PA-LCoS device is 8.66 ms (120 Hz). 

In Figs. 1(a) and 1(b) we show respectively the diagrams for the characterization setup 

associated with the two generic working geometries used with the PA-LCoS display, that is, 

with and without a beam-splitter in front. The unexpanded beam from a laser (He-Ne laser at 

633 nm in this work) incides onto a polarizer with its transmission axis at + 45° with respect 

to the laboratory vertical (X-axis for the right-handed system used in this work). When using 

polarized laser light an additional waveplate must be inserted before the polarizer to secure 

that enough light traverses the polarizer. In Fig. 1(a) light impinges perpendicularly to the 

LCoS and a non-polarizing cube beam-splitter (model 10BC16NP.4, from Newport, in this 

work) separates the input and the reflected beam, which eventually is detected by the 

polarimeter head. Thus, strictly speaking the characterization corresponds to the combination 

of LCoS and cube. In Fig. 1(b) the polarimeter head measures directly the reflected beam 

from the LCoS. We note that the director axis (extraordinary axis) in nematic based LCoS 
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generally corresponds to the slow axis. In the present LCoS the director axis is along the 

horizontal. We may appreciate the simplicity of these setups. 

Laser
633 nm

LCoS Beam
Splitter

Linear
Polarizer

Quarter
Waveplate

Polarimeter

Laser
633 nm

LCoS

Linear
Polarizer

Quarter
Waveplate

Polarimeter

(a)

(b)
 

Fig. 1. Experimental setup used to measure linear retardance and flicker with the averaging 

Stokes polarimetric technique and for the two generic working geometries: (a) with a beam-

splitter, and (b) without. 

In Figs. 2(a) and 2(b) we show respectively for the two sequences the average Stokes 

vector components and the DoP measured with the Stokes polarimeter and for different gray 

level values addressed onto the LCoS device. These measurements have been obtained for the 

working geometry with a beam-splitter in front of the LCoS (see Fig. 1(a)). From the results 

in Fig. 2(a) we note that parameter S1 is close to zero in clear confirmation of the result in Eq. 

(5). We also see that DoP, Fig. 2(b), is larger for the 5-5 sequence. 

In Fig. 3, we calculate the fluctuation amplitude and the average retardance. We observe 

that the retardance range is about 360° for both sequences with a very good linearity. The 

fluctuation amplitude is clearly smaller for the 5-5 sequence with maximum values about 30°. 

The various jumps encountered in the fluctuation amplitude in both sequences reveal the 

pulsed nature of the digital signal addressed onto the LCoS: more jumps are seen in the 18-6 

sequence. For DoP>1, non-physical values, we consider that fluctuation amplitude is 0°. 
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Fig. 2. Experimental values for the: (a) Stokes parameters; (b) the DoP. For input SOP linear at 

+ 45°, λ = 633nm, and for sequences “18-6 633 2pi linear” (dashed) and “5-5 633 2pi linear” 

(continuous). For working geometry with a cube beam-splitter in front of the PA-LCoS. 

 

Fig. 3. Calculated values for the average retardance and the fluctuation amplitude for λ = 

633nm, and for sequences “18-6 633 2pi linear” (dashed) and “5-5 633 2pi linear” 

(continuous). For working geometry with a cube beam-splitter in front of the PA-LCoS. 

Laser
633 nm

Linear
Polarizer

Radiometer

Linear
Polarizer

Beam
Splitter

LCoS Beam
Splitter

Linear
Polarizer Quarter

Waveplate

Radiometer

Oscilloscope

 

Fig. 4. Experimental setup for the extended linear polarimeter [18], which further enables to 

measure instantaneous values. For working geometry with a cube beam-splitter. 

Recently we have also proposed another technique to obtain both retardance and flicker 

values [18] based on an adapted version of the classical linear polarimeter, which we have 

called the extended linear polarimeter. A more detailed characterization can be obtained by 
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the average Stokes polarimetry, however the extended linear polarimeter can be more widely 

applied by any lab since only two linear polarizers are needed. At this moment we want to 

take advantage that this setup also enables the measurement of the instantaneous values for 

the retardance as we showed in [18]. We want to compare the average Stokes polarimetry 

results against the values calculated from the instantaneous values of retardance. 

In Fig. 4 we show the experimental setup corresponding to the linear polarimeter [18], 

where the necessary input and output linear polarizers to be used in parallel or crossed 

configuration can be seen. The working geometry considered in the figure is the perpendicular 

one where a non-polarizing cube beam splitter is used to separate the incident and reflected 

beams. There is a second one to enable amplitude division of the reflected beam so that 

crossed and parallel intensity can be measured simultaneously. Instantaneous measurements 

can be obtained by connecting the two radiometers to the two channels of an oscilloscope. 

Table 1. Average retardance and fluctuation amplitude obtained with the average Stokes 

polarimetric method (columns 3 and 4) and with the instantaneous measurements 

(colums 5 and 6). 

   Avrg. Stokes Pol.  Instant. Values 

Seq. Gray 

level 

 Avrg. 

ret. (°) 

Fluct. 

Amp. (°) 

 Avrg. 

ret. (°) 

Fluct. 

Amp. (°) 

18_6 0  409 0  399 2 

 100  243 40  231 37 

 200  101 49  94 54 

 255  36 35  36 36 

5_5 0  420 0  414 1 

 100  263 18  257 24 

 200  113 28  113 37 

 255  39 29  44 44 

In Table 1 we show the values for the average retardance and its fluctuation amplitude 

obtained by means of average Stokes polarimetry (columns 3 and 4), plotted in Fig. 3, against 

the corresponding values calculated from the instantaneous values of retardance (columns 5 

and 6), and measured with the setup in Fig. 4. The results have been obtained for the two 

sequences and for a series of applied gray levels sampling the whole voltage range. There 

exists a good agreement between the average Stokes polarimetry method results and the ones 

related with instantaneous values measurement. This provides an alternative validation of the 

average Stokes polarimetry characterization technique proposed, which complements the 

validation already presented in [20], which was based on its capability to predict the Stokes 

vector for the SOP reflected by the LCoS for arbitrary input SOPs. 

3.2 Robustness analysis 

Next we will consider the electrical configuration “5-5 2pi linear 633nm”, which is optimized 

for 633nm laser wavelength, enabling 360° of retardance dynamic range. The working 

geometry corresponds to quasi-perpendicular incidence at 3°, i.e. no beam-splitter (Fig. 1(b)). 

To evaluate the repeatability of the average Stokes polarimetric method we have taken a total 

of 10 successive measurements under the same conditions: this means that first we aligned all 

devices and without changing conditions we have taken the data several times in a row. The 

ten series of measurements were taken in a short time interval and environmental conditions 

stayed stable. We evaluate the associated standard deviation as the figure of merit to estimate 

the repeatability. 

In Figs. 5(a) and 5(b) we plot respectively the average retardance (10 curves) and its 

associated standard deviation. Then in Figs. 5(c) and 5(d) we show the equivalent plots for the 

fluctuation amplitude (10 curves) and its associated standard deviation. We see that the results 

for the various series for the average retardance and for the fluctuations amplitude, Figs. 5(a) 

and 5(c), are very similar, practically overlapping, with standard deviations, Figs. 5(b) and 

5(d), around 1-2°. 
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Fig. 5. Evaluation of the repeatability. (a) Average retardance (10 curves), and (b) its 

associated standard deviation. (c) Fluctuation amplitude (10 curves), and (d) its associated 

standard deviation. For λ = 633nm, sequence “5-5 633 2pi linear”, and incidence at 3°. 

Next we have analyzed the reproducibility of the method by comparing 3 different series 

of measurements acquired in different years. The experimental setup has been rebuilt from 

scratch in each case, so as to evaluate the deviations that can be introduced by the alignment 

tolerances produced by the human operator. 

 

Fig. 6. Evaluation of the reproducibility. (a) Average retardance and (b) fluctuation amplitude 

results. The setup has been rebuilt from scratch in each case. For λ = 633nm, sequence “5-5 

633 2pi linear”, and incidence at 3°. 

In Figs. 6(a) and 6(b) we see the results obtained respectively for the average retardance 

and the fluctuations amplitude for the three measurements. We remark that we have no 

temperature room control, which may affect the liquid crystal properties, so the small 

difference that we observe may be partly due to different temperature, together with the 

inherent uncertainty that we introduce in the orientation of the polarizer or in the alignment of 

the other various elements in the setup. In any case curves practically overlap in the case of 
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average retardance, Fig. 6(a), and are also quite similar in the case of the fluctuations 

amplitude, Fig. 6(b). 

The results in Figs. 5 and 6 provide an overview of the robustness of the method, which is 

very high for the average retardance measurements, and still quite remarkable in the case of 

the fluctuations amplitude measurements. 

4. Evaluation of sequence formats and working geometries 

Once the technique has been presented and its robustness has been analyzed, next we consider 

the characterization of the PA-LCoS for the two electrical sequences and in three typical 

working geometries [21]: perpendicular incidence with a beam-splitter in front (see Fig. 1(a)), 

quasi-perpendicular incidence at about 3°, and right-angle (45°) incidence. In the two latter 

geometries no beam-splitter is necessary in front of the LCoS, see Fig. 1(b). We have added a 

fourth characterization geometry corresponding to the setup used in previous Fig. 4 for the 

instantaneous measurements, where two beam-splitters are considered. In this case the 

polarimeter is located in transmission after the second beam-splitter. We want to estimate the 

influence of the insertion of the second beam-splitter. This is used not only for the 

instantaneous measurements but also to ease the measurements acquisition in the extended 

linear polarimeter, proposed in [18]. 

To evaluate the applicability of the average Stokes polarimetric method for each of the 

four geometries, first we evaluate if the Stokes parameter S1 is close to zero, as given by the 

model, Eq. (5) in Section 2. In Figs. 7(a) and 7(b) we plot the results for S1 vs. gray level 

respectively for the electrical configurations “18-6 633 2pi linear” and “5-5 2pi linear 

633nm”. The curves for each of the four geometries are conveniently identified in the legend 

in the graphs. We see that the parameter S1 lies in all the geometries within ± 0.1, which is a 

small value and the average Stokes polarimetric method may be applied. We note that the S1 

values are a bit larger in the geometries at right-angle (45° incidence) and with 2 cubes, 

probably due to the effect produced in the first case by the Fresnel transmission coefficients, 

and in the second case to the cumulative polarization effects generated by the two beam-

splitter cubes. 

 

Fig. 7. Stokes parameter S1 for the two sequences and the 4 geometries: (a) Sequence “18-6 2pi 

linear 633nm”, (b) Sequence “5-5 2pi linear 633nm”. 

In Figs. 8(a) and 8(b) we show for the electrical configuration “18-6 633 2pi linear” 

respectively the results obtained for the average retardance and the fluctuation amplitude and 

for the four geometries considered. On the X-axis we have also added on the left of the gray 

level values the OFF-state corresponding to the LCoS switched off. In Fig. 8(a) we see that all 

the average retardance curves practically overlap with each other except the one 

corresponding to 45° incidence whose dynamic range is clearly smaller: 257° versus 370° for 

the other 3 geometries. This dynamic range can be increased and the linearity enhanced 

applying the methodology we present in [16]. We also note that for these three geometries the 
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retardance is about 20° higher for the OFF-state than for the 0-gray level, i.e. the LC 

molecules are already experiencing an applied voltage at 0-gray level. 

In Fig. 8(b) we see that once again the results for geometry at 45° incidence are different 

from the ones for the other three geometries: at 45° incidence fluctuation amplitude is lower 

than about 40° whereas the other geometries reach values over 50°. We also note that in the 

OFF-state both at 45° incidence and with 2-cubes the value for the fluctuation amplitude is 

not zero. These non-zero values are not actually related with electrical fluctuations but they 

show that the DoP is smaller than one. The origin is not clear but it could be due to a larger 

influence of multiple reflections at these geometries. Small vibrations easily change path 

lengths and produce fluctuations in the detected SOP. 

 

Fig. 8. Results for the 4 geometries and for the sequence “18-6 2pi linear 633nm”: (a) Average 

retardance, (b) Fluctuation amplitude. 

In Figs. 9(a) and 9(b) we show the graphs equivalent to the ones presented in previous Fig. 

8 but now corresponding to electrical configuration “5-5 633 2pi linear”. As in previous figure 

we see that the 45° incidence geometry shows less retardance dynamic range and smaller 

fluctuation retardance with respect to the three geometries which show a very similar 

behaviour. Now in Fig. 9(a), for these three geometries, there is a smaller difference between 

the OFF-state and the 0-gray level retardance values, about 10°. In Fig. 9(b), as in previous 

Fig. 8(b), we see the non-zero value in the OFF-state for the fluctuation amplitude both at 45° 

incidence and with 2-cubes. 

 

Fig. 9. Results for the 4 geometries and for the sequence “5-5 2pi linear 633nm”: (a) Average 

retardance, (b) Fluctuation amplitude. 

5. Conclusions 

We can conclude that average Stokes polarimetry is a valid and robust method to characterize 

the average retardance and its flicker amplitude. We have showed that the results show a high 

degree of repeatability and reproducibility. The time interval between measurements and 

uncertainties in the alignment of all elements in the setup do not produce significant 

deviations. 
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We have also shown results for different system architectures, angular incidences, and for 

different digital sequence formats. This detailed analysis permits to select the most convenient 

electrical configuration and system architecture for the LCoS in a specific application. From 

this analysis we have seen that the configuration “5-5 633 2pi linear” shows smaller 

fluctuation amplitudes. We have also seen that the 45° incidence geometry provides a smaller 

retardance dynamic range, whereas the other 3 geometries practically overlap their average 

retardance curves and further they show a close behavior in their fluctuation amplitudes. With 

respect to the addition of a second cube beam-splitter, useful in the instantaneous 

measurements setup and in the extended linear polarimeter [18], we have seen that it does not 

noticeably influence the results. 

From a more general perspective, the characterization provided by the average Stokes 

polarimetric technique may be useful, on one side, to refine the understanding of the 

dynamics of liquid crystal devices and, on the other side, to widen their applicability in 

polarization control, as with experiments dealing with unconventional polarization states [24], 

where the predictive capability of our Mueller-Stokes model already demonstrated in [20] 

may proof very useful to calculate the reflected SOPs by the LCoS. 
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