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Abstract—Rather than denoting fuzzy membership with a
single value, orthopairs such as Atanassov’s intuitionistic mem-
bership and non-membership pairs allow the incorporation of
uncertainty, as well as positive and negative aspects when
providing evaluations in fuzzy decision making problems. Such
representations, along with interval-valued fuzzy values and the
recently introduced Pythagorean membership grades, present
particular challenges when it comes to defining orders and
constructing aggregation functions that behave consistently when
summarizing evaluations over multiple criteria or experts. In
this paper we consider the aggregation of pairwise preferences
denoted by membership and non-membership pairs. We look
at how mappings from the space of Atanassov orthopairs to
more general classes of fuzzy orthopairs can be used to help
define averaging aggregation functions in these new settings. In
particular, we focus on how the notion of ‘averaging’ should be
treated in the case of Yager’s Pythagorean membership grades
and how to ensure that such functions produce outputs consistent
with the case of ordinary fuzzy membership degrees.

Index Terms—group decision making, preferences aggregation,
aggregation functions, Pythagorean fuzzy sets, Atanassov intu-
itionistic fuzzy sets.

I. INTRODUCTION

In fuzzy modeling and decision making, the need to in-
corporate uncertainty or multiple aspects of objects simul-
taneously in many real world problems has given rise to
various ‘higher order’ fuzzy sets, i.e. fuzzy sets where the
degree of membership itself can be represented with some
degree of fuzziness. Examples include general type-2 fuzzy
sets, interval-valued fuzzy sets and Atanassov’s intuitionistic
fuzzy sets. For Atanassov intuitionistic fuzzy sets, membership
is denoted by a pair of values (we will refer to them as
Atanassov orthopairs) denoted 〈µ(x), ν(x)〉, often interpreted
as giving the degree of membership and non-membership.
The membership value µ(x) tells us the extent to which it
is known an object x belongs to the fuzzy set, while ν(x)
indicates how sure we are that x does not belong to the fuzzy
set. Such representations can be appealing in fuzzy decision
making as membership and non-membership can be used to

denote positive and negative aspects of a decision criterion or
alternative which needn’t be considered as complimentary.

We consider the group decision making setting where an
expert provides evaluations xij expressing his/her preference
for alternative i over alternative j. The conditions for
these preferences can vary from additive preferences where
aij + aji = 1, to multiplicative where aij · aji = 1. The
use of Atanassov membership and non-membership pairs
〈µ(xij), ν(xij)〉 has also been proposed in this context [10],
[13]. Suppose we have three decision makers, each providing
their preferences in this form as follows.

TABLE I
DECISION MAKER PREFERENCES FOR ONE ALTERNATIVE OVER ANOTHER
EXPRESSED AS ATANASSOV MEMBERSHIP AND NON-MEMBERSHIP PAIRS.

Decision maker x
(1)
ij x

(2)
ij x

(3)
ij

Preference xij 〈0.3, 0.3〉 〈0.5, 0.3〉 〈0.6, 0.4〉

Whereas the membership values µ(xij) are interpreted as
the extent to which i is preferred to j, the non-membership
ν(xij) is usually interpreted as to the degree to which i
is not preferred to j and consistency might then require
that µ(xji) = ν(xij) and ν(xji) = µ(xij), e.g. we would
have x(2)ji = 〈0.3, 0.5〉. This kind of representation is hence
equivalent to the original fuzzy preferences setting with each
preference xij being denoted by a single value. However
the pairs can be interpreted more broadly and this type
of consistency may not be necessary, with decision makers
allowed to provide contradictory or uncertain preference pairs.
We note, in particular that with Atanassov membership pairs,
we require

µ(x) ≤ N(ν(x)),

with N the standard (or Zadeh) fuzzy negation, and hence
µ(x) ≤ 1 − ν(x). In this decision making setting, we can
interpret µ as providing the direct expression of preference for
i over j, while the negation of non-membership 1−ν provides
an indirect or inferred expression for the preference of i over j,



with the direct preference bounded from above by the indirect
preference. For example, when comparing alternatives i and
j, µ(xij) may be used to express the positive aspects of i
that make it preferable to j, while ν(xij) refers to its negative
aspects. It would not then be necessary that evaluations against
choosing i based on these negative qualities are equivalent
to arguments in favor of choosing j due to its own positive
aspects.

The use of alternative fuzzy negations allows the boundary
condition relating membership and non-membership, µ(x) +
ν(x) ≤ 1 to be relaxed and for decision makers to express
membership and non-membership pairs that sum to values
greater than 1. One example of such fuzzy membership
pairs were introduced in [15], [16] and are referred to as
Pythagorean membership grades. Pythagorean membership
grades are bounded within the first quadrant of the unit circle,
i.e. µ(x)2 + ν(x)2 ≤ 1 and can be derived from the Yager
family of negations. These pairs then effectively expand the
space upon which valid membership pairs can be defined. The
idea naturally extends to pairs bounded by µ(x)p+ν(x)p ≤ 1
with p → ∞ leading to the limiting case of membership and
non-membership contained to the unit interval but unrestricted
with respect to each other, meaning that the strength of positive
and negative information can be considered independently1.

The understanding of the role of negations in the fuzzy
evaluation process is hence crucial if such membership pairs
are to be used for decision making, however we can also
consider relationships and mappings between the resulting
spaces for understanding and interpreting the behavior of
operators defined in these settings. As well as for preferences
aggregation, in other contexts such as the aggregation of
multiple sensor readings, it may not necessarily follow that
the bounds of membership and non-membership should be
related by the standard negation.

Furthermore, Yager’s Pythagorean membership grades have
given rise to the consideration of aggregating values over the
strength of commitment and direction of commitment rather
than the membership and non-membership pairs. In turn,
this representation can be related to the space of complex
numbers, which have also been gaining interest in terms of
their relationship to Type-2 fuzzy sets [9].

In this paper, we explore some alternative ways to map
from the space of Atanassov orthopairs to the space of
Pythagorean membership grades and other membership pairs
related by fuzzy negations. We then look at ways for defining
aggregation functions in these settings with the requirement
that the functions generalize the case of ordinary fuzzy sets,
and investigate their resulting behavior.

The article will be set out as follows. In the Preliminaries
section, we give an overview of Atanassov orthopairs and
Pythagorean fuzzy membership grades. We also give the
definitions required from the study of aggregation functions.
In Section III, we present mappings from the space of

1Such membership pairs have been studied in [17] under the name of
conflicting bifuzzy evaluations.

Atanassov orthopairs to fuzzy orthopairs obtained through
alternative fuzzy negations. In Section IV, we consider the
problem of defining averaging aggregation functions in this
setting, while in Section V we consider how such functions
can be defined so that they generalize ordinary fuzzy sets in a
manner consistent with the mappings given in the preceding
sections. We make some concluding remarks in Section VI.

II. PRELIMINARIES

Here we give an overview of fuzzy sets and extensions
relating to our investigations of membership and non-
membership pairs. We then consider aggregation functions
for these cases.

A. Fuzzy sets and negations

Whereas for the case of crisp sets, elements are either in the
set or not, fuzzy sets allow membership to graduate from 0 to
1. For a given fuzzy set A, µA(x) ∈ [0, 1] indicates the degree
to which x belongs to A. Fuzzy sets are hence very useful for
modeling concepts where the boundary between belonging or
not belonging to a set may be vague or imprecise. In fuzzy
decision making, membership is often used to indicate the
strength of preference for an alternative with respect to a given
criterion or expert. In this setting, not all operations defined
for fuzzy sets in general will necessarily be meaningful.

An operation of fundamental importance to us is the fuzzy
negation [4].

Definition 1: A fuzzy negation is a decreasing function
N : [0, 1] → [0, 1] such that N(0) = 1 and N(1) = 0.
A negation is called strict if N is continuous and strictly
decreasing. A negation is strong if N is involutive, i.e.,
N(N(x)) = x for every x ∈ [0, 1].

In particular, we have the standard negation (sometimes
called the Zadeh negation) where N(x) = 1− x.

Negations can be used to build fuzzy implications for
use in fuzzy logic, and define fuzzy complements in fuzzy
set theory [14]. For a given fuzzy set A, the membership
degrees for its fuzzy complement Ac can be determined by
µAc(x) = 1 − µA(x). The negation of membership hence
can be seen to indicate the degree to which x is in the
complement of A, not necessarily the degree to which x is
not in A. In the context of decision making, negations can be
used to transform evaluations pertaining to negative attributes
of an alternative, e.g. in determining the desirability of a
car according to the extent of its membership to the fuzzy
sets expensive and quality, we could take the negation of
expensive before aggregating the membership values into an
overall score.

Although the standard negation is by far the most commonly
used, other families include the Yager negations, determined
with respect to a paramenter p,

NY
p (x) = (1− xp)

1
p ,



and the Sugeno family of negations,

NS
p (x) =

1− x
1 + px

,

where it is required that p > −1 for NS
p to be order reversing.

Both families are involutive and hence provide us with
strong negations2. The parameter choices p = 1 for NY

p and
p = 0 for NS

p return the standard negation.

B. Atanassov fuzzy orthopairs

Atanassov’s extension of fuzzy sets [2] (originally referred
to as intuitionistic fuzzy sets) allows both the degree of
membership µA(x) and the degree of non-membership νA(x)
to the set A to be specified.

For clarity and to simplify our notation, we will focus on
the pairs of fuzzy membership and non-membership relating
to a single object, which we will denote by

a = 〈µ, ν〉.

These values should satisfy

µ ≤ N(ν), (1)

with N the standard fuzzy negation, leading to the restric-
tion,

µ+ ν ≤ 1.

For an ordinary fuzzy set, non-membership is assumed to
be the negation of membership and µ = 〈µ,N(µ)〉.

We also note that interval-valued fuzzy sets were shown
to be mathematically equivalent to AIFS in [1] (and later in
[5]–[7]).

C. Pythagorean fuzzy sets

The Pythagorean fuzzy sets proposed in [15], [16] are
inspired by the Atanassov fuzzy orthopairs and essentially
replace the negation in Eq.(1) with a Yager negation with
p = 2, i.e. we have,

µ ≤ (1− ν2) 1
2 ,

which leads to the restriction,

µ2 + ν2 ≤ 1.

They can be seen to extend the space of the Atanassov
orthopairs with the boundary corresponding with ordinary
fuzzy sets now denoted by the curve ν =

√
1− µ2.

To distinguish between Atanassov orthopairs and
Pythagorean membership grades, we will usually employ the
notation

a(2) = 〈µ(2), ν(2)〉(2) where µ2
(2) + ν2(2) ≤ 1,

2They can be obtained from the standard negation using automorphisms
[12].

to denote the latter. Although we are interested in fuzzy
preferences where xij gives the preference for i over j, we
will avoid the use of these sub-indices to avoid confusion
with powers and multiple inputs. We will instead use the
notation a(2)i to indicate the evaluation of the i-th expert or
i-th criterion.

Whereas with Atanassov orthopairs the degree of certainty
with which the membership grades are expressed can be
found by summing the membership and non-membership
components, Yager noted that in the case of Pythagorean
membership grades it is convenient to consider their polar co-
ordinates, with the r value (the Euclidean distance from 〈0, 0〉
to 〈µ(2), ν(2)〉(2) providing us with the strength of commitment.
The angle θ this ray makes with the membership axis can
then be seen as the direction of commitment, with θ = 0
corresponding with the direction towards membership, θ = π

2
representing the direction of non-membership, and θ = π

4
indicating that the degree of membership and non-membership
are equal. For such inputs, we will employ the notation,

a(2) = 〈r(µ(2), ν(2)), θ((µ(2), ν(2)))〉r,θ
where r is the Euclidean distance from 〈0, 0〉 to

〈µ(2), ν(2)〉(2) and θ is the angle made with the membership
axis. We hence have

r(µ(2), ν(2)) =
√
µ2
(2) + ν2(2) ,

and
θ(µ(2), ν(2)) = tan−1

(
ν(2)

µ(2)

)
.

For the case of more general fuzzy orthopairs with respect
to the Yager negation and power p, we will write,

a(p) = 〈µ(p), ν(p)〉(p) where µp(p) + νp(p) ≤ 1.

D. Aggregation functions

When Atanassov orthopairs, Pythagorean membership
grades and other fuzzy membership representations are used
in decision making to evaluate alternatives, it may be useful
to combine them into a single overall evaluation or pair. For
this, we need well-defined aggregation functions. Overviews
of aggregation functions can be found in [3], [8], [11]. We
begin by stating their definition where the inputs are given
over the unit interval.

Definition 2: An aggregation function f : [0, 1]n → [0, 1]
is a function non-decreasing in each argument and satisfying
f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1.

An aggregation function is considered:
• averaging where the output is bounded by the minimum

and maximum input, i.e. min(x) ≤ f(x) ≤ max(x),
• conjunctive where the output is bounded from above by

the minimum input, i.e. f(x) ≤ min(x),



• disjunctive where the output is bounded from below by
the maximum input, i.e. f(x) ≥ max(x),

• mixed otherwise.

Due to the monotonicity of aggregation functions, averaging
behavior is equivalent to idempotency, i.e. f(t, t, ..., t) = t.

While conjunctive and disjunctive functions have been used
in fuzzy set theory to model the AND and OR operations
of traditional logic, it is clear that if degrees of membership
denote strength of preference or some kind of evaluation, we
may need averaging functions in order to obtain an overall
output from individual scores. A particularly expressive family
of averaging aggregation functions is the weighted power
means,

Mq(x) =

(
n∑
i=1

wix
q
i

) 1
q

, (2)

where the weight wi usually denotes the relative importance

of the i-th input and
n∑
i=1

wi = 1.

When q = 1 we obtain the weighted arithmetic mean, q = 0
corresponds with the weighted geometric mean, while q =
−∞ and q =∞ correspond with the minimum and maximum
functions respectively.

A number of aggregation functions have been proposed
for Atanassov orthopairs, in most cases using pairs of dual
aggregation functions defined with respect to the standard
negation.

Definition 3: For an aggregation function f , a
corresponding function for Atanassov orthopairs can be
given by

fA(〈µ1, ν1, 〉, . . . , 〈µn, νn, 〉) =

〈f(µ1, . . . , µn), fd(ν1, . . . , νn)〉, (3)

where fd is the dual aggregation function fd(x1, . . . , xn) =
N(f(N(x1), . . . , N(xn))) with N the standard negation.

Aggregation functions for Pythagorean fuzzy sets can be
defined similarly using the negation NY

2 (t) =
√
1− t2.

Inspired by the product operation for complex sets, Yager
also presented an aggregation function defined for the polar
representation of Pythagorean fuzzy sets. We will use the
notation Gr,θ.

Gr,θ((r1, θ1), . . . , (rn, θn)) =

〈
n∏
i=1

rwi
i ,

n∑
i=1

wiθi

〉
. (4)

We note that whilst the aggregation in this representation
of the Pythagorean fuzzy sets is appealing, such a function
will not coincide with the case of ordinary fuzzy sets. In the
following, we focus on different ways of expressing ordinary
fuzzy sets or Atanassov orthopairs in the extended space.

III. MAPPING ATANASSOV MEMBERSHIP PAIRS TO
ALTERNATIVE REPRESENTATIONS

If we consider the relationship between Atanassov or-
thopairs and Pythagorean membership grades, we note that the
specification of membership is assumed to be equivalent, i.e.
µ(2) = µ, while non-membership with respect to the negations
used can be related according to

ν(2) =
√
1− (1− ν)2.

As such, we can think of there being a dilation in the non-
membership dimension only. The equivalent pair of 〈0.5, 0.5〉
(which could be interpreted as an equilibrium point) would be
〈0.5, 0.866〉(2) and so interpretations might need to bear this
in mind.

However there are other ways to map from the space
of Atanassov orthopairs to fuzzy membership pairs defined
according to different negations. One alternative would be
to keep the non-membership values the same and consider
transformations of the membership values, while another is to
maintain the ratio of membership to non-membershp. In the
latter case we require a multiplier depending on the position
of 〈µ, ν〉 in the 2-dimensional plane. Since we need to map
points along the boundary ν = 1−µ to ν = N(µ), we consider
each value as a proportion of the Manhattan distance from the
origin (this first projects the point to the boundary since it will
always hold that µ

µ+ν + ν
µ+ν = 1). The multiplier required is

hence k such that

k
µ

µ+ ν
= N

(
k

ν

µ+ ν

)
.

For the case of Yager negations NY
p (x) = (1 − xp)

1
p , this

leads us to

kp
(

µ

µ+ ν

)p
+ kp

(
ν

µ+ ν

)p
= 1

kp =
(µ+ ν)p

µp + νp

k =
(µ+ ν)

(µp + νp)
1
p

.

We then have the three cases as follows.

Definition 4: Mappings from 〈µ, ν〉 → 〈µ(p), ν(p)〉(p):

Case 1: µ(p) = µ, and ν(p) = (1− (1− ν)p)
1
p ;

Case 2: µ(p) = (1− (1− µ)p)
1
p and ν(p) = ν;

Case 3: µ(p) =
µ(µ+ν)

(µp+νp)
1
p

and ν(p) =
ν(µ+ν)

(µp+νp)
1
p

.

A visual depiction of these three mappings is shown
in Fig. 1. The three cases correspond with dilating the
space vertically, horizontally, and from the origin respec-
tively, between the two boundaries. In the figure, p = 4
is used and the Atanassov orthopair 〈0.3, 0.4〉 is mapped to



Fig. 1. Cases 1, 2 and 3 (Def. 4) mapping an Atanassov orthopair 〈µ, ν〉
to fuzzy membership pairs according to Yager negations. Each method maps
every point in the space bounded by µ = 1− ν to a point in the larger space
bounded by µ = (1− νp)

1
p .

Case 1: 〈0.3, 0.966〉(4), Case 2: 〈0.934, 0.4〉(4) and Case 3:
〈0.490, 0.654〉(4).

Interestingly with Case 3, we can interpret the multiplier
as ensuring that the Manhattan distance is equal to the p-
norm distance in the corresponding orthopair space of order p.
This means that for Pythagorean membership grades in polar
representation, r will simply be equivalent to the addition of
the components µ and ν, i.e. we have p = 2 and

r =
√
µ2
(2) + ν2(2)

=

√√√√( µ(µ+ ν)

(µ2 + ν2)
1
2

)2

+

(
ν(µ+ ν)

(µ2 + ν2)
1
2

)2

=

√
µ2(µ+ ν)2

(µ2 + ν2)
+
ν2(µ+ ν)2

(µ2 + ν2)

=

√
(µ2 + ν2)(µ+ ν)2

(µ2 + ν2)

= µ+ ν.

As we will see later on, this can help us when defining
aggregation functions to generalize the case of ordinary fuzzy
sets.

For the Sugeno family of negations, using the negation NS
p

requires that µ(p) ≤
1−ν(p)
1+pν(p)

and hence membership and non-
membership are restricted such that,

µ(p) + ν(p) + pµ(p)ν(p) ≤ 1.

For Cases 1 and 2, we can use this negation in the same
way as we did in Def. 4, i.e. ν(p) = NS

p (1 − ν) for Case 1.

Case 3 on the other hand requires finding a k such that,

k

(
µ

µ+ ν
+

ν

µ+ ν

)
+ k2p

µ

µ+ ν

ν

µ+ ν
= 1.

We hence solve for

k2
pµν

(µ+ ν)2
+ k − 1 = 0,

which has solutions,

k =
−1±

√
1 + 4pµν

(µ+ν)2

2pµν
(µ+ν)2

.

Provided µ, ν > 0 and since p > −1 and µν < (µ + ν)2, k
can always be determined. In fact, we can contain ourselves
to the solution obtained by adding the square root since
subtracting results in a k that is too large.

IV. DEFINING AVERAGING AGGREGATION FUNCTIONS FOR
PYTHAGOREAN FUZZY SETS AND ALTERNATIVE

MEMBERSHIP PAIRS

Here we consider the problem of defining averaging aggre-
gation functions for fuzzy membership pairs in light of the
mappings presented in the previous section.

We firstly note that Atanassov orthopairs can be considered
to be defined over a lattice with the partial order ≤ defined
such that for ai = 〈µi, νi〉,

a1 ≤ a2 ⇐⇒ µ1 ≤ µ2 and ν1 ≥ ν2.

The partial order on the lattice is important for considering
monotonicity and averaging behavior. An aggregation function
fA for Atanassov orthopairs can hence be said to be averaging
if it is bounded by the infimum and supremum, i.e.,

〈min(µ1, . . . , µn),max(ν1, . . . , νn)〉 ≤ fA(a1, . . . , an)

≤ 〈max(µ1, . . . , µn),min(ν1, . . . , νn)〉.

Fig. 2 helps illustrate the averaging bounds with a graphical
interpretation. The averaging rectangle denotes the boundary
for which outputs are comparable with the supremum and
infimum of the inputs. Also shown in the diagram are outputs
for the power mean of the two inputs, shown to graduate along
a curve from the infimum to the supremum.

There have also been attempts to define a total order on the
set of Atanassov orthopairs. A score function s(µ, ν) = µ− ν
and accuracy z(µ, ν) = µ + ν can be used where a1 is
ordered lower than a2 if and only if either,

1) s(µ1, ν1) < s(µ2, ν2); or,

2) s(µ1, ν1) = s(µ2, ν2) and z(µ1, ν1) < z(µ2, ν2).

A number of averaging aggregation functions, however will
not be monotone with respect to this total order. We provide
the following example.



Fig. 2. Aggregation of two orthopairs a1, a2 using a power mean to power
q for membership and the dual function for non-membership. The function
output graduates between the minimum and maximum and stays bound within
the averaging window.

Example 1: Consider the evaluations provided previously in
Table I. The score and accuracy values for each of the decision
makers’ preferences are

s(x
(1)
ij ) = 0 s(x

(2)
ij ) = 0.2 s(x

(3)
ij ) = 0.2

z(x
(1)
ij ) = 0.4 z(x

(2)
ij ) = 0.8 z(x

(3)
ij ) = 1.

and we have x
(1)
ij < x

(2)
ij < x

(3)
ij . If we take a geometric

mean (according to Def.3) of decision makers 1 and 2, we
have G(x

(1)
ij , x

(2)
ij ) = 〈0.387, 0.3〉 which has a score 0.087.

However if we aggregate the preferences of decision makers
1 and 3, we have G(x(1)ij , x

(3)
ij ) = 〈0.424, 0.352〉 which has

a score of 0.072. So even though x
(3)
ij > x

(2)
ij , we have

G(x
(1)
ij , x

(3)
ij ) < G(x

(1)
ij , x

(2)
ij ) and hence the geometric mean

would not be considered monotone with respect to this
ordering.

An explanation for this is that the geometric mean increases
more with respect to increases in lower inputs than higher
inputs. Alternative score functions that reflect the behavior of
the geometric mean could overcome this problem.

We can now turn to how averaging behavior is carried
through when inputs are mapped from the space of Atanassov
orthopairs to Pythagorean membership grades. Fig. 3 illus-
trates this for the three different cases. We note that for
Cases 1 and 2, since the dilation is only in one dimension,
the averaging bounds remain rectangular when represented in
this way. These would then be consistent with a partial order
defined according to,

a(2)1 ≤ a(2)2 ⇐⇒ µ(2)1 ≤ µ(2)2 and ν(2)1 ≥ ν(2)2 .

Fig. 3. Equivalent averaging windows for data values in Fig. 2 for
Pythagorean orthopairs depending on each case. Note that the non-linear
borders for Case 3 would make it difficult to define an equivalent partial
order.

For Case 3, however, we see that the corresponding
averaging region is not rectangular. This means that if
corresponding inputs were used, averaging behavior for
Atanassov orthopairs inputs may not correspond with
averaging behavior for Pythagorean membership grades when
these partial orderings are used. The following example helps
illustrate this.

Example 2: We define an aggregation function for
Atanassov orthopairs as follows. Let max(µ1, µ2) +
max(ν1 + ν2) = ω,

fA(〈µ1, ν1〉, . . . , 〈µn, νn〉)

=

{
(〈max(µ1, . . . , µn), 1−max(µ1, . . . , µn)〉, ω ≥ 1,
〈max(µ1, . . . , µn),max(ν1, . . . , νn)〉, ω < 1.

For the inputs a1 = 〈0.1, 0.6〉 and a2 = 〈0.4, 0.1〉, we have
fA(a1, a2) = 〈0.4, 0.6〉. Mapping these to the Pythagorean
fuzzy sets space gives a(2)1 = 〈0.115, 0.690〉(2), and a(2)2 =
〈0.485, 0.121〉(2) and fA(a(2)1 , a(2)2) = 〈0.555, 0.832〉(2). We
hence see that the output membership value is not bounded
from above by µ(2)2 = 0.485, nor is the non-membership
bounded from above by ν(2)1 = 0.690.

We note that this does not violate the partial order as
such, rather the output is incomparable with the infimum and
supremum. In practice it is worth considering whether certain
functions will remain averaging regardless of the negation by
which membership and non-membership are related.

The polar representation of the Pythagorean membership
grades space also prompts us to consider alternative orders



according to the value of r and θ. In a decision-making setting,
r can be viewed analogously to the accuracy function. Indeed,
while the accuracy function is equivalent to the Manhattan
distance from 〈0, 0〉, r is equal to the Euclidean distance.
These values represent how close the membership values are to
the boundary of the space coinciding with the case of ordinary
fuzzy sets. When r = 1, the membership and non-membership
are known completely, while r = 0 is usually interpreted as
complete ignorance or nothing being known about the degree
of membership or non-membership. This value is referred to
as the strength of commitment in [15]. On the other hand, θ
can be interpreted similarly to the score function and is related
to the direction of commitment value in [15]3. If r is fixed,
as θ decreases the values increase in their membership and
simultaneously decrease in their non-membership. A resulting
partial ordering can hence be considered,

a(2)1 ≤ a(2)2 ⇐⇒ r1 ≤ r2 and θ1 ≥ θ2.

Of course, this partial order emphasizes different aspects of
the decision maker evaluations than focusing on the member-
ship and non-membership pairs. We could therefore consider
averaging aggregation functions defined using functions and
their duals for r and θ respectively, however, while in the
case of Atanassov fuzzy orthopairs, the dual relationship for
aggregating membership and non-membership ensures that
the output is a permissible orthopair, that need not be the
case here. We merely require r and θ to be bounded by
their respective arguments from all the inputs. Fig. 4 gives
an example of two inputs with their averaging boundary
according to this partial order. The outputs obtained for various
power means are also shown, calculated according to,

fq(a(2)1 , a(2)2) = 〈M
q(r1, r2),M

q
d (θ1, θ2)〉r,θ.

We note that the averaging boundary is quite different to any
of those produced in Fig. 3.

There has also been a total order for the strength/direction of
commitment representation proposed in [16]. A score sr(r, θ)
is calculated according to

sr(r, θ) =
1

2
+ r

(
1

2
− 2θ

π

)
.

As with the total order based on score and accuracy for
Atanassov orthopairs, some of the aggregation functions
defined for the Pythagorean membership grades may not be
monotone with respect to this ordering. We can show this
with the following example.

Example 3: If we have the inputs a(2)1 = 〈0.35, 0.644〉r,θ,
and a(2)2 = 〈1, 1.460〉r,θ with scores of sr(a(2)1) = 0.532
and sr(a(2)2) = 0.070, the aggregation using Gr,θ gives
〈0.592, 1.052〉r,θ which has sr = 0.399. However when we
double the value of r in a(2)1 to give a′(2)1 = 〈0.7, 0.644〉r,θ,

3The direction of commitment was a value between 0 and 1 calculated from
θ using d = 1− 2θ

π
.

Fig. 4. Averaging window for Pythagorean pairs expressed in polar
coordinates. The r values are aggregated by a power mean with power q
and the θ values are averaged with the dual function. A larger r represents a
degree of certainty and proximity to the boundary, while smaller θ increases
the tendency toward degree of membership.

its corresponding score will increase to 0.563 but the
aggregated value Gr,θ(a

′
(2)1

, a(2)2) = 〈0.837, 1.051〉r,θ has
the lower score sr = 0.358. Therefore according to this
ordering, the operator Gr,θ would not be considered monotone.

The role of partial and total orders can be important for
ensuring the functions provide results that are consistent with
our intuitions about changes in the input. Another key thing
to consider when defining functions on these extended spaces
is whether they will produce the results we expect when
the inputs are equivalent to ordinary fuzzy set membership
degrees.

V. AGGREGATION FUNCTIONS THAT GENERALIZE
FUNCTIONS ON ORDINARY FUZZY SETS

For Cases 1 and 2, defining aggregation functions such that
they generalize Atanassov orthopairs and, in turn, ordinary
fuzzy sets can be achieved using the dual aggregation functions
in a straightforward way, i.e. as specified in Def. 3. The trans-
formations we have proposed for Case 3 are somewhat more
complicated. The value of the multiplier k changes depending
on the location of the membership pair. This means that to
aggregate in the Pythagorean membership grade space in a way
that is consistent with aggregating Atanassov orthopairs would
effectively require first transforming inputs from Pythagorean
pairs to Atanassov orthopairs, aggregating, and then finally
transforming back to Pythagorean membership grades.

It then clearly becomes questionable as to whether we
gain any advantage by working with Pythagorean membership
grades rather than pre-processing the fuzzy preference evalua-



tions (that is, if indeed we want to have coincidence with the
case of ordinary membership values).

On the other hand, the polar representation and relationship
between the different types of distances that can be used allows
us to consider developing new functions in this framework
which would then be equivalent in all membership pair spaces
defined according to the Yager negations.

We consider r(p) to represent the p-norm distance in
the associated space from the origin 〈0, 0〉 to the pair, i.e.
r(p) = (µp(p) + νp(p))

1
p . As in [16], we let d(p) = 1 − 2θ

π ,
which indicates how close the ray traced to the pair is to the
membership axis. Aggregation functions defined according to
the following definition will be equivalent in all spaces.

Definition 5: Given two aggregation functions f1 :
[0, 1]n → [0, 1] and f2 : [0, 1] → [0, 1], the following
will be an aggregation function over the 〈r(p), d(p)〉r,d pairs.
fr,d(a(p)1 , . . . , a(p)n) =〈

f1(r(p)1 , . . . , r(p)n), f2(d(p)1 , . . . , d(p)n)
〉
r,d

.

If we can define a function for Atanassov orthopairs that
holds in this representation, we hence automatically establish
the equivalent functions for all pairs related by the Yager
negations.

For example, we can consider the case of the weighted
arithmetic mean. The weighted arithmetic mean is self dual by
the standard negation and hence the output value of r, which in
this space is the sum of the membership and non-membership
components, can be calculated as the corresponding weighted
arithmetic mean of the input r(p) values.

To calculate the angle made with the membership axis, we
note that θ is calculated from the inverse tangent of the ratio
of non-membership to membership. The weighted arithmetic
mean in this polar coordinates setting will therefore be given
by,

WAMr,θ(〈r(p)1 , d(p)1〉, . . . , 〈r(p)n , d(p)n〉) =〈
n∑
i=1

wi(r(p)i) , 1− 2

π
tan−1


n∑
i=1

wi(r(p)i) sin θi

n∑
i=1

wi(r(p)i) cos θi


〉
,

(5)
where θ = π

2 (1− d(p)).

This does not mean we have to restrict ourselves to
operators which are equivalent in all spaces, however
operators such as WAMr,θ can be used to help us understand
the behavior of operators defined solely in the new setting.

VI. CONCLUSION

We have considered mappings from the space of Atanassov
orthopairs to other membership and non-membership pairs
restricted according the relationship µ ≤ N(ν) where N is a
negation. Such representations can be useful in fuzzy decision

making for expressing preferences, however need not always
be related by the standard negation.

We have focused on partial and total orders defined over
these alternative spaces and whether these are consistent
with orders for Atanassov orthopairs. These results have
implications when it comes to defining averaging aggregation
functions and ensuring monotone behavior that matches our
intuitions that extend from ordinary fuzzy membership values.
The orders in the extended spaces could also potentially be
used to induce orderings for standard Atanassov orthopairs.

Finally we looked at aggregation functions which are equiv-
alent across families of membership pairs defined by Yager
negations. We saw that the polar representation with respect
to the p-norm distance allows us a simple way to ensure that
aggregation functions behave consistently regardless of the p
chosen.

Having a better understanding of how to construct and
interpret operators for these fuzzy membership pairs is
appealing for fuzzy decision making as the restriction
according to the standard negation may not always be
meaningful for the problem at hand.
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