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Averaging and integral manifolds

W. A. Coppel and K. J. Palmer

An integral manifold for a system of differential equations is a

manifold such that any solution of the equations which has a

point on it is entirely contained on it. The method of averaging

establishes the existence of such a manifold for a system which

is a perturbation of an autonomous system with a periodic orbit.

The existence of the manifold is established here under more

general hypotheses, namely for perturbations which are 'integrally

small1. The method differs from the original method of

Bogolyubov and Mitropolskii and operates directly with the

individual solutions. This is made possibly by the use of an

appropriate norm, and is equivalent to solving the partial

differential equation which occurs in work by Moser and Sacker by

the method of characteristics rather than by the introduction of

an artificial viscosity term. Moreover, detailed smoothness

properties of the manifold are obtained. For periodic

perturbations the integral manifold is a torus and these

smoothness properties are just sufficient to permit the

application of Denjoy's theorem.

1. Introduction

We consider a system of differential equations

x' = fit, x, y)
(1)

y' = A(t)y + g(t, x, y) ,
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198 W.A. Coppel and K .J . Palmer

where x (. if , y (. if1 , ' = d/dt , and where the l inear equation

(2) y' = A{t)y

has an exponential dichotomy on (-°°, °°) , so that for any bounded,

continuous vector function fit) the inhomogeneous equation

y' = A{t)y + fit)

has a unique solution bounded on the whole real line. For example, Ait)

could be a constant matrix all of whose eigenvalues have real part

different from zero. Given a real number T and a vector £ 6 K , we

look for a solution x(t) = x(t, £, T ) , yit) = yit, £, x) of (l) such

that x(x) = £ and yit) is bounded. The set of all points y(x, £,, x) ,

for varying x and £ , is an integral manifold of (1), i.e. any

solution which has a point on this manifold, is entirely contained in it.

If the system is uncoupled, i.e. if / is independent of y and g

is independent of x , then we just have an initial value problem for x{t)

and, if g is only weakly nonlinear in y , a boundedness perturbation

problem for yit) . Both these problems are of standard types; for the

second problem cf. [3], Theorem 5. Our interest here is in coupled

systems. Such systems arise in the study of perturbations of an autonomous

system with a periodic orbit. In this case z is a scalar [m = 1) and

the functions f, g have period 2ir in x . In the present paper the

problem is studied in its own right.

The functions f and g will be required to be weakly nonlinear.

The simplest interpretation of this requirement is that they satisfy

Lipschitz conditions in x, y with small Lipschitz constants. However,

our interpretation may be roughly stated as 'boundedness + integral

smallness'. The exact hypotheses on / and g are given at the beginning

of Section 3. These hypotheses contain those under which the method of

averaging is applied to establish the existence of integral manifolds.

However, the method given here is more direct and more general than the

original method of Bogolyubov and Mitropolskii [/]. Averaging as such

plays no part; what is at issue is a perturbation problem with integrally

small perturbations. In contrast to previous treatments of this problem we

operate with the individual solutions, rather than with the integral
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Averaging and integral manifolds 199

manifold. Although we do not consider the case where f and g satisfy

Lipschitz conditions with small Lipschitz constants our methods apply also

in this case, with substantial simplifications (no integrations by parts!).

Throughout the paper we make systematic use of the norm

ii/ll = sup
—ocx£<a

for continuous vector functions f{t) . Here x is a fixed real number

and 3 S 0 . This norm was first used by the second author to prove that

for the integral manifold y = v{t, x) whose existence had been

established the partial derivative v exists and satisfies a Lipschitz

condition in x . We have

||/||eBl*"Tl for -~ < t <

It follows that if

git) = f(s)ds

J X

and if 6 > 0 , then

\\g\\ § Z'hfti •

To avoid interrupting the argument some lemmas are collected together

in Section 2. The Main Theorem is stated in Section 3, and proved in

Sections 3 and 4. The properties of the corresponding integral manifold

are summarized at the end of Section 4.

2. Auxiliary results

LEMMA 1. The function ff(0) = (l-e"^]"1 satisfies the following

inequalities for 3 > 0 :

Since H(&) > 1 we have in addition

LEMMA 2. Let A(t) be a continuous matrix function such that
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for -« < t < °° and suppose the linear equation

(2) y' = 4(t)i/

has a fundamental matrix Y{t) such that

\Y(t)Pr1(s)\ S Ke-haU-s) for t a a ,

| y ( t ) ( l - P ) r 1 ( s ) | § fe"it0'(s"t) for s a t ,

where P is a projection matrix and K, a are positive constants. Then

there exists a positive constant & = &{N, K, a) such that if B(t) is a

continuous matrix function satisfying

\B(t)-A{t)\ S N for -o° < t < ~ ,

6 for \t2 - ti\ S 1 ,{B{t)-A(t))dt

then the linear equation

(h) y' = B{t)y

has a fundamental matrix Y{t) such that

\Y(t)PY~1(s)\ S M T 2 a ( * ~ s ) for t*s,

| Y ( t ) ( I - P ) Y " 1 ( s ) | S M e ~ 2 a { s ~ t ) for s a t ,

where M = M(K) > 1 .

This is a special case of Theorem 2 of [3].

LEMMA 3. Let h{t, x) be a continuous function defined for all

t i i?1 and all x € if . Moreover, suppose there exist positive

constants L, q such that

\h(t, x\)-h(t, x2)\ S L\xi - x2\ ,

f*2
h{t, x)dt § q for all x if |t2 - *i| § 1 •

If x{t) is any function such that for all i

\x{t2)-x{tl)\ S N\t2 -

then
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•* 2

h[t, x(t)]dt § p for

Put

8. = *i + j(t2-ti)/n (j = 0 n) .
/

Then for |t2 -

I
3 X

h[t, x{s.)]dt + LN

s .

11.'.(s.-t)dt

Choose the positive integer n so that

p'1 £ n < LNp'1 + 1 .

Then if q g fp2(p+LN)~1 we have

h[t, x(t)]dt = P

LEMMA 4. Let B{t) be a continuous matrix function such that the

linear equation

(U) y' = B(t)j/

has a fundamental matrix I ( t ) satisfying (5). 1 / 0 S 3 < 2a j an<i if

f(t) is a continuous vector function such that \\f\\ < M , then the

inhomogeneous equation

(6) y' = B(t)y + f(t)

has a unique solution y(t) such that \\y\\ < <*> . Moreover

\\y\\ § 2(2a-6)"1W||/|| .

The uniqueness of the solution is immediate, since the homogeneous

equation (k) has no nontrivial solution y(t) such that
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\y{t)\ = o(e ' * ' ) for t * ±°° . I t is not dif f icul t to see that

y{t) = f y(t)py-1(s)f(s)ds - f y{t){i-p)Y-1(s)f(s)ds
•"-co >t

Y(t)PY~±(s)f(s)ds -
>t

i s a solution of (6) . We consider only the estimation of |*/( t) | and in

fact we r e s t r i c t a t tent ion to the case t > x . Writing

rt

we obtain

\y(t)\ S M\\f\i\r e-^-^e^Us + f*

LEMMA 5. Let B[t) be a continuous matrix function such that

\B{t)\ § 2N for -°° < t < °° , utere // £ 1 , awd suppose the linear

equation (U) has a fundamental matrix Y{t) satisfying (5). J j

0 S 3 S 0( j awd i / / ( t ) i s a continuous vector function such that

f(s )ds re
't

f o r \ h \ S 1 a n d e i t h e r t g T , h > 0 o r x g t , 7 7 < O j t ? 7 e n t h e

inhomogeneous equation (6) has a unique solution y(t) such that

\\y\\ < <*> . Moreover

fell § &IWyp ,

where y = #(<*) = ( l -e" 0 6 ]" 1 .

As in the proof of the previous lemma we consider only the estimation

of
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y(t) = f y(t)?y"1(s)/(s)ds - f
J_oo l±

for t > x . We write

fOO <»

Jt n=0

t+W+1

Integrating by parts we get

t+n

and hence

since N a 1 and a" < Y • Similarly we write

J -co Yl—0 T— Yl—1

Integrating "by parts we get

fT-tt

and hence

Finally we write

IC

'T 3=1 J T+J-1 JT+m

where m is the unique non-negative integer such that

T + m S t < T + m + l , and obtain in the same way
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2N
y=o

f*

Combining these three estimates, we obtain the lemma.

LEMMA 6. I f 3 > 0 , if u(t) is a continuously differentiate

vector function such that \\u\\ + ||u'|| < °° i and if G{t) is a continuous

matrix function such that

G(s)ds S p for | t 2 - t x | S 1 ,

then the function

satisfies

• J :
v{t) = I G{s)u{s)ds

H = ( )

We c o n s i d e r o n l y t h e case t > T . Let m be t h e u n i q u e

n o n - n e g a t i v e i n t e g e r such t h a t T + m = - t < T + m + l . W r i t i n g

ft m fX+o ft

and integrating by parts in each subinterval we get
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\v(t)\ = |fG(s)u{s)ds

m rt
= P I |W(T+J)| + p

3=0

rt
\u'(s)\ds

lMI I e® +p6-1 | iu ' | |e 6 ( t "T )

3=0

S pfftllull + | | u ' | | ] e 6 ( * " T )

By integrating by parts we immediately obtain also

LEMMA 7. If 8 > 0 , t / u(t) is a continuously differentiate

vector function such that \\u\\ + ||w'|| < °° i and if G(t) is a continuous

matrix function such that

If

G{s)ds

G(s)u{s)ds

S p f o r | t 2 - i j l S 1 ,

/ o r | / J | S 1 a n d e i t h e r t g x , h > 0 o r T g t . , ^ < 0 .

3. The main theorem

Suppose f{t, x, y) and g{t, x, y) are bounded, continuous vector

functions defined for -00 < t < °° , |x| < °° , |j/1 < p , with bounded,

continuous partial derivatives with respect to x and y which satisfy

Lipschitz conditions. More precisely, we assume

\f(t, x, y)\ § N , \g(t, x, y)\ § N

\f (t, x, y)\ S N ,

!/.,.(*> *i» «/i) - fx(t, x2, yz)\ ̂  L[\xx - x2\ + \yi - y2\] ,

where N g 1 , and the same inequalities with f replaced by f , g ,
x y x

q . Furthermore we assume

https://doi.org/10.1017/S0004972700041812 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700041812


206 ' W.A. Coppel and K.J . Palmer

git, x, O)dt q for all x if \ti - t\ | § 1 ,

and the same inequality with g replaced by f , g , g
x x y

Finally, l e t Ait) be a bounded, continuous matrix function, with

| / l ( t ) | S N , such that the linear equation

y' = Ait)y

has a fundamental matrix Sit) satisfying

S for t § s ,

§ K e - h a { s - t ] f o r a i t ,

where P is a projection matrix and K, a are positive constants.

Under these assumptions we have

THEOREM 1. For any S> [o < 6 - ^a) there exists a positive

constant u = u (tf, X, L, a, B) swc?z tTzat i / y § u and i f

q £ q iN, K, L, a, 3, y) i?zen t^e system of differential equationso

x' = fit, x, y)
(1)

i/1 = Ait)y + git, x , y)

has a unique solution xit) = ait, £ , x ) , yit) = yit, E,, x ) for which

( 7 ) x(x) = I , \yit)\ % \i for -» < t < ~ .

ftforeouer t t e partial derivatives x . y exist and satisfy

t T ) - a r t ( t , ? 2 . T ) | § COl?! -

, T ) - y e ( t , £ 2 s T ) | § Z?|Ci -

where C = ^ ( l - e " ^ ) " 1 and D = Ui(iV"1+i»a"1w) . Here 6 = 6(ff, X, a) > 0

and M = MiK) > 1 are defined as in Lemma 2.

https://doi.org/10.1017/S0004972700041812 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700041812


Averaging and integral manifolds 207

We first announce our determination of the constants )i , q . Set

v = (8A0"1 , R = 8Mfcf1ea ,

and choose y > 0 so that

MQL § |<5 , 32\1QLNC(2V+R) S 1 .

Next, for any y (o < y S y ) , choose p > 0 so that

p Q S |<5 , l6NtfypQ S y , 32poM;(2v+fl) § 1 ,

e"0 1)"1where Y = H(a) = (l-e"01)"1 . Then we take

If x(t) is a continuously differentiable function and y(t) a

continuous function such that

(8) ' |*'(t)| s N , \y{t)\ s y for -°° < t < »

then for |t2 ~ *1I - 1 w e have

2
I f 2 fl [ t , X ( t ) , y { t ) ] d t S y £ + I f 2 g [ t , x ( t ) , O ] d t

by Lemma 3 and the inequality q = q • Since \iL + p § 6 it follows

that

B(t) = A(t) + g [t, x(t), y(t)]

satisfies the conditions of Lemma 2.

We can write

fit, x, y) = f{t, x, 0) + f it, x, 0)y + Fit, x, y)
(9) , y

git, x, y) = git, x, 0) + g it, x, 0)y + Git, x, y) ,

w h e r e Fit, x , 0 ) = 0 , Git, x , 0 ) = 0 , a n d i f \yx \ § y , | j / 2 | § P

t h e n
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\F{t, xx, yx) - F(t, x2, y 2 ) \ § 2uL[1^] - x2\ + \y\ - y2\] ,

\G(t, x\, y\) - G(t, x2, y z ) \ § 2vL[\xx - x 2 | + |yi - y2\) •

Let x(t) be a continuously differentiable function and y[t) a

continuous function satisfying (8). Put

j f[s,x(t) = ? + [ f[s, x(s), y(s)]ds

and let yit) denote the unique bounded solution of the equation

y' = L{t) + gAt, xit), 0]\y + hit) ,

where

Since

h{t) = g[t, x(t), y(t)] - g \t, x{t), O]y(t)

= g[t, x{t), 0) + G[t, x(t), y{t)] .

\G(t, x, y)\ = Ij \gy(t, x, By) - gy(t, x, 0)j;•ydB

Odd

and

2
g[t, x(t), O]dt for \t2 -

it follows from Lemmas h and 5, with 3 = 0 , and from the superposition

principle that for all t

\y(t)\ ^ 1

Moreover, for all t ,

\x'(t)\ = \f[t, x{t), y(t)]\ § N .
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For a fixed 3 such that 0 < B 5 ^a let 8 denote the set of all

pairs (re, y) , where x = xit) is a continuously differentiate function,

y = y{t) is a continuous function and ||x|| + ||x'|| + \\y\\ < °° . The set 8

becomes a Banach space if we define

Ma:, y) = (kc, Xj/)

\(x, y ) \ = \\x\\ + Vila'II + C\\y\\ ,

where V and C are the positive constants defined above. Thus V § Tr-

ail d C g 1+ . Let S denote the set of all pairs (a;, y) in 8

satisfying (8). Then S is a closed subset of 8 , since convergence in

norm of a sequence { [x , y )} implies pointwise convergence of the

coordinates x it), y it) and the derivatives x'(t) . By what we have

just proved the transformation T : (x, y) •* (x, y) maps S into itself.

Clearly any solution of the problem (l) - (7) belongs to S and is a

fixed point of T .• Thus t.o prove the existence of a unique solution of

(l) - (7) we need only show that T is a contraction on S .

Let (*i, y\) and (£2, 2/2) t e an3r ^vo points in S and set

(10) z{t) = Xl{t) - x2(t) , w(t) = yiit) - y2it) .

Similarly, if (xx, yx) = T{x\, y\) and {x2, 9z) = T(x2, 2/2) »
 w e s e t

Sit) = xx{t) - x2it) , Q(t) = pi(t) - yz(t) .

Then

ft
z{t) = {f[s, Xi(s), j/i(s)] - f[s, x2(s), y2(s)]}ds

'T

= Ji + J2 + <73 ,

where the three integrals t/j, J2, J3 correspond to the three terms in

the decomposition (9) of fit, x, y) . Thus
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{F[s, - F[s, x2(s), yz(s)]}ds

ft
2\iL I { | s ( s ) | + \w(s)\}ds

To estimate J\ we use Lemma 6. We have

f[s, x^s), 0] - / [ s , x2(s), 0] = j fjs, x2{s) + 6 s ( s ) , 0)z(s)dB

and hence

f1 I f*
|j-i | S / [s, a;2(s) + e 3 ( s ) , 0]s(s)ds

o

where H = H($) = (l-e~^)~ . To estimate J2 we write

l & , x i \ b / , u]yi\,bi — j i t , x 2 ^ s ; ,

d6

= f y [ s , x x ( s ) , 0 ] w ( s ) + \ f y [ s , x i ( s ) , 0 ] " - ^ [ s , x 2 ( s ) ,

Then

S f |ff|w(s)| + vL\z(s)\\ds

Collecting together these three estimates we get, since 3 < H ,

P0[|MI(11) Hall S

Since

z ' ( t ) = / [ £ , * ! ( < ; ) , y x ( t ) ] - f [ t , x 2 { t ) , y 2 ( t ) ]

we also have

(12) Hs'll § tf[||s|| + l|w||] .

The difference Q{t) = y\{t) - y2(t) is a bounded solution of the
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equation

(13) W = U(t) + g [t, * ! ( £ ) , 0 ] L

where

= g[t, x x ( t ) , 0 ] - g[t, x 2 { t ) , 0 ] ,

+ G [ t , « ! ( * ) , y i ( t > ] - G [ t , x z ( t ) , y 2 ( t ) ]

T h u s

and hence

Also

rt+h ,1 rt+hrt+h ,1 rt+h
<f)(s)ds = a [ s , x 2 ( s ) + 9 a ( s ) ,

and hence "by Lemma 7,

for \h\ S 1 and either t S T , ? 2 > 0 or T g t , h < 0 . It follows

from Lemmas it and 5 and from the superposition principle that

||0|| S 2 ( 2 0 - 6 ) " ^ . 3\iL[\\z\\ + INN + 8ff«fvp0B"1(eB-l)[||a|| + II JS * II3 •

Therefore, since (aa-g)" 1 s a ' 1 and YB~1(e6-l) S a " ^ " ,

(1"*) IIOII S fa^yitftllsll +

From (11), (12) and (lit) we obtain
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^wcOflWI + ||u||] + NH\\W\\

+ MWtll

+ IM|] + JciMI + Jv[||s|| +

+ IMI] * P0(H*RC)[\\B\\ * \\z'\\]

Thus T really is a contraction.

Now let (xi, y i) and (x2, y2) denote the fixed points of T when

£, in (7) is replaced by £1 and E,2 . If we again set

(10) s(t) = x\(t) - x2(t) , w(t) = y\(t) - y2(.t)

then

[* ( )
z(t) = E,i - C2

 + i/[s» «i(s), y\(s)] - f[s, x2(s), y2(s)]>ds

and w(t) is the unique bounded solution of the equation (13), with

9z(t) = yz(^) • Therefore, by the same argument as before,

|(s, u ) | S |^ _ £2| + —I (3, w)\ .

Hence

and in particular

\y(t, £,1, T ) - y(t, C2, T ) | § 2C"1|£1 - ^2 je '*~
T' •

Similarly, let [x\, J/i) and (x2, y2) denote the fixed points of

T when T in (7) is replaced by T + h and T , and again define z(t),

w(t) by (10). Then

ri+h
z{t) = - /[s, X\{s), Wi(s)]<is

- f[a, x2{s), y2(.s)]\ds

and w(t) is the unique bounded solution of the equation (13), with

t if[S>
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, from which it follows again that

|(2, u)\ S

Thus

| - x{t, C, T)| |

\y(t, C, T+7») - *(*, C,T)|S |(i-e

It remains to prove the part of the theorem concerning the partial

derivatives x , y .

4. Completion of the proof.

We consider first a linear system of differential equations

x' = Fi(t)x + F2(t)y

(IT)
y' = G1(t)x + Gz(t)y

where the matrix functions F,,G, (k = 1, 2) are continuous and bounded

by N , except Gi which is bounded by 2N , and the vector functions

T), 5 are continuous with ||n|| < °°., Hell < °° . We assume also that for

1*2 - *i| a i

Fi(s)ds § r , Gl{s)ds S r

and that the linear equation

(18) y' = G2(t)y

has a fundamental matrix Y(t) satisfying (5)- We wish to show that if

v is so small that

(19) l6NC(2v+R)r § 1 ,

then the system (IT) has a unique solution x{t) , y{t) in 8 such that

x(x) = C •

For any (x, y) in 8 set

+ j ^ j l S x s + 2 s t / s + n s j s
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and let y(t) denote the unique solution with \\y\\ < °° of the equation

y' = G2(t)y + Gj (*)«(*) + c(t) .

Then, using the same notation as in the previous Section, we have

rt
Ht) = | /^(sMs) + F2(s)w(s)\ds

and Q(t) is the unique solution with ||u|| < °° of the equation

w' = G2{t)w + Gx(t)z(t) .

By Lemma 6 we have

||S|| s rH[\\z\\ + ||*Mi] + JYS^IMI ,

while

By

for

by

Lemma

Lemma

7

s

5

1
1

rt+h

and

G1(s)2(s)ds

either t a , h > 0 or T & t , 7 i < 0 , and hence

It follows that

Therefore the mapping (x, ̂ ) ->• (x, y) has a unique fixed point in

B . If we denote this fixed point by [x , y ) then

j •(Fi(s)a;0(s) + F2(s)yo(s) + n(s)Ws*0(*) = C + I {Fi(s)xjs) + F2(s)yjs) + r](s)}ds

and y (t) i s the unique solution with \\y\\ < °° of the equation
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' = G2(t)y + Ci(t)a:o(t) + ?(*) ,

from which it follows in the same way that

Therefore

(20) | ( v j/o)| s 2|c| +

If

, 5, T)] ,
(•1/

/„[*. * ( * . 5, T ) , j/(t, C, x)] ,
(21) ^

^i(t) = gjt, x{t, c, T ) , j/(t, C, T ) ] ,

G2(t) = i4(t) + g'At, x(t, £, T ) , 2/(t, £, T ) ] ,

then we can take r = p + yL and the inequality (19) is satisfied.

Moreover (18) has a fundamental matrix Y(t) satisfying (5)- Let X (t),

I (t) denote the corresponding solution in 8 of the matrix system

X' = Fi(t)X + F2(t)Y

Y' = Gx{t)X + G2(t)Y

with XAt) = I . By (20) we have

(22) |Uol| + C||Y0H S 2 .

Put

xi(t) = x(t, %, x) , xz(t) = x(t, C, T)

and with z(t), u(t) defined by (10) set

Then

where
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= f[t, xY{t), yi(t)] - f i t , xz{t), y2(t)] - Fx{t)z(t) - F2(t)w(t)

\fx[t, x2{t) + Qz{P), y2(t) + Qw(t)] - fx[t, x2(t), y2(t)]\z(t)dQ

+ I If• [t, x2(t) + Bz(t), y2(t) + Qw(t)] - f i t , x2(t), y2(t)]\w(t)d6 .

Hence

| n ( t ) | s L[\z{t)\ +

Also

V = G^tH + G2{t)i>

where

= 4 ( t ) w ( t ) + g - [ t , a r j C t ) , y i ( t ) ] - g { t , x 2 { t ) , y z ( t ) ]

- G i U

= j \gx[t, x2(t) + e s ( t ) , yz(t) + e w ( t ) ] - ^ [ t , xz(t), y2(t)]\z(t)de

j j ? [ * » xz{t) + 9 s ( t ) , t / 2 ( t ) + 6 w ( t ) ] - a [ t , a : 2 ( t ) ,j
and hence

Thus with the norm

i m i 2 =

we have

IMI)2

by the formula l ine preceding (15). If we write

H2 = tf(2g) s g , c2 = 1+TO2 §

then, since ()>(T) = 0 , i t follows from (20) that

H4>||2 + C2ll*ll2 S ItLCz^+JKX-1*)!?

Therefore, by the defini t ions of <f> and ty ,
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\X(t, I, T) - *(*, C, T) - XQ(t)(l-O\ § CD\l -

\y(t, I, T) - y(t, c, x) -

where Z? = UL[N~ +ka~ M) as in the statement of Theorem 1. Thus the

partial derivatives xAt, £> T ) , yAt, £> x) exist and equal ^ o ( *

Y (t) respectively.

We show next that the partial derivatives satisfy a Lipschitz

condition. If

XAt) = xAt, I, T) , YAt) = yAt, I, T)

then X (t) , 5 (t) is the solution in 8 of a system

X' = Fi{t)X + F2{t)Y

Y' = Gl{t)X + G2(t)Y ,

corresponding to that satisfied by X(t) , YAt) , with X(T) = I .

Thus

Z(t) = XAt) - XAt) , W(t) = YAt) - YAt)

is a solution of the system

where

2' = Fx{t)Z + Fz(t)W

W = Gl(t)Z + Gz(t)W

r\(t) = [F^t) - FAt)]xAt) + [F2(t) - F2(t)]YAt) ,

GxitUxAt) + [G2(t) - G2(t)]YAt) .

Thus we have

s L [ \ z ( t ) \ + \ w { t ) \ ] [ \ x A t ) \ +

and hence, by (22) and the formula line preceding (15).

Since Z ( T ) = 0 it follows from (20) that
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I|Z||2 + C2\\W\\2 § hLC2[N-1+ka.-1M') \Z. - C|

= C2D\l - C| .

Therefore

2 3 | * " T |\x(t, I, T ) - xAt, 5 , T ) | § CZ?|C - 5 | e 2

, 5 , T) - ^ ( t , 5 , T ) | S o |5 -

\ ( t , I, T) x
( 2 3 )

Similarly, if we put

Z(t) = xAt, ?, s

Wit) = i/e(t, 5, T+ )̂ - yAt, C, T)

then Z(t) , y(t) are the solutions of a linear system of the same form

as before where, by (22) and the formula line preceding (16),

||nll2, lkll2

Since

Z(T) = X(x) -

we have, for 0 § h § i ,

ff j T + [ | J ( * ) |

a 2 ,

Therefore, by (20),

I|Z||2 + C2IMI2 = ^ e \ + C2NDh .

Since (72 § C i t follows that for 0 § ft S 1

| * e ( * . 5, T+ft) - x e ( t , C, T ) | S [2(e6-l)

y e ( t , 5, x ) | S [2(e
B- l j
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Finally we consider the properties of the corresponding integral

manifold. Put

(2U) V(T, 5) = »(T, C, T ) .

Then

(25) |V(T, C)| § y ,

the partial derivative U exists and

(26) |t>5(T, 5)1 S 2C"
1

(2?) |»5(T, ?) - »e(T, C)| ̂  0|C - C| .

Since the solutions guaranteed by Theorem 1 are unique we have

x[t, x(s, £, T ) , e] = x{t, 5, T )

y[t, x(s, C» T ) , S ] = j/(t, C, T ) .

In particular

(28) v[t, x(t, C, T ) ] = y(t, C, T ) ,

which shows that the equation y = v{t, x) defines an integral manifold

of (l). For fixed T, £ and small h we have, by (l6),

rT+h

:+h
f[s, x(s, 5, x), y(s, E,,

T+h
f[s, X(T, 5. T ) , J/(T, C,

T

= -f[x, C,

Also, for fixed t ,

x(t, I, x) = x(t, C, T ) + xg{t, C, T)(|-5) + OC|C-C|2) •

Therefore, taking \ = x(x, £>
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x(t, 5, x+h) = x(t, I, T)

= *(* , C, T) + x ^ t , 5, T ) ( | - 5 )

= x ( i , £., x) - x^t, 5, T ) / [ T , 5, W(T, £)]/i + o(\h\) .

Thus x (£, £, T) exis ts and is equal to

- « e ( t , C, T ) / [ T , C, W ( T , 5 ) ] .

Therefore, by (28), y (t, £, x) also exists and is equal to

V^t, x{t, C, T)]xT(t, C, T) .

Since U(T, 5) = J/(T, £, T) it follows that V^{i, C) exists and is

equal to

-4(r)y(T, ?, T) + g[i, X(T, ?, T ) , I/(T, C. T ) ]

+ f [T, X(T, C, T)]XT(T, C, T)

= / ( T M T , €) + ?[T, €, u(t, ?)] - I>C(T, ?)/[T, 5, W(T, 0 ] •

Thus U(T, C) is a solution of the partial differential equation

(29) UT + y,/(T, C» ") = 4(T)U + g{T, 5, u) •

Since C^k it now follows from (25), (26) and (27) that

(30) | V T ( T , C ) | S

(31) |W T (T, I) - WT(T, O\

Also

, C) - v^i, C) = y^x+h, ?, T+fc) - J/?(T, C,

From (22) and the differential equation satisfied by yf we have, for

0 s h S 1 ,

https://doi.org/10.1017/S0004972700041812 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700041812


Averaging and integral manifolds 221

T+M - yAi, C. t+h) |

S N I WxAt, £,, i:+h)\ + 2\yAt, C, T+h)\\dt
•'x

c
Therefore

This inequality has been established for 0 % h § l t but extends at once

to arbitrary real h . The two Lipschitz conditions show that u is a

continuous function of (T, £) , and hence U is also by the partial

differential equation (29). Moreover from the fact that u is continuous

in T for fixed £ we can show in general that i>f satisfies a

Lipschitz condition in x with the same constant as in the Lipschitz

condition which v satisfies in £ .

Summing up, we have proved

THEOREM 2. Under the hypotheses of Theorem 1 the system (l) has an

•integral manifold y = v(t, x) where v is a continuous function with

continuous partial derivatives v,, v such that
V X

\ v ( t , x ) \ S u , l u
x ( * > * ) ! = 2C~X ' \vt^' x ) l S (v+2)N ,

\vx(t, xi) - Vx(t, x2)\ § V\xx - x2\ ,

\ , x2)\ § {D+3)N\xi - x2\ ,

\vJti, x) - vJt2, x)\ § (D+3)N\t1 - tz\ .

The behaviour of the solutions on the integral manifold y = v[t, x)

is determined by the differential equation
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(32) x1 = Ht, x) ,

where k{t, x) = f[t, x, v{t, x)] . Thus the partial derivative k

exists and is equal to / + / i> . Hence
cc y x

(33) \kjt, i ) | s 2 J F

and

(31+) \kjt, xi) - kjt, x z ) | § [DN^£)\Xl - x2\ .

In the case referred to in the Introduction, where the system (l)

arises in the study of a periodic perturbation of an autonomous system

with a periodic orbit, I is a scalar and the functions / , g, v, k are

periodic in both t and a; . Thus (32) describes a flow without

stationary points on a torus. The smoothness properties which have been

established for the function k{t, x) are just sufficient to exclude the

singular case, by virtue of Denjoy's Theorem (see [2]). Consequently the

solutions of (32) are asymptotically periodic if the rotation number is

rational, and quasiperiodic with two basic frequencies if the rotation

number is irrational.
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