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Abstract

We compute the number of summands in q-averages of norms
needed to approximate an Euclidean norm. It turns out that these
numbers depend on the norm involved essentially only through the
maximal ratio of the norm and the Euclidean norm. Particular atten-
tion is given to the case q = ∞ (in which the average is replaced with
the maxima). This is closely connected with the behavior of certain
families of projective caps on the sphere.

1. Introduction.

The starting point of this paper is a result from [MS1] which we would
like to recall. Denote by | · | the canonical Euclidean norm on IRn. Given
another norm ‖ · ‖ on IRn denote by a and b the smallest constants such that

(1.1) a−1|x| ≤ ‖x‖ ≤ b|x|, for all x ∈ IRn.

For X = (IRn, ‖ · ‖), let M = M(X) =
∫
Sn−1 ‖x‖dν(x) (where ν is the

normalized Haar measure on the Euclidean sphere). Let, as in [MS1], k =
k(X) ≤ n be the largest integer such that

µGn,k

({
E ;

M

2
|x| ≤ ‖x‖ ≤ 2M |x|, for all x ∈ E

})
> 1− k

n+ k
,
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where µGn,k
is the normalized Haar measure on the Grassmanian Gn,k, and

let t = t(X) be the smallest integer such that there are orthogonal transfor-
mations u1, . . . , ut ∈ O(n) with

(1.2)
M

2
|x| ≤ 1

t

t∑
i=1

‖uix‖ ≤ 2M |x|, for all x ∈ IRn .

For reasons that will become clear shortly, we shall also denote t by t1.
Combining Theorem 1.1 of [MS1] with the Observation following Theorem
2.2 there, we have

b ≈M

√
n

k(X)
≈M

√
t1,

or let us write this in the form

t1 ≈ (b/M)2.

(Here and elsewhere in this paper, α ≈ β means cβ ≤ α ≤ Cβ for some
absolute constants 0 < c < C < ∞.) We shall see below that this last
equivalence contains a lot of information about the set K ∩M−1Sn−1, where
K is the unit ball of X.

We would like to investigate in a similar manner the sets K ∩ rSn−1

for r ∈ (b−1,M−1). For that purpose we need to extend the result above
to include `q-averages of the norms ‖uix‖. First extend the definitions as
follows: For 0 < q <∞, let Mq = Mq(X) = (

∫
Sn−1 ‖x‖qdν(x))1/q and let tq =

tq(X) be the smallest integer such that there are orthogonal transformations
u1, . . . , ut ∈ O(n) with

Mq

2
|x| ≤

(
1

t

t∑
i=1

‖uix‖q

)1/q

≤ 2Mq|x|, for all x ∈ IRn .

As is well known (and follows from the concentration of the function ‖x‖
on Sn−1), for q not too large, Mq is almost a constant, as a function of q. It
is also clear that as q → ∞ Mq → b. In Statement 3.1 below we show that
the behavior of Mq can be described more precisely:

(i) Mq ≈M1, for 1 ≤ q ≤ k(X),

(ii) Mq ≈ b
√

q
n
, for k(X) ≤ q ≤ n,
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(iii) Mq ≈ b, for q > n.

The main generalization of the result from [MS1] mentioned above is:

Theorem 3.4.

(i) tq ≈ t1, for 1 ≤ q ≤ 2,

(ii) t2/q
q ≈ t1

(
M1

Mq

)2
, for 2 ≤ q.

Consequently,

(iii) t2/q
q ≈ t1 ≈

(
b

M1

)2
, for 2 ≤ q ≤ k(X),

(iv) t2/q
q ≈ n

q
, for k(X) ≤ q ≤ n.

Moreover, with the appropriate choice of constants (implicit in the notation
≈), a random choice of the orthogonal transformations u1, . . . , utq works with
high probability. So, essentially, a random choice of orthogonal transforma-
tions gives the same result as the best choice.

We now turn to the case q = ∞ in which case the norm max1≤i≤T ‖u−1
i x‖

corresponds to the body K∞,T = K∞,T (u1, . . . , uT ) = ∩T
i=1ui(K). Fix r with

b−1 < r ≤M−1 and let T (r) = T (r,X) be the smallest T for which there are
T orthogonal transformations u1, . . . , uT with K∞,T (u1, . . . , uT ) ⊆ rD. We

shall assume that b/M ≤ C
√
n/ log n for some absolute constant C. This

can be viewed as a condition of non-degeneracy, i.e., K is not an essentially
lower dimensional body. Recall also that any symmetric convex body can be
transformed, via a linear transformation, to a body satisfying this condition.
In fact, it is enough to transform the body in such a manner that for the
resulting body the Euclidean ball is the ellipsoid of maximal volume (see,
e.g. the proof of Th. 5.8 of [MS2]). Theorem 4.1 below is a refinement of the
following

Theorem. Under the non-degeneracy condition above, for some universal
constants 0 < c < C <∞ and for r in the interval [2b−1, (2M)−1],

exp
(
cn

r2b2

)
≤ T (r) ≤ exp

(
Cn

r2b2

)
.
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The geometric interpretation of this theorem is that, for r as above and
t ≥ exp

(
Cn
r2b2

)
, there are t rotations of the set rSn−1 \K whose union covers

rSn−1 (and one can choose them randomly) while, for t ≤ exp
(

cn
r2b2

)
no

t rotations provide such a covering. It came as a surprise to us that the
parameters involved in the Theorem and its geometric interpretation depends
on the body K only through b and M . Moreover, the dependence on M is
only to determine the range of r’s for which the statement holds.

Next we would like to observe the relation between this theorem and
Theorem 3.4. For r in the range above, pick q such that Mq = r−1. Note
that, by the formulas for Mq above, q ≈ n

r2b2
. It then follows from the

formulation of Theorem 3.4 (iv), that log(tq) ≈ n log(rb)
r2b2

. Notice the similarity
between the two approximate formulas for t and tq.

The results described up to now are contained in sections 3 and 4. In
particular, in section 4 we treat the case q = ∞. In section 2, we gathered
some of the more geometric preparatory results. It contains (Lemma 2.2.1)
a separation lemma in a quasi convex setting. It also contains a theorem
(2.3.1), which is an adaptation of Lemma 2.1 of [MS1], expressing b of (1.1)
in terms of the corresponding quantity for the q-averaged norm (or quasi-
norm) (1.2). We also give some geometric interpretation of this lemma,
pertaining to the behavior of family of caps on the sphere. Let us mention
here a curious application of the material in section 2.

Application. Let ‖ · ‖1, ..., ‖ · ‖T be norms on IRn. Then

max
Sn−1

(‖x‖1 · ‖x‖2 · ... · ‖x‖T ) ≥ max
Sn−1

‖x‖1

T
· ... ·max

Sn−1

‖x‖T

T
.

In section 5 we adapt these results to the quasi-normed case and to the
range 0 < q < 1.

Recall that a body K is said to be quasi-convex if there is a constant C
such that K +K ⊂ CK, and given a p ∈ (0, 1), a body K is called p-convex
if for any λ, µ > 0 satisfying λp + µp = 1 and for any points x, y ∈ K the
point λx+µy belongs to K. Note that for the gauge ‖ · ‖ = ‖ · ‖K associated
with the quasi-convex (p-convex) body K the following inequality holds for
all x, y ∈ IRn

‖x+ y‖ ≤ C max{‖x‖, ‖y‖} (‖x+ y‖p ≤ ‖x‖p + ‖y‖p )
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and this gauge is called the quasi-norm (p-norm) if K = −K. In particular,
every p-convex body K is also quasi-convex and K + K ⊂ 21/pK. A more
delicate result is that for every quasi-convex body K, with the gauge ‖ · ‖K

satisfying
‖x+ y‖K ≤ C (‖x‖K + ‖y‖K) ,

there exists a q-convex body K0 such that K ⊂ K0 ⊂ 2CK, where 21/q = 2C.
This is the Aoki-Rolewicz theorem ([KPR], [R], see also [K], p.47). In this
paper by a body we always mean a centrally-symmetric compact star-body,
i.e. a body K satisfies tK ⊂ K for any t ∈ [−1, 1].

Section 5 deals with averaging of general quasi-convex bodies while section
6, following [MS1], with averaging quasi-convex bodies in special positions.

Throughout this paper, c, C always denote absolute constants. These
constants might be different in different instances.

We thank the staff of the MSRI where part of this research has been
conducted while all three authors visited there. The second named author
worked on this project during his stay in IHES also. The first named author
thanks B.M. Makarov for useful conversations concerning the material of this
paper.

An extended abstract of this work appeared in [LMS].

2. Behavior of family of projective caps on the sphere.

In this section we introduce a few auxiliary statements concerning choices
of a special vectors on the sphere possessing certain special properties with
respect to a given family of projective caps on the sphere. These statements
will serve as a technical tool mainly in the next section, but we also use them
in the proof of Theorem 2.3.1. Some geometric interpretation of these state-
ments regarding the behavior of families of caps will be discussed towards
the end of this section.

2.1. We begin with a standard inequality.

Lemma 2.1.1. Let {xi} be a set of vectors in IRn. Then

sup
y∈Sn−1

(∑
i

|〈y, xi〉|p
)1/p

≥


supi |xi| for p ≥ 2,(∑

i |xi|
2p

2−p

) 2−p
2p

for 1 ≤ p < 2.
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Equality holds if and only if the {xi} are mutually orthogonal. Moreover, for
every p > 0 we have

sup
y∈Sn−1

(∑
i

|〈y, xi〉|p
)1/p

≥ c−1
0 · k−

1
2 ·
(∑

i

|xi|p
) 1

p

,

where k is the dimension of Y = span{xi}i and c0 =
√

2eγ < 2 (γ is the
Euler constant.)

Proof: Assume first p ≥ 1 and let q be such that 1/q + 1/p = 1. Then

A = sup
y∈Sn−1

(∑
i

|〈y, xi〉|p
)1/p

= sup
y∈Sn−1

sup
‖a‖q=1

〈y,
∑

i

aixi〉

= sup
‖a‖q=1

∣∣∣∣∣∑
i

aixi

∣∣∣∣∣ = sup
‖a‖q=1

max
εi=±1

∣∣∣∣∣∑
i

εiaixi

∣∣∣∣∣
≥

√
sup
‖a‖q=1

∑
i

a2
i |xi|2

by the parallelogram equality. Here a = {ai}i and ‖ · ‖q denotes norm in lq.
Equality holds if and only if the {xi} are mutually orthogonal. The desired
result follows by duality.

Assume now p > 0. Let ν be the normalized rotation invariant measure
on the Euclidean sphere Sk−1 = Y ∩ Sn−1. Then

Ap = sup
y∈Sn−1

(∑
i

|〈y, xi〉|p
)
≥

∫
Sk−1

∑
i

|〈y, xi〉|p dν(y).

There is an absolute constant c0 such that

(2.1) c0

 ∫
Sk−1

|〈y, xi〉|p dν(y)


1/p

≥

 ∫
Sk−1

|〈y, xi〉|2 dν(y)


1/2

= |xi| · k−1/2.

Therefore,
Ap ≥ c−p

0 k−p/2
∑

i

|xi|p,

which proves the lemma. 2
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Remarks.
1. In fact c0 can be exactly computed through the Γ-function and estimated
by c0 =

√
2eγ < 2.

2. A straightforward computation gives, for p > 1, ∫
Sk−1

|〈y, xi〉|p dν(y)


1/p

≥ c

min (p, k)
∫

Sk−1

|〈y, xi〉|2 dν(y)


1/2

.

Thus, for p > 1, we have also

sup
y∈Sn−1

(∑
i

|〈y, xi〉|p
)1/p

≥ c

√
min (p, k)

k
·
(∑

i

|xi|p
) 1

p

.

An immediate corollary is:

Corollary 2.1.2. Let {xi}T
i=1 be a set of vectors on Sn−1. Then there exists

a y ∈ Sn−1 such that

(
1

T

∑
i

|〈y, xi〉|p
)1/p

≥


T−1/p for p ≥ 2,
T−1/2 for 1 ≤ p < 2,
c−1
0 T−1/2 for 0 < p < 1.

2.2. The following lemma can be viewed as “non-linear” form of the Hahn-
Banach theorem for p-convex sets.

Lemma 2.2.1. Let ‖ · ‖ be a p-norm. Let x0 ∈ Sn−1 be vector such that

‖x0‖ = b = max
x∈Sn−1

‖x‖.

Then

‖x‖ ≥
(
p

2

)1/p

· b ·
(
〈x, x0〉
|x|

)−1+2/p

· |x|

for any x ∈ IRn.

Proof: Denote the unit ball of ‖ · ‖ by K and the unit ball of | · | by D. Fix
some α ∈ (0, π/2) and let x be a vector in IRn such that 〈x, x0〉 = |x| sinα.
Denote r = 1/b then rD ⊆ K. To prove the claim we are going to find a
lower bound on |x| which will ensure that x 6∈ K. For that we represent the
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vector νx0 for some ν as a p-convex combination of x and some y ∈ rD. The
p-convexity of K and the maximality of b imply then that, if ν > r, then
x 6∈ K.

Without loss of generality we can assume that n = 2, x0 = (0, 1), x =
(x1, x2) = |x|(cosα, sinα). Choose a vector (v, w) = r(cos β, sin β), where β
∈ (0, π/2) will be specified later.

By maximality of b the point y = (−v, w) ∈ K. Thus if x ∈ K then
λ1/p(x1, x2) + (1− λ)1/p(−v, w) ∈ K for any 0 < λ < 1. Take

λ =
vp

xp
1 + vp

then

λ1/p(x1, x2) + (1− λ)1/p(−v, w) =

(
0, |x| r sin (α + β)

(|x|p cosp α + rp cosp β)1/p

)
∈ K.

Hence, by the definition of x0 we have, if x ∈ K,

|x| r sin (α + β)

(|x|p cosp α + rp cosp β)1/p
≤ r,

or, as long as, sinp(α + β) > cosp α,

|x|p ≤ rp cosp β

sinp(α + β)− cosp α
.

Taking β = π
2
− α, we get

|x|p ≤ rp sinp α

1− cosp α

and, since 1− cosp α = 1− (1− sin2 α)
p
2 ≥ p

2
sin2 α,

|x| ≤ r(2/p)1/p(sinα)1− 2
p = r

(
2

p

)1/p (〈x, x0〉
|x|

)1− 2
p

and the lemma is proved. 2

2.3. Corollary 2.1.2 and Lemma 2.2.1 imply the following extension of
Lemma 2.1 of [MS1].
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Theorem 2.3.1. Let u1, ..., uT be orthogonal operators on IRn. Let ‖ · ‖ be
a p-norm on IRn and for some q > 0 put

|||x||| =

(
1

T

T∑
i=1

‖uix‖q

)1/q

.

Assume |||x||| ≤ C|x| for every x in IRn and some constant C. Then

‖x‖ ≤ C(p, q)C|x| ·
{
T 1/q for q ≥ 2 p

2−p
,

T 1/p−1/2 for q < 2 p
2−p

,

where C(p, q) = (C(q))
2−p

p C1(p) with

C(q) =

{
1 for q ≥ p

2−p
,

c0 for q < p
2−p

,
C1(p) =

{
1 for p = 1,
(2/p)1/p for p < 1

and c0 < 2 is the same number as in Lemma 2.1.1.

The following two corollaries follow immediately from the statement of
the theorem; the second one, by sending q to zero.

Corollary 2.3.2. Under the condition of Theorem 2.3.1,

(i) if p = 1, 0 < q <∞ then

‖x‖ ≤ C(q)C|x| ·
{
T 1/q for q ≥ 2,
T 1/2 for q < 2,

for all x ∈ IRn,

(ii) if 0 < p ≤ 1, q = 2, i.e. if

|||x||| =

(
1

T

T∑
i=1

‖uix‖2

)1/2

≤ C · |x|,

then ‖x‖ ≤ C1(p)CT
1
2 |x| for all x ∈ IRn.

Corollary 2.3.3. Let u1, ..., uT be orthogonal operators on IRn and let ‖ · ‖
be a norm on IRn then

‖x‖ ≤ c0
√
T

(
max
x∈D

T∏
i=1

‖uix‖
)1/T

|x|, for all x ∈ IRn.
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Proof of Theorem 2.3.1: Let x0 ∈ Sn−1 be a vector such that

‖x0‖ = b = max
x∈D

‖x‖

and set xi = u−1
i x0. By Corollary 2.1.2 there is a y ∈ Sn−1, such that

(
1

T

∑
i

|〈y, xi〉|q
2−p

p

)1/q

≥


T−1/q for q 2−p

p
≥ 2,

T−1/p+1/2 for 1 ≤ q 2−p
p
< 2,

c
p−2

p

0 T−1/p+1/2 for q 2−p
p
< 1.

Hence, using Lemma 2.2.1,

C|y| = C ≥
(

1

T

T∑
i=1

‖uiy‖q

)1/q

≥
(

(C1(p))
−q b

q

T

∑
i

|〈uiy, x0〉|q
2−p

p

)1/q

= (C1(p))
−1b

(
1

T

∑
i

|〈y, xi〉|q
2−p

p

)1/q

≥ (C1(p))
−1b(C(q))

p−2
p ·

{
T−1/q for q ≥ 2 p

2−p

T−1/p+1/2 for q < 2 p
2−p

,

which implies the theorem. 2

2.4. Some of the results above have what seems to be an interesting
geometric interpretation.

Fix a set of points {xi}, 1 ≤ i ≤ T , on the Euclidean sphere Sn−1, let
b ≥ 1 and define the family of seminorms

pi(x) = b|〈xi, x〉| , 1 ≤ i ≤ T .

Choose εi = ±1 such that the Euclidean norm of

z =
T∑

i=1

εixi

is maximal. Denote λ = |z| and let y = z/λ ∈ Sn−1.
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Lemma 2.4.1.

(i) √
T ≤ λ ≤ T,

λ =
√
T if and only if the points {xi} are mutually orthogonal and

λ = T if and only if xi = ±x1 for every i.

(ii)

〈y, εixi〉 ≥ 1/λ for every i and
T∑

i=1

pi(y) = bλ.

(iii)
b

λ
≤ pi(y) ≤ b, for all i.

Proof: (i) Since

|z|2 ≥ Aveεi=±1

∣∣∣∣∣
T∑

i=1

εixi

∣∣∣∣∣
2

= T

we get the lower bound. The upper bound is obvious.
(ii) By the maximality of z, 〈z − εixi, εixi〉 ≥ 0. Hence 〈z, εixi〉 ≥ 1 for

every i. Clearly,

T∑
i=1

pi(y) = b
T∑

i=1

〈y, εixi〉 = b 〈y, z〉 = bλ.

(iii) follows from (ii) and the definitions. 2

The following claim gives some information concerning the behavior of
family of projective caps on the Euclidean sphere.

Claim 2.4.2. Denote

Ai(t) =
(
tSn−1

)
∩ {x | pi(x) ≥ 1}

and
Ai = Ai(1) = Sn−1 ∩ {x | pi(x) ≥ 1}, 1 ≤ i ≤ T.

Then
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(i) the projective caps Ai (λ/b), 1 ≤ i ≤ T , have a common point

(ii) for b > 1 at least

k ≥ bλ− T

b− 1

of the projective caps Ai have a common point.

Proof: Lemma 2.4.1(iii) implies that λ
b
y ∈ Ai(λ/b) for all 1 ≤ i ≤ T . Let

k = |{i | pi(y) ≥ 1}|. Then, by Lemma 2.4.1(ii) and (iii),

b λ =
T∑

i=1

pi(y) < T − k + bk,

from which (ii) follows easily. 2

Remark. The case T = 2 is easier. One may directly check that A1(
√

2/b)∩
A2(

√
2/b) 6= ∅. We leave this easy exercise to the reader.

Corollary 2.4.3. Let ‖ · ‖1, ..., ‖ · ‖T be norms on IRn. Then

max
Sn−1

(‖x‖1 · ‖x‖2 · ... · ‖x‖T ) ≥ max
Sn−1

‖x‖1

T
· ... ·max

Sn−1

‖x‖T

T
.

Proof: Without loss of generality we may assume that

bi = max
Sn−1

‖x‖i = 1

for all i ≤ T . Let xi ∈ Sn−1, for i ≤ T , be such that ‖xi‖i = 1. By Claim
2.4.2 there exist an x ∈ ⋂Ai(λ). Note that x ∈ Ai(λ) implies that ‖x‖i ≥ 1,
so

max
Sn−1

(‖y‖1 · ... · ‖y‖T ) ≥
T∏

i=1

(‖x‖i/λ) ≥ λ−T .

Lemma 2.4.1(i) now gives the result. 2

For T > 3 we have a better result.
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Proposition 2.4.4. Let ‖ · ‖1, ..., ‖ · ‖T be norms on IRn. Then

max
Sn−1

(‖x‖1 · ‖x‖2 · ... · ‖x‖T ) ≥
(
c0
√

min{T, n}
)−T

max
Sn−1

‖x‖1 · . . . ·max
Sn−1

‖x‖T .

Proof: Let xi ∈ Sn−1 be such that

‖xi‖i = bi = max
Sn−1

‖x‖i.

Let k be the dimension of the span of the xi’s which, we assume without loss
of generality, is IRk. Then

sup
y∈Sn−1

T∏
i=1

|〈y, xi〉| = exp

(
sup

y∈Sk−1

ln

(
T∏

i=1

|〈y, xi〉|
))

≥ exp

(∫
y∈Sk−1

T∑
i=1

ln(|〈y, xi〉|) dν(y)

)

=
T∏

i=1

exp
(∫

y∈Sk−1
ln(|〈y, xi〉|) dν(y)

)

≥
T∏

i=1

c−1
0

(∫
y∈Sk−1

|〈y, xi〉|2 dν(y)
)1/2

=
(
c0
√
k
)−T

,

where the last inequality follows from (2.1) and c0 is the same constant as in
Lemma 2.1.1. The fact, already used above, that bi|〈y, xi〉| ≤ ‖y‖i concludes
the proof. 2

Remarks. (i) It should be clear from the discussion above that the extreme
case in Corollary 2.4.3 and Proposition 2.4.4 is attained for the seminorms
‖ · ‖i = |〈xi, ·〉|. The optimal constant in the right hand side of the inequality
of Proposition 2.4.4 is thus CT

T where

CT = min
x1,...,xT∈Sn−1

max
x∈Sn−1

(
T∏

i=1

|〈xi, x〉|
)1/T

.

Taking x1, . . . , xT to be orthogonal, if T ≤ n, and an appropriate repitition of
an orthogonal basis, if T > n, and using the inequality betweed the geometric
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and arithmetic means, one gets easily that CT ≤ 2 min{T, n}−1/2, i.e., the
constant in Proposition 2.4.4 is optimal except for the choice of the absolute
constant c0. As one of the referees pointed out it may be of interest to
determine the actual value of CT .
(ii) A related question is the following: Given T and b find the configuration
of T projective caps, Ai = {x ∈ Sn−1 ; b|〈xi, x〉| ≥ 1}, with centers xi ∈ Sn−1,
for which the measure of their intersection is minimal. We remark that it is
not hard to see that even for T << n the extremal situation is not when the
xi are orthogonal. We may even have projective caps {Ai}T

i=1 with orthogonal
centers with non empty intersection but such that ∩T

i=1ui(Ai) = ∅ for some
orthogonal transformations ui, i = 1, . . . , T . The analogous question for
(non-projective) caps was solved by Gromov [G] for T ≤ n. For the best of
our knowledge the case T > n is still open.
(iii) Let ‖ · ‖ be a norm on IRn satisfying (1.1) then, specializing to the two
norms ‖ · ‖ and ‖ · ‖∗, we have the following curious inequalities,

ab ≥ max
Sn−1

‖x‖‖x‖∗ ≥ 1

2
ab.

The formal use of Corollary 2.4.3 gives 1/4 in the right side. However the case
of two norms (i.e. T = 2) is simpler and stronger as we noted in the Remark
after Claim 2.4.2. We may use

√
2 (instead of T = 2) twice in the right

side of the displayed inequality of Corollary 2.4.3 which gives a factor of 1/2.
Simple examples show that 1/2 can not be improved even in two-dimensional
(n = 2) case.

3. q-averages of norms.

In this section we consider averages of norms under unitary rotations.
The expression in Theorem 2.3.1 is a typical one.

We will study a normed spaces equipped, in addition, with an Euclidean
norm, i.e. the spaces X = (IRn, ‖ ·‖, | · |), where ‖ ·‖ is a norm and | · | is some
fixed Euclidean norm on IRn which, without loss of generality, we assume is
the canonical one. The parameter Mq = Mq(X) below was introduced at the
beginning of the Introduction. Throughout this section, as before, we denote

b = ‖Id : (IRn, | · |) −→ (IRn, ‖ · ‖)‖ = max
Sn−1

‖x‖,

i.e. the best possible constant in the inequality ‖x‖ ≤ b|x|, x ∈ IRn.
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Statement 3.1. For 1 ≤ q ≤ n and any normed space X = (IRn, ‖ · ‖)

max

{
M1, c1

b
√
q√
n

}
≤ Mq ≤ max

{
2M1, c2

b
√
q√
n

}
,

where c1, c2 are some absolute constants. Moreover,∣∣∣∣Mq

M1

− 1
∣∣∣∣ ≤ C

b

M1

√
q√
n
.

Proof: By the usual concentration inequalities ([MS2])

ν
({
x ∈ Sn−1 ; |‖x‖ −M1| > t

})
≤ 2 exp

(
−ct2n/b2

)
.

So, ∫
Sn−1

| ‖x‖ −M1|q dν(x) ≤ 2q
∫ ∞

0
tq−1 exp

(
−ct2n/b2

)
dt =

=

(√
cn

b

)−q

2q
∫ ∞

0
sq−1 exp

(
−s2

)
ds ≤ Cq

(
b
√
q√
n

)q

,

where C is an absolute constant. Thus

Mq −M1 ≤ ‖ ‖x‖ −M1 ‖Lq
≤ C

b
√
q√
n
,

which gives the right hand side inequality.
To prove the left hand side inequality, notice that the unit ball K of X

is contained in a symmetric strip of width 1/b. Indeed let x0 ∈ Sn−1 be such
that ‖x0‖ = b then K ⊂ {y| |〈y, x0〉| ≤ 1/b}. It follows that for every t > 0

tK ⊂ {y ; |〈y, x0〉| ≤ t/b}

and {
x ∈ Sn−1 ; ‖x‖ ≥ t

}
⊃ S :=

{
y ∈ Sn−1 ; |〈y, x0〉| ≥ t/b

}
.

So,
ν
({
x ∈ Sn−1 ; ‖x‖ ≥ t

})
≥ ν (S) .

We shall show below that ν (S) ≥ c
√
n t

b
exp (−cnt2/b2), for t ≤ b/3 and

some absolute constant c. Thus, for every t ∈ (b/
√
n, b/3),

Mq ≥ t
(
ν
({
x ∈ Sn−1 ; ‖x‖ ≥ t

}))1/q
≥ c t exp

(
−cnt2

qb2

)
.
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Choosing t = 1
3

b
√

q√
n

we get the result.

It remains to prove that ν (S) ≥ c
√
n t

b
exp (−cnt2/b2) for t ≤ b/3. Let

In =
∫ π/2

−π/2
cosn θdθ,

then 1 ≤ In
√
n ≤

√
π/2 (see, e.g. ch. 2 of [MS2]) and

ν (S) =
2

In−2

∫ π/2

ε
cosn−2 θdθ,

for ε = arcsin (t/b). Hence,

ν (S) ≥
√

2(n− 2)

π

∫ ε1

ε
cosn−2 θdθ ≥ (ε1 − ε)

√
2(n− 2)

π
cosn−2 ε1

for some ε1 ∈ (ε, π/2).
So, if t ≤ b/3, we can chose ε1 = arcsin (2t/b) and obtain

ν (S) ≥ c

√
nt

b
exp

(
−cnt2/b2

)
for some absolute constant c and n > 3. 2

Remarks. 1. Obviously Mq ≤ b. It follows that if b is of order of magnitude
larger than M1 then Mq is of the same order as b if and only if q is larger
than a constant times n.
2. It follows from a recent results of [La] that for every 0 < q < 1 and every
normed space X we have cM1 ≤Mq ≤M1.

Let q > 0 and let T be a positive integer. Denote

Eq,T = E

(
1

T

T∑
i=1

‖xi‖q

)1/q

where E is the expectation with respect to the product measure on (Sn−1)
T

.
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Lemma 3.2. Let 1 ≤ q ≤ n and α = 1/max {q, 2}. There is an absolute
constant C such that for any normed space X = (IRn, ‖ · ‖, | · |)

0 ≤ Mq − Eq,T ≤ C
b
√
q√

nTα
.

In particular, there exists some absolute constant C0 such that, if Tα ≥ C0,
then

Eq,T ≤ Mq ≤ 4/3Eq,T .

Proof: Since (
1

T

T∑
i=1

‖xi‖q

)1/q

≤ 1

Tα

(
T∑

i=1

‖xi‖2

)1/2

we get from concentration inequalities for (Sn−1)
T

(cf. [MS2], 6.5.2) that

Prob

 ∣∣∣∣∣∣
(

1

T

T∑
i=1

‖xi‖q

)1/q

− Eq,T

∣∣∣∣∣∣ > t

 ≤ 2 exp
(
−c t2 nT 2α/b2

)
for some absolute constant c. Following the first part of the previous proof
we get ∥∥∥∥∥∥

(
1

T

T∑
i=1

‖xi‖q

)1/q

− Eq,T

∥∥∥∥∥∥
Lq

≤ C

√
q b√
nTα

.

Thus, for 1 ≤ q ≤ n,

Eq,T =

∥∥∥∥∥∥
(

1

T

T∑
i=1

‖xi‖q

)1/q
∥∥∥∥∥∥

L1

≤Mq =

∥∥∥∥∥∥
(

1

T

T∑
i=1

‖xi‖q

)1/q
∥∥∥∥∥∥

Lq

≤ Eq,T +C

√
q b√
nTα

.

By (3.1)

Mq ≥ c1
b
√
q√
n
.

So, if

c1
b
√
q√
n

> 4C

√
q b√
nTα

,

then

Eq,T ≥ 3C

√
q b√
nTα

,

i.e. if Tα ≥ C0 then Eq,T ≤Mq ≤ 4/3Eq,T . 2

17



Proposition 3.3. LetX = (IRn, ‖ · ‖, | · |) and let q ≥ 1. For every ε ∈ (0, 1)
there exists a constant Cε, depending on ε only, such that if Tα > Cε

b
Mq

,

with α = 1/max {q, 2}, then there exist orthogonal operators u1, ..., uT such
that

(3.1) (1− ε)Eq,T |x| ≤
(

1

T

T∑
i=1

‖uix‖q

)1/q

≤ (1 + ε)Eq,T |x|

for all x ∈ IRn and Eq,T ≤Mq ≤ 4/3Eq,T . Moreover, one can take

Cε = c

√
ln (3/ε)

ε
.

Proof: Let δ = ε/3 and let N be a δ-net in Sn−1. By Lemma 2.6 of [MS2], N
can be chosen with |N | ≤

(
3
δ

)n
. Using again the concentration inequalities

on (Sn−1)
T

([MS2], 6.5.2) we get, for the normalized Haar measure Pr on
(O(n))T , that

Pr

∣∣∣∣∣∣
(

1

T

T∑
i=1

‖Uix‖q

)1/q

− Eq,T

∣∣∣∣∣∣ > δ Eq,T

 ≤ c exp
(
−c δ2E2

q,T nT
2α/b2

)

for all x ∈ Sn−1. Hence, if

T 2α > c
ln (1/δ)

δ2

b2

E2
q,T

,

then, with positive probability {u1, ..., uT} satisfy

(1− δ)Eq,T ≤
(

1

T

T∑
i=1

‖uix‖q

)1/q

≤ (1 + δ)Eq,T

for all x in N . A standard successive approximation argument gives (3.1) for
all x ∈ Sn−1 as long as

Tα > c

√
ln (3/ε)

ε

b

Eq,T

.
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Take

Cε = max

2c

√
ln (3/ε)

ε
, C0

,
where C0 is the constant from Lemma 3.2. By this lemma if Tα > Cε b/Mq

then Mq ≤ 4/3Eq,T and hence

Cε
b

Mq

≥ c

√
ln (3/ε)

ε

b

Eq,T

.

Thus if Tα > Cε b/Mq we get the result. 2

Remark. The case q = 1 is implicitly contained in ([BLM]). The proba-
bilistic estimates there are obtained in a different form (using the fact that
one can estimate the ψ2-norm of sums of independent random variables in
term of the ψ2-norms of the individual variables). A similar proof can also be
used here. One needs to use a generalization, due to Schmuckenschläger ([S]),
of the fact concerning ψ2-norm above to the setting of general ψ2-norms.

We turn now to the study of k(X) and tq(X), which we introduced in the
Introduction.

It was proved in [MS1] that for every n-dimensional normed space X the
product k(X) · t1(X) is of order n, or, in other words, t1(X) ≈ n/k(X) ≈
(b/M1)

2. We will study now the relation between t1(X) and tq(X) for any
q ≥ 1. This will provide a similar asymptotic formula (in n) for tq(X).

Theorem 3.4. There are absolute constants c1, c2 such that for every
normed space X = (IRn, ‖ · ‖)

(i) if q > 2 then

c1 · t1(X) ·
(
M1

Mq

)2

≤ t2/q
q (X) ≤ c2 · t1(X) ·

(
M1

Mq

)2

,

(ii) if 1 ≤ q ≤ 2 then

c1 · t1(X) ≤ tq(X) ≤ c2 · t1(X).
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Proof: By Corollary 2.3.2 we have for every q > 0 that

tq(X) ≥
(

b

2AMq

)s

,

where

A =

{
1 for q ≥ 1,
c0 for q < 1

and s = max {2, q}.

Since t1(X) ≈ (b/M1)
2 we get the left side inequality.

Proposition 3.3 and Lemma 3.2 imply that, if Tα > C b
Mq

, with α =

1/max {q, 2} and C = C1/3 an absolute constant, then there exist orthogonal
operators u1, ..., uT such that

1

2
Mq|x| ≤

2

3
Eq,T |x| ≤

(
1

T

T∑
i=1

‖uix‖q

)1/q

≤ 4/3Eq,T |x| ≤ 2Mq|x|

for all x ∈ IRn. Hence we get that, for q ≤ 1,

tαq (X) ≤ C
b

Mq

.

Thus

t2α
q (X) ≈

(
b

Mq

)2

≈ t1(X)

(
M1

Mq

)2

.

2

4. ∞-averages (intersection of rotated bodies).

Let ‖ · ‖ be a norm and K be the unit ball of this norm. Let q > 0 and,
given orthogonal operators u1, ..., uT , denote

‖x‖qT =

(
1

T

T∑
i=1

‖uix‖q

)1/q

and ‖x‖∞T = max
i≤T

‖uix‖.

To avoid cumbersome notation, we ignore, in this notation, the concrete
choice of the operators {ui}, which of course influence the resulted norms.
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We shall be mostly interested in the dependence of the quantities above on
T . Let KqT denote the unit ball of ‖ · ‖qT . Of course,

K∞T =
T⋂

i=1

u−1
i K

and, for q ≥ lnT , K∞T ⊂ KqT ⊂ eK∞T .
The question we would like to study is: Given r with M−1

1 ≥ r > b−1,
how many orthogonal operators we need in order to have

K∞T ⊂ rD ?

More precisely, what is a correct order of the minimal number T (r) such
that there exist T = T (r) orthogonal operators such that

K∞T ⊂ rD ?

In the following theorem M denotes the median of the function ‖ · ‖ on
the sphere Sn−1. A similar statement with almost identical proof holds when
M denotes the average of ‖ · ‖ (in which case M = M1).

Theorem 4.1. There are absolute constants c1, C1, c2, C2 such that if
b > 1/r > M then

C1 exp

(
n

2

(1− rM)2

(rb)2

)
≤ T (r) ≤ C2n

3/2 log (1 + n)

(
1− 1

(rb)2

)−n/2

.

In particular, if b
2
> 1/r > 2M (say) and M

b
>
√

log n
n

, then

exp

(
c1n

(rb)2

)
≤ T (r) ≤ exp

(
c2n

(rb)2

)
.

Moreover, for

T =

C2n
3/2 log (1 + n)

(
1− 1

(rb)2

)−n/2


(or T = exp
(

c2n
(rb)2

)
in the case b

2
> 1/r > 2M and M

b
>
√

log n
n

), a random
choice u1, ..., uT satisfies, with high probability, K∞T ⊂ rD.
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Proof: Let x0 ∈ Sn−1 be such that ‖x0‖ = b and let θ ∈ [0, π
2
] be such that

cos θ = 1
rb

. For x ∈ Sn−1 and ε ∈ [0, π
2
] denote by S(x, ε) the cap

S (x, ε) =
{
y ∈ Sn−1 ; ρ(y, x) ≤ ε

}
=
{
y ∈ Sn−1 ; 〈y, x〉 ≥ cos ε

}
,

where ρ is the geodesic distance on Sn−1.
For β to be chosen later, choose δ = βθ-net, N , on the sphere Sn−1 (with

respect to the geodesic distance ρ) satisfying |N | ≤
(

3 π
2 δ

)n
(cf. Lemma 2.6

of [MS2]). If, for some set {xi}T
i=1 of points on the sphere, the union of the

caps S (xi, θ − δ) covers N , then the union of the caps {S (xi, θ)}T
i=1 covers

Sn−1. In this case for any orthogonal operators ui with xi = uix0 we have

max
1≤i≤T

‖u−1
i x‖ ≥ b cos θ =

1

r

for any x ∈ Sn−1, i.e. K∞T ⊆ rD.
Let Pr be the normalized Haar measure on (O(n))T . Then

Pr

(
∃x ∈ N ; x /∈

T⋃
i=1

S (uix0, θ − δ)

)
≤

∑
x∈N

Pr

(
x /∈

T⋃
i=1

S (uix0, θ − δ)

)
= |N | ( Pr (x /∈ S (u1x0, θ − δ)))T

= |N | (1− ν (S (x0, θ − δ)))T

≤ exp
(
n ln

(
3π

2 δ

)
− T ν (S (x0, θ − δ))

)
.

So if

T > B :=
n ln

(
3 π
2 δ

)
ν (S (x0, θ − δ))

,

then there are ui such that

max
1≤i≤T

‖u−1
i x‖ ≥ 1

r

for all x ∈ Sn−1. To estimate B note that as we saw in the proof of State-
ment 3.1

ν (S (x0, ε)) ≥
√

2(n− 2)

π
(ε− ε1) sinn−2 ε1,
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for any 0 < ε1 < ε. Therefore

A := ν (S (x0, θ − δ))

≥
√

2 (n− 2)

π
((θ − βθ)− (θ − βθ − αθ)) sinn−2 (θ − βθ − αθ)

as long as α + β < 1. Set α = β = 1
2 n

then, since sin γ θ ≥ γ sin θ for
γ ∈ (0, 1) and θ ∈ [0, π

2
],

A ≥
√

2 (n− 2)

π

(
1− 1

n

)n−2 θ

2n
sinn−2 θ.

Hence,

B =
n ln

(
3π
2δ

)
A

≤
n
(
ln
(

3π
2θ

)
+ ln (2n)

)
A

≤ c n3/2 ln (1 + n)

θ2 sinn−2 θ
.

Since θ2 ≥ 1− cos2 θ for θ ∈ [0, π
2
], we have

B ≤ c n3/2 ln (1 + n)

(1− cos2 θ)n/2

and we get that, for

T =

C2n
3/2 log (1 + n)

(
1− 1

(rb)2

)−n/2


with an absolute constant C2, there are orthogonal operators u1, ..., uT such
that K∞T ⊂ rD.

To prove the lower bound let us point out that if

T⋂
i=1

uiK ⊂ rD

then, for Si = {x ∈ Sn−1 ; rx /∈ int uiK}, where int K is the interior of K,⋃T
i=1 Si covers Sn−1. So, if A := ν (Si) = ν (S) for

S =
{
x ∈ Sn−1 ; ‖x‖ ≥ 1

r

}
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then T · A ≥ 1, i.e. T ≥ 1
A
.

Denote α = 1
r M

− 1, i.e. r = 1
(α+1)M

. Recall the concentration inequality

(see, for example, ch. 2 of [MS2]. See also Proposition V.4 in the same book
for a similar inequality when M denotes the average):

ν ({x ; ‖x‖ > M + bε}) ≤
√
π

8
exp

(
−ε2n− 2

2

)
for any ε > 0. Take ε = M α

b
, then, since bε = 1

r
−M ,

A ≤
√
π

8
exp

(
−M

2α2

b2
n− 2

2

)
=

√
π

8
exp

(
−n− 2

2

(1− rM)2

(rb)2

)
.

Hence

T ≥
√

8

π

1

e
exp

(
n

2

1

(rb)2 (1− rM)2

)
,

which proves the theorem. 2

Remarks. 1. Let K be a strip {x ; |x1| ≤ 1} (or a bounded approximation
of the strip). Then M/b ≈ 1/

√
n and we need at least n rotations to get a

bounded K∞. This shows that a condition ensuring that M/b is of order of
magnitude larger than 1/

√
n is necessary. In fact a more careful examination

shows that M/b > c
√

ln n
n

is the right condition.
2. It may be instructive to notice that, for any (fixed) C > 2, the in-
equality in the “In particular” part of the theorem for r in the interval
[(CM1)

−1, (2M1)
−1] can be written as

(rM)−c1k(X) ≤ T (r) ≤ (rM)−c2k(X).

The left hand side inequality continues to hold also for r close (but smaller
than) M−1. More precisely, for 1/r = (1 + θ)M one has

C1 exp
(
cθ2k(X)

)
≤ T (r)

for C1 being the constant from Theorem 4.1 and some absolute constant c.
Note that in contrast to the exponential behavior of T (r) above, if 1/r =
(1− θ)M , 0 < θ < 1, then

T (r) ≤ Cθ−2

(
b

M

)2

.
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This easily follows from the main result of [BLM] (see also [S]) together with
the fact that

max
1≤i≤T

‖u−1
i x‖ ≥ 1

T

T∑
i=1

‖u−1
i x‖.

5. Averages of quasi-norms.

We explained the notion of p-norms in section 2. The results of section 2
can be applied to the case of p-norms in a similar manner as they were applied
for norms. However, the use of the p-triangle inequality, leads sometimes to
gaps between the upper and the lower estimates. We still get some interesting
versions of the convex case. As the proofs are quite similar to the respective
ones in the convex case, we do not repeat them here. The real difference
between the proofs here and those in the convex case is the use of the non-
linear separation result, Lemma 2.2.1, in the proof of Theorem 2.3.1 and
through it in Corollary 5.4 below.

Claim 5.1. Let 1 ≤ q ≤ n and let X = (IRn, ‖ · ‖) be a p-normed space.
Then

max

{
M1, c1 b

(
q

n

)1/p−1/2
}
≤ Mq ≤ max

{
2M1, c2

b
√
q√
n

}
,

and

Eq,T ≤ Mq ≤ max

{
2Eq,T ,

c b
√
q√

nTα

}
,

where α = 1/max {q, 2} and c, c1, c2 depend on p only.

Let us point out, that using ideas of [La] one can get that for every
1 > q > 0 and every p-normed space X

cM1 ≤Mq ≤M1,

where c depends on p but not on q ([L1], chapter 5). In [La] this is proved
in the normed case.

Note also that if ‖ · ‖ is p-norm then for every integer T

‖x‖q T :=

(
1

T

T∑
i=1

‖uix‖q

)1/q
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is s-norm for s = min {p, q}. For s-norm it is more convenient to use concen-
tration inequalities not for the function ‖x‖q T but for the function ‖x‖s

q T .
Thus if we define

Lq,T =
(
E ‖x‖s

q T

)1/s
,

where E is the expectation with respect to the product measure on (O(n))T ,
which is equivalent to Eq,T by Lata la’s theorem, then repeating the proof of
Proposition 3.3 we obtain

Proposition 5.2. Let q > 0, 1 ≥ p > 0 and X = (IRn, ‖ · ‖) be a p-normed
space. For 1 > ε > 0 denote

Cε =
(
c

sε

)1/s
√

log
2

ε
,

where s = min {p, q}. If Tα > Cε
b

Mq
with α = 1/max {q, 2} then there are

orthogonal operators u1, ..., uT such that

(1− ε)Lq,T |x| ≤
(

1

T

T∑
i=1

‖uix‖q

)1/q

≤ (1 + ε)Lq,T |x|

for all x ∈ IRn.

These statements allow us to extend the results of [MS1] and of the pre-
vious section concerning the relation between k(X), t1(X), and tq(X) in the
following way.

Corollary 5.3. Let q > 0. Let X = (IRn, ‖ · ‖) be a p-normed space for
some p ∈ (0, 1]. Denote s = min {p, q} then there exists an absolute constant
c, such that for q > 2

tq(X) ≤
(
c

p

)q/p (
b

Mq

)q

and for 0 < q ≤ 2

tq(X) ≤
(
c

s

)2/s
(
b

Mq

)2

.

As we noted after Claim 5.1 in the second case, q ≤ 2, the term (b/Mq)
2 can

be estimated by cp (b/M1)
2, where cp is a constant depending on p only.

The proof of this fact is analogous to the proof of Theorem 3.4.
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The following fact is a corollary of Theorem 2.3.1. Recall that, for the
p-convex part of Theorem 2.3.1 a crucial role was played by the “non-linear”
form of Hahn-Banach theorem for p-convex sets (Lemma 2.2.1).

Corollary 5.4. Let X = (IRn, ‖ · ‖) be a p-normed space for some p ∈ (0, 1].
Let q > 0. Then

tq(X) ≥
(

b

2AMq

)β

,

where

β =

{
q for q ≥ 2 p

2−p
,

2 p
2−p

for q < 2 p
2−p

and A = C1(p) (C(q))
2−p

p

for C1(p) and C(q) defined in Theorem 2.3.1.

Claim 5.5. Let X = (IRn, ‖ · ‖) be a p-normed space for some p ∈ (0, 1].
Then there exists a constant C2(p), depending on p only, such that

C2(p)n
(
M1

b

)2

≤ k(X) ≤ n
(

2M1

b

) 2p
2−p

.

Proof: The standard concentration-phenomena methods ([MS2]) on the
sphere implies the lower bound. This fact was already used by S.J. Dilworth
in [D].

Using the same scheme as in the proof of Theorem 2.2.b of [MS1] and
p-convexity of ‖ · ‖ we get that

‖x‖ ≤ c

(
n

k(X)

)1/p−1/2

|x|

for all x ∈ IRn. That proves the upper bound. 2

We conclude this section with a variant of Theorem 4.1 for p-norms.

Proposition 5.6. Let X = (IRn, ‖ · ‖) be a p-normed space for some p ∈
(0, 1]. There are absolute constants C1, C2 such that if b > 1/r > M then

C1 exp

(
n

2

(1− (rM)p)
2

(rb)2p

)
≤ T (r) ≤ C2n

3/2 log (1 + n)
(

1− (cprb)
− 2p

2−p

)−n/2

,
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where cp = (p/2)1/p. In particular, if cpb/2 > 1/r > 2M (say) and M
b
>(

log n
n

) 2−p
2p , then there are constants c′p, c

′′
p depending on p only, such that

exp
(
c′pn (rb)−2p

)
≤ T (r) ≤ exp

(
c′′pn (rb)−

2p
2−p

)
.

Proof: The proof of this proposition essentially repeats the proof of Theo-
rem 4.1. To prove the upper bound we only need to substitute the inclusion{

x ∈ Sn−1 ; ‖x‖ ≥ 1

r

}
⊃
{
x ∈ Sn−1 ; |〈x, x0〉| ≥

1

rb

}
with the inclusion{

x ∈ Sn−1 ; ‖x‖ ≥ 1

r

}
⊃

x ∈ Sn−1 ; |〈x, x0〉| ≥
(

1

cprb

) p
2−p

 ,
which follows from Lemma 2.2.1. In other words, in the proof of Theorem 4.1

one should chose θ ∈ [0, π
2
] such that cos θ =

(
1

cprb

) p
2−p .

To prove the lower bound we have to apply concentration inequalities to
the function ‖ · ‖p. 2

6. Averages of quasi-convex bodies in M-position.

Recall that for any subsets K1, K2 of IRn the covering number N(K1, K2)
is the smallest number N such that there are N points y1, ..., yN in IRn such
that

K1 ⊂
N⋃

i=1

(yi +K2).

Define the volume radius r of a star-body K by the formula |K| = |rD|,
where |K| denotes the n-dimensional volume of K.

Let Cp (for p ∈ (0, 1]) be the constant from J. Bastero, J. Bernués, and
A. Peña’s extension [BBP] of the second named author’s reverse Brunn-
Minkowski inequality for p-convex bodies, i.e.

Cp =

(
2

p

)c/p

(see [L2] for the dependence of the constant on p). Let us recall this result.
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Theorem 6.1. Let 0 < p ≤ 1. For all n ≥ 1 and all symmetric p-convex
bodies K1, K2 ⊂ IRn there exists a linear operator U : IRn −→ IRn with
|det(U)| = 1 and

|UK1 +K2|1/n ≤ Cp(|K1|1/n + |K2|1/n) .

In terms of covering numbers this theorem can be formulated in the fol-
lowing way.

Theorem 6.1′. For every symmetric p-convex body K in IRn with volume
radius r there exists a linear operator U : IRn −→ IRn with |det(U)| = 1 such
that

max {N(UK, trD), N(rD, tUK)} ≤


exp

(
n (Cp/t)

p/2
)

for t ≥ Cp,

exp
(
n ln

(
31/pCp/t

))
for 1 < t < Cp,

Cn
p for t = 1.

If the operator U in Theorem 6.1′ can be taken to be the identity operator
then we say that the body K is in M -position.

Remark. If the bodies K1, K2, ..., Kl are in M -position then, as in the
convex case ([P], pp. 120-121),

|K1 +K2 + ...+Kl|1/n ≤ Cp · l2/p
(
|K1|1/n + |K2|1/n + ...+ |Kl|1/n

)
.

The following theorem has been recently proved in [MS1].

Theorem 6.2. Let ‖ · ‖ be a norm on IRn and assume that its unit ball
K is in M -position. Assume further that for some T orthogonal operators
u1, ..., uT and for some constant C,

|x| ≤ 1

T

T∑
i=1

‖uix‖ ≤ C|x|

for all x ∈ IRn. Then there are an orthogonal operator u and a constant C1,
depending on T and C only, such that for some R

R|x| ≤ ‖x‖+ ‖ux‖ ≤ C1R|x|

for all x ∈ IRn.

By duality this theorem is equivalent to the following statement.
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Theorem 6.2′. Let a symmetric convex body K be in M -position. Assume
that for some T orthogonal operators u1, ..., uT and for some constant C,

D ⊂ 1

T

T∑
i=1

uiK ⊂ CD.

Then there exist an orthogonal operator u and a constant C1, depending on
T and C only, such that for some R

RD ⊂ K + uK ⊂ C1RD.

In this section we shall extend both theorems to the quasi-convex case.
Because duality arguments can not be applied in the non-convex case these
two theorems become different statements.

Lemma 6.3. Let q > 0 and B > 0. Let K be a star body such that for any
t ≥ B

N(K, tD) ≤ exp

(
n
(
B

t

)q
)
.

Then there exists an orthogonal operator u such that

K ∩ uK ⊆ C1+ 1
qBD.

Remark. An immediate corollary is that if a p-convex body K is in M -
position then there exists an orthogonal operator u such that for all x ∈ IRn

‖x‖K + ‖ux‖K ≥ 1

r C(p)
|x|,

where r is the volume radius of K. Here and everywhere in this section we
denote a function of the type (2/p)c/p by C(p). The absolute constant c may
be different in different places. Therefore the product of two functions of
that type is again a function denoted by C(p).

Proof of Lemma 6.3: Let the constant C0 satisfy

α =
(
B

C0

)q

< 1.
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By the definition of covering numbers for N = [eαn], there exist {xi}N
1 such

that

K ⊂
N⋃

i=1

(xi + C0D).

Consider the normalized rotation invariant measure on the sphere RC0 S
n−1,

where R > 0 will be specified later. Since the measure of the intersection

(xi + 4C0D)
⋂
RC0 S

n−1

does not exceed

A =

√
π

8
exp

(
−π

2 (1− 4/R)2 (n− 2)

8

)

for any xi ([MS2], ch. 2), we obtain that if N2A < 1 then there exists an
orthogonal operator, u, such that

RC0 u(xi/|xi|) 6∈ xj + 2C0D

for any i and j. But the union of (uxi + C0D) covers

u
(
K
⋂
RC0 S

n−1
)

= u(K)
⋂
RC0 S

n−1.

Therefore
K
⋂
u(K)

⋂
RC0 S

n−1 = ∅.
Take

C0 =
(√

5 (1 + q/2)
)2/q

B and R =
4

1−
√

5α

then N2A < 1 and RC0 ≤ 4e51/q 2+q
q
B. This completes the proof. 2

Lemma 6.4. Let B > 0. Let Ki, i = 1, ..., T , be symmetric p-convex bodies
such that |Ki| = |D| and for any t ≥ B

N(D, tKi) ≤ exp

(
n
(
B

t

)q
)

for all 1 ≤ i ≤ T . Then ∣∣∣∣∣⋂
i

Ki

∣∣∣∣∣
1/n

≥ f(T ) · |D|1/n ,
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where
f(T ) =

(
c ·B · 2T/p · A1/q

)−1

for

A = min

{
T, max

{
2,

2

q(−1 + 1/p)

}}
.

In particular, if all the Ki’s are in M -position then

f(T ) ≥

C(p) · 2T/p ·min

{
T,

4

1− p

}2/p
−1

.

This lemma easily follows from the following claim.

Claim 6.5. Under the assumptions of Lemma 6.4

N(D, t 2T/p
⋂
i

Ki) ≤ exp

(
n
(
B

t

)q

A

)
.

Proof: Let two star-bodies B1 and B2 satisfy

B1 ⊂
N⋃

i=1

(xi +B2).

Then it is not hard to see that there are points yi in B1 such that

(6.1) B1 ⊂
N⋃

i=1

(yi + (B2 −B2)) .

Indeed,

B1 ⊂
N⋃

i=1

(
(xi +B2)

⋂
B1

)
and if

zi ∈ B1

⋂
(xi +B2)

then
B1

⋂
(xi +B2) ⊂ zi + (B2 −B2) .

Analogously,

(6.2) B1

⋂
(x+B2) ⊂ x+ (B1 −B1)

⋂
B2
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for any x ∈ B1. Hence, using p-convexity and the assumptions of the claim,
we get from (6.1) that, for N1 = N(D, t1K1) and for xi ∈ D,

D ⊂
N1⋃
i=1

((
xi + t1 21/pK1

)⋂
D
)
⊂

N1⋃
i=1

(
xi +

(
t1 21/pK1

⋂
2D

))
.

For N2 = N(D, t2K2) and for yi ∈ 2D
⋂
t1 21/pK1, we get by (6.1) and (6.2),

that

D ⊂
N1⋃
i=1

xi +

2D
⋂
t1 21/pK1

⋂ N2⋃
j=1

(
yj + 2 21/p t2K2

) ⊂

⊂
N1N2⋃
i=1

(
zi +

(
4D

⋂
t1 22/pK1

⋂
t2 2 21/pK2

))
for zi = xj + yk. Continuing in this way we get

D ⊂
N1...NT⋃

i=1

(
vi +

(
2T D

⋂
t1 2T/pK1

⋂
t2 2 2(T−1)/pK2...

⋂
tT 2T−1 21/pKT

))
,

for some vi’s, where

Ni = N(D, tiKi) ≤ exp

(
n
(
B

ti

)q
)
.

Setting
ti = t · 2(i−1)(−1+1/p) ,

we obtain that

N(D, t 2T/p
⋂
Ki) ≤

T∏
i=1

N(D, tiKi) ≤

≤ exp

(
n
(
B

t

)q T∑
i=1

2−q(i−1)(−1+1/p)

)
≤ exp

(
n
(
B

t

)q

A

)
.

2
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Lemma 6.6. Let Ki, i = 1, ..., T , be symmetric p-convex bodies in M -
position. Let ‖ · ‖i denote the gauge of Ki. Assume that for any x ∈ IRn

|x| ≤ max
i≤T

‖x‖i .

Then there exist a number k ∈ {1, ..., T} and an orthogonal operator u such
that

f(T )

C(p)
|x| ≤ ‖x‖k + ‖ux‖k,

where f(T ) was defined in Lemma 6.4.

Proof: Since |x| ≤ maxi≤T ‖x‖i ,⋂
Ki ⊂ D.

Let r1, ..., rT denote the volume radii of K1, ..., KT and

rk = min
i≤T

ri.

Then by Lemma 6.4

f(T ) ≤

∣∣∣⋂ 1
ri
Ki

∣∣∣1/n

|D|1/n
≤ 1

rk

|⋂Ki|1/n

|D|1/n
≤ 1

rk

.

Hence by Lemma 6.3, there exists an orthogonal operator such that

‖x‖K + ‖ux‖K ≥ |x|
rkC(p)

≥ |x|
f(T )C(p)

.

2

Now we are ready to extend Theorem 6.2 to the quasi-convex case.

Theorem 6.7. Let ‖ · ‖ be a p-norm on IRn and assume that its unit ball
K is in M -position. Assume further that for some T orthogonal operators
u1, ..., uT and for some constant C,

|x| ≤ |||x||| =

(
1

T

∑
i

‖uix‖p

)1/p

≤ C|x|

for all x ∈ IRn. Then there exists an orthogonal operator u such that

f(T )

C(p)
|x| ≤ ‖x‖+ ‖ux‖ ≤ 2T 1/pC |x| .

This theorem is a direct consequence of the previous lemma. To extend
Theorem 6.2′ we need the following two lemmas.
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Lemma 6.8. Let B > 0. Let K be a symmetric p-convex body such that
for any t ≥ B

N(rD, tK) ≤ exp

(
n
(
B

t

)q
)
,

where r is the volume radius of K. Then there exists an orthogonal operator
u such that

D ⊂ C(p) ·B · c1/q

r
(K + uK) .

The proof of this lemma is almost identical to the proof of Theorem 2′ of
[LMP]. Note also that if the body K is in M -position then B · c1/q = C(p)
and C(p) ·B · c1/q can be replaced by C(p).

Lemma 6.9. Let Ki, i = 1, ..., T , be symmetric p-convex bodies in M -
position. Assume that for some constant C > 0

1

C
D ⊂ 1

T

T∑
i=1

Ki ⊂ D.

Then there exist a number k ∈ {1, ..., T} and an orthogonal operator u such
that

D ⊂ C C(p)T 2/p (Kk + uKk) .

Proof: Let r1, ..., rT denote volume radii of K1, ..., KT and

rk = max
i≤T

ri .

By the assumption of the lemma and the remark after Theorem 6.1′ we have

1

C
≤

∣∣∣∑T
i=1Ki/T

∣∣∣1/n

|D|1/n
≤ C(p)T 2/p

∑T
i=1 ri

T
≤ C(p)T 2/p rk .

Therefore, by Lemma 6.8, we get

D ⊂ C(p)

rk

(Kk + uKk) ⊂ C C(p)T 2/p (Kk + uKk)

for some orthogonal operator u. 2

This lemma gives us the following extension of Theorem 6.2′.
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Theorem 6.10. Let a symmetric convex body K be in M -position. Assume
that for some T orthogonal operators u1, ..., uT and for some constant C,

D ⊂ 1

T

T∑
i=1

uiK ⊂ CD.

Then there exists an orthogonal operator u such that

1

C C(p)T−1+2/p
D ⊂ K + uK ⊂ 2T D.

36



References

[BBP] J. Bastero, J. Bernués and A. Peña, An extension of Milman’s reverse
Brunn-Minkowski inequality, GAFA 5 (1995), 572–581.

[BLM] J. Bourgain, J. Lindenstrauss and V.D. Milman, Minkowski sums
and symmetrizations, Geometrical aspects of functional analysis, Israel
Seminar, 1986–87, Lect. Notes in Math. 1317, Springer-Verlag (1988),
44–66.

[D] S.J. Dilworth, The dimension of Euclidean subspaces of quasi-normed
spaces, Math. Proc. Camb. Phil. Soc. 97 (1985), 311-320.

[G] M. Gromov, Monotonicity of the volume of intersection of balls, Geo-
metrical aspects of functional analysis, Israel Seminar, 1985–86, Lect.
Notes in Math. 1267, Springer-Verlag (1987), 1–4.

[KPR] N.J. Kalton, N.T. Peck and J.W. Roberts, An F -space sampler, Lon-
don Mathematical Society Lecture Note Series, 89, Cambridge Univer-
sity Press (1984).

[K] H. König, Eigenvalue Distribution of Compact Operators, Birkhäuser
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