
 Open access  Journal Article  DOI:10.1103/PHYSREVE.78.066220

Averaging approach to phase coherence of uncoupled limit-cycle oscillators
receiving common random impulses — Source link 

Kensuke Arai, Hiroya Nakao

Institutions: Max Planck Society

Published on: 29 Dec 2008 - Physical Review E (Phys Rev E Stat Nonlin Soft Matter Phys)

Topics: Limit cycle, Stationary distribution and Stochastic process

Related papers:

 Phase coherence in an ensemble of uncoupled limit-cycle oscillators receiving common Poisson impulses

 Noise-induced synchronization and clustering in ensembles of uncoupled limit-cycle oscillators.

 
Synchronization of uncoupled oscillators by common gamma impulses: From phase locking to noise-induced
synchronization.

 
Onset of synchronization in networks of second-order Kuramoto oscillators with delayed coupling: Exact results
and application to phase-locked loops

 Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators

Share this paper:    

View more about this paper here: https://typeset.io/papers/averaging-approach-to-phase-coherence-of-uncoupled-limit-
4aolreb56b

https://typeset.io/
https://www.doi.org/10.1103/PHYSREVE.78.066220
https://typeset.io/papers/averaging-approach-to-phase-coherence-of-uncoupled-limit-4aolreb56b
https://typeset.io/authors/kensuke-arai-3hk87n7z7i
https://typeset.io/authors/hiroya-nakao-y22ja4l02k
https://typeset.io/institutions/max-planck-society-3o0xx7lg
https://typeset.io/journals/physical-review-e-9qlkqn9m
https://typeset.io/topics/limit-cycle-135d8mcx
https://typeset.io/topics/stationary-distribution-3fvxhxp3
https://typeset.io/topics/stochastic-process-ahq4y31a
https://typeset.io/papers/phase-coherence-in-an-ensemble-of-uncoupled-limit-cycle-20pza2dg3u
https://typeset.io/papers/noise-induced-synchronization-and-clustering-in-ensembles-of-1x5y430w49
https://typeset.io/papers/synchronization-of-uncoupled-oscillators-by-common-gamma-1hxwuxeu57
https://typeset.io/papers/onset-of-synchronization-in-networks-of-second-order-3ncy1nn7i9
https://typeset.io/papers/coexistence-of-coherence-and-incoherence-in-nonlocally-4mm74885ac
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/averaging-approach-to-phase-coherence-of-uncoupled-limit-4aolreb56b
https://twitter.com/intent/tweet?text=Averaging%20approach%20to%20phase%20coherence%20of%20uncoupled%20limit-cycle%20oscillators%20receiving%20common%20random%20impulses&url=https://typeset.io/papers/averaging-approach-to-phase-coherence-of-uncoupled-limit-4aolreb56b
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/averaging-approach-to-phase-coherence-of-uncoupled-limit-4aolreb56b
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/averaging-approach-to-phase-coherence-of-uncoupled-limit-4aolreb56b
https://typeset.io/papers/averaging-approach-to-phase-coherence-of-uncoupled-limit-4aolreb56b


Averaging approach to phase coherence of uncoupled limit-cycle oscillators

receiving common random impulses

Kensuke Arai
1,* and Hiroya Nakao

1,2

1
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

2
Abteilung Physikalische Chemie, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany

�Received 29 April 2008; published 29 December 2008�

Populations of uncoupled limit-cycle oscillators receiving common random impulses show various types of

phase-coherent states, which are characterized by the distribution of phase differences between pairs of oscil-

lators. We develop a theory to predict the stationary distribution of pairwise phase differences from the phase

response curve, which quantitatively encapsulates the oscillator dynamics, via averaging of the Frobenius-

Perron equation describing the impulse-driven oscillators. The validity of our theory is confirmed by direct

numerical simulations using the FitzHugh-Nagumo neural oscillator receiving common Poisson impulses as an

example.
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I. INTRODUCTION

Coherence phenomena exhibited by dynamical units re-

ceiving correlated drive signals have been the focus of much

recent research �1–16,18�. Experimentally, synchronization

among dynamical units receiving a common fluctuating

drive, or the response reproducibility of a single unit receiv-

ing identical fluctuating drive, has been shown in neurons

�1–3�, chaotic lasers �4�, and electrical oscillators �5–7�. The

slightly counterintuitive phenomenon of desynchronization

or antireliability via a common input has been seen in elec-

trical oscillators �7�, electrochemical oscillators �8�, and

light-sensitive circadian cells �9�. Further, coexistence of

multiple synchronized groups of dynamical units has been

observed in chaotic electrical circuits; they are known as

multiple basins of consistency �6�. For limit-cycle oscillators,

theoretical analysis has yielded quite a few quantitative re-

sults explaining synchronization, desynchronization, and

multiple synchronized groups or clusters exhibited in an en-

semble of limit-cycle oscillators �7,13–18�.
Our previous work �7,16� analyzed the linear stability of

synchronized or clustered states of uncoupled limit-cycle os-

cillators subject to random common external impulses by

calculating the Lyapunov exponent, which quantifies the av-

erage rate of growth of an infinitesimal phase separation be-

tween a pair of oscillators. The only dynamical information

we require about the oscillator is contained in a simple func-

tion called the phase response curve �PRC� describing the

magnitude of phase advance or retardation due to a pertur-

bation at a given phase �19,20�. The PRC has been measured

in many oscillator-like systems, including neurons, circadian

oscillators, cardiac cells, and electrical circuits �7,9,22–24�.
For nonfrequent impulses, the Lyapunov exponent � is given

by

� = ��
0

1

d��
c

dc ln�1 +
�

��
G��,c��p�c� , �1�

where � is the mean number of impulses in a unit time �or

rate�, G�� ,c� is the PRC for an impulsive perturbation

whose intensity and direction �or mark �25�� is c, p�c� is the

probability density of the mark, and the integral is over the

oscillator phase � and the mark c. A negative �positive� �
means that an infinitesimal phase difference shrinks �grows�
on the average, resulting in synchronization �desynchroniza-

tion� of the oscillators.

However, the Lyapunov exponent alone is not sufficient to

characterize the whole coherence phenomenon induced by

the common impulses, because it is an average quantity over

the entire limit cycle that characterizes only the local linear

stability of the synchronized state. The phase difference gen-

erally does not monotonically decrease or increase over suc-

cessive common impulses due to fluctuations in the expan-

sion rate of the phase difference, which is determined by the

precise form of the PRC. When small external noises or in-

homogeneities exist, such fluctuations may induce large ex-

cursions from the synchronized state even if the Lyapunov

exponent is negative on average. Oscillator pairs may find

themselves with a large phase difference, but the global dis-

tribution of the phase difference cannot be explained by a

linear stability analysis.

In this paper, we continue the theoretical analysis for an

ensemble of generic uncoupled limit-cycle oscillators to ob-

tain the stationary distribution of pairwise phase differences.
1

Starting from general dynamical equations for a pair of limit-

cycle oscillators driven by common impulses, we derive a

pair of random maps and the corresponding two-body

Frobenius-Perron equation �26,27� using the phase reduction

method �7,19,20�. We then derive an approximate one-body

*arai@ton.scphys.kyoto-u.ac.jp; http://www.ton.scphys.kyoto-

u.ac.jp/nonlinear

1
For an ensemble of uncoupled oscillators, no many-body effects

due to coupling arise, and analysis of the phase relation between

two oscillators is sufficient to understand the situation for N

oscillators.
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Frobenius-Perron equation for the phase difference by aver-

aging out the fast phase dynamics, which yields the station-

ary distribution of the phase difference. The theoretical result

is compared with direct numerical simulations using

FitzHugh-Nagumo oscillators receiving common Poisson

impulses.

II. THEORY

A. Phase reduction of the dynamical equation

We investigate a pair of uncoupled oscillators receiving

common random impulses and also subject to independent,

weak additive Gaussian white noise. The stochastic dynami-

cal equation for the ith oscillator in this pair is �7�

Ẋi�t� = F�Xi� + �
n=1

N�t�

��Xi,c
�n��h�t − t�n�� + �DH�Xi��i,

�2�

where i=1,2, Xi�t��R
M is the oscillator state at time t, and

F�Xi�: R
M

→R
M is the dynamics of a single oscillator, N�t� is

the number of received impulses up to time t, t�n� is the

arrival time of the nth impulse, c
�n�

�R
K is the intensity and

direction, or mark �25�, of the nth impulse, ��Xi ,c�: R
M

�R
K
→R

M is the coupling function describing the effect of

an impulse c on Xi, h�t− t�n�� is the infinitesimally narrow

unit impulse whose wave form is localized at the time t�n� of

the impulse �	−�
� h�t− t�n��dt=1�, H�Xi��R

M�M is the cou-

pling matrix of the independent noise to the oscillator, �i

�R
M is a Gaussian white noise of unit intensity with corre-

lation 
�i
��t�� j

	�s��=
�t−s�
�	
ij added independently to

each oscillator, and D is the intensity of the independent

noise. We interpret Eq. �2� in the Stratonovich sense. If the

impulses and the independent noises are absent �H=0, �

=0�, the system is assumed to have a single stable limit-cycle

solution, X0�t�.
As in our previous papers �7,16�, we use the phase

reduction method to analyze the dynamics of impulse-driven

oscillators. We define an asymptotic phase �19,20� � along

the limit cycle X0�t� that constantly increases with a natural

frequency �, and extend the definition of phase to the whole

state space of the oscillator �except for phase singular sets�
by identifying the orbits that asymptotically converge to the

same point on the limit cycle. This defines a mapping from

the oscillator state X�R
M to the phase �� �0,1�.

We assume that the interval between impulses is long

compared to the relaxation time back to the limit cycle, so

the oscillator is almost always on the limit cycle when an

impulse is received. We can then reduce Eq. �2� to the dy-

namics of a single asymptotic phase �i. The dynamics of the

phase �i
�n� right before the nth impulse is received can be

approximately described by a random map

�i
�n+1� = �i

�n� + G��i
�n�,c�n�� + ���n� + i

�n�, �3�

where G�� ,c� is the PRC, ���n� is the increase in phase

during the interval between the nth and �n+1�th impulses

��n�= t�n+1�− t�n�, and i
�n� is the displacement caused by the

additive independent Gaussian noise �i in the interval ��n�.

From now on, we assume the range of � to be the real

numbers R by taking into account the number of windings

around the limit cycle, which makes the treatment of peri-

odic boundary conditions easier in the following derivation

�28�.
The PRC G�� ,c� describes the change in phase of the

oscillator when an impulse of mark c is received at phase �
on the limit cycle, which is periodic in �, i.e., G��+1,c�
=G�� ,c�. It can be obtained by applying the approximation

theorem by Marcus �21� to the impulsive term in Eq. �2� as

�7�

G��,c� = ��X0��� + g„X0���,c…� − � , �4�

where g�X ,c�= �exp�� j� j�X ,c��� /�X j��−1X.
2

The PRC is

related to the phase sensitivity function �20� Zi���
���� /�Xi�X=X0��� by G�� ,c��Z��� ·�(X0��� ,c) when the

effect of the impulse �(X0��� ,c) is small.

Generally speaking, the displacement i
�n� depends on the

oscillator phase �i
�n�, the impulse mark c

�n�, and the relax-

ation path to the limit cycle after each impulse. We approxi-

mate the actual distribution function of i
�n� by a zero-mean

Gaussian normal distribution with variance �2��n�.
3

The ap-

proximate diffusion constant � can be obtained by ignoring

the fast relaxation dynamics to the limit cycle after the im-

pulse and by averaging the phase dependence over the limit

cycle as �17�

�2 = �
0

1

�
ijk

Zi���Z j���H„X0���…ikH„X0���… jkd� , �5�

where we utilize the fact that the stationary phase distribu-

tion of a single oscillator receiving infrequent impulsive

forcing is nearly uniform �7,16�. As we demonstrate later,

this is a good approximation for oscillators whose relaxation

to the limit cycle is sufficiently fast.

B. Frobenius-Perron equation for the phase difference

Let us consider the dynamics of the joint probability dis-

tribution ���1 ,�2 ,n� of the phases ��1 ,�2� right before the

nth impulse, determined by the random map Eq. �3�. We

assume the range of phase variables to be �1,2�R. The

Frobenius-Perron equation for the evolution of the joint dis-

tribution is

2
For the Ito interpretation of the impulse term, the PRC is simply

given by G�� ,c�=��X0���+�(X0��� ,c�)−� �7�.
3
The Stratonovich interpretation of Eq. �2� introduces a phase-

dependent drift term that disappears upon averaging over the limit

cycle �17�, so the additive diffusion term i
�n� may be taken to have

zero mean.
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���1,�2,n + 1� = �
−�

�

d�1��
−�

�

d�2��
0

�

d��
c

dc�
−�

�

d1�
−�

�

d2W���p�c�R�1,��R�2,��

� 
„�1 − �1� − G��1�,c� − �� − 1…
„�2 − �2� − G��2�,c� − �� − 2…���1�,�2�,n�

= �
−�

�

d�1��
−�

�

d�2��
0

�

d��
c

dc W���p�c�R„�1 − �1� − G��1�,c� − ��,�…

� R„�2 − �2� − G��2�,c� − ��,�…���1�,�2�,n� , �6�

where W��� is the interimpulse distribution, G�� ,c� is the

PRC, and R�i ,�� is the probability that an oscillator i has

diffused an amount i in a time interval �, which we approxi-

mated as a normal distribution with variance �2�.

Going to the center-of-mass coordinates, we change vari-

ables to �= ��1+�2� /2 and �=�1−�2, where � is the mean

phase and � is the phase difference. The Frobenius-Perron

equation �6� is transformed as

���,�,n + 1�

= �
−�

�

d���
−�

�

d���
0

�

d��
c

dc p�c�W���

�R�� +
�

2
− �� −

��

2
− G��� +

��

2
,c� − ��,��

�R�� −
�

2
− �� +

��

2
− G��� −

��

2
,c� − ��,��

�����,��,n� .

We now restrict the mean phase to �� �0,1� and the

phase difference to �� �−1,1�, similarly to Ermentrout and

Saunders �28� by introducing a new distribution function

P��,�,n� = �
p=−�

�

�
q=−�

�

��� + p,� + 2q,n� , �7�

which sums up contributions from pairs of phase values with

different winding numbers but that represent physically

equivalent situations on the limit cycle. This “wrapped”

P�� ,� ,n� corresponds to the actual distribution of the mean

phase and the phase difference measured in simulations or

experiments. Using the periodicity of the PRC, we obtain

P��,�,n + 1�

= �
��p�=��q�

�
0

1

d���
−1

1

d���
0

�

d��
c

dc p�c�W���

�R�� +
�

2
− �� −

��

2
+ p − G��� +

��

2
,c� − ��,��

�R�� −
�

2
− �� +

��

2
+ q − G��� −

��

2
,c� − ��,��

�P���,��,n� ,

where the summation involves all pairs of p and q of equal

parity ���·� denotes the parity of an integer�.
To obtain a closed equation for the phase difference �, we

now average out the fast dynamics of the mean phase �. If

the impulses are not very frequent and the magnitude of the

independent noise is small, the mean phase � is a rapidly

changing variable compared to the phase difference �. Then

� and � can be taken to be nearly independent, and the joint

probability density can be separated as P�� ,� ,n�
�S�� ,n�U�� ,n�, where S�� ,n� and U�� ,n� are the probabil-

ity density functions of � and �, respectively. Note that

U�� ,n� is periodic in �, U���1,n�=U�� ,n�, because � and

��1 represent the same phase difference. For nonfrequent

impulses, � is almost uniformly distributed on the limit

cycle, S�� ,n��1 �7,16�. We then average over � on both

sides to obtain

U��,n + 1� = �
−1

1

d���
0

1

d���
0

1

d� T��,�,��,���U���,n� ,

�8�

where

T��,�,��,���

= �
��p�=��q�

�
0

�

d��
c

dc p�c�W���

�R�� +
�

2
− �� −

��

2
+ p − G��� +

��

2
,c� − ��,��

�R�� −
�

2
− �� +

��

2
+ q − G��� −

��

2
,c� − ��,�� .

�9�

We now derive an approximate one-body Frobenius-Perron

equation for the distribution of the phase difference,

U��,n + 1� = �
−1

1

X��,���U���,n�d��, �10�

where the transition probability is given by

X��,��� = �
0

1

d���
0

1

d� T��,�,��,��� . �11�

Thus, we have reduced the problem to that of finding the

stationary distribution of a Markov process for the random
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variable � with transition probability X�� ,���. By numerical

estimation of the transition probability X�� ,��� from the

PRC, Eq. �10� can be iterated until a stationary state is

reached. X�� ,��� is periodic in � and ��, X���1,���1�
=X�� ,���.

In the following numerical simulations, we assume that

the random impulses are generated by a Poisson process, and

fix c so that all impulse marks are identical. The interimpulse

interval is exponentially distributed,

W��� =
1

�P

exp�−
�

�P

� , �12�

where the parameter �P is the mean impulse interval. We

further simplify the calculation by neglecting the dependence

of R�i ,�� on � in Eq. �9� by replacing it with R�i ,�p�, a

normal distribution with fixed variance �2�P, which is equal

to the average variance of the diffusion i in a mean inter-

impulse interval �P. Defining G−�=G���+�� /2,c�−G���

−�� /2,c� and G+�=G���+�� /2,c�+G���−�� /2,c�, the func-

tion T�� ,� ,�� ,��� can then explicitly be calculated as

T��,�,��,��� =
exp�D/4�P�2�

��P

�D�P

4�

� �
p even

exp�−
�� − �� − G−� + p�2

4D�P

�
� �

q

exp�−
� − �� − G+�/2 + q

��P

�
��erf�2��� − �� − G+�/2 + q� − D

2��D�P

� + 1� ,

�13�

where erf is the Gauss error function. In numerical calcula-

tions, it is sufficient to use the first several terms in the sum-

mation for p. Since the error function approaches 1 �−1� very

quickly for positive �negative� values of its argument, for a

small enough value of D, the sum over q is to a good ap-

proximation a geometric series.

III. NUMERICAL SIMULATIONS

As an example of a limit-cycle oscillator, we employ the

FitzHugh-Nagumo �FHN� neural oscillator �29� driven by

common Poisson impulses and independent Gaussian white

noises described by the following set of equations:

u̇i = ��vi + a − bui� ,

v̇i = vi −
vi

3

3
− ui + I0 + ��vi,c��

n=1

N�t�

h�t − tn� + �D�i�t� . �14�

Here, the parameters �, a, and b are fixed at �=0.08, a

=0.7, b=0.8, and we use the parameter I0 as a bifurcation

parameter. The last two terms of the equation for v describe

the impulses and noises, where h�t� represents a unit impulse

and ��v ,c� describes the vi-dependent effect of the impulse

on the oscillator. In this example, both H and � have only

one nonzero component. For simplicity, we take the impulse
strength c to be a constant value. When both terms are zero,
a limit cycle exists for I0� �0.331,1.419�, which is created
by a subcritical Hopf bifurcation at either limit of I0. For the
simulations, we employ I0=0.34 and 0.875, which give os-
cillator periods of T�46.792 and �36.418, respectively. We
choose these values because the oscillator characteristics
change in such a way as to show synchronized and desyn-
chronized states for additive impulses, and stable two-cluster
states for linear multiplicative impulses. We set the mean
interval between the impulses at �P=10T. Results similar to
the following have been obtained using Stuart-Landau and
Moris-Lecar oscillators. However, we restrict our discussion
to the FitzHugh-Nagumo model as it displays all of the sa-
lient features of interest.

In direct numerical simulations of Eq. �14�, we realized
the Stratonovich interpretation by using a colored Gaussian
noise generated by the Ornstein-Uhlenbeck process ��̇�t�
=−��t�+��t�, where ��t� is a Gaussian white noise of unit

intensity, and delivering the impulses as discontinuous jumps

of amplitude given by the Marcus approximation theorem of

continuous physical jumps �7,21�. The correlation time � of

��t� was set to 0.05, which is much shorter than the oscillator

period T. In calculating the Frobenius-Perron equation �10�,
we numerically estimate X�� ,��� and U��� on discrete grids

of dimensions between 128 and 2048 for � and ��, depending

on how rapidly X�� ,��� varies as a function of � and ��.

Generally, the larger the value of D, the lower the required

resolution.

We show examples of PRCs for different values of the

impulse strength c obtained for the FHN oscillator through

simulation in Fig. 1, as well as the resultant transition prob-

ability X�� ,���. In all of the figures, we show only �
� �−0.5,0.5� as X�� ,��� and U��� are periodic. The

Lyapunov exponent � is negative for smooth PRCs, and

positive for rapidly fluctuating PRCs. The generic dynamical

behavior of the oscillators is as follows �7�. When ��0, the

system settles down into a largely quiescent state once syn-

chronization is achieved. The rare but sudden disintegration

of a pair of oscillators is possible if there are regions of the

PRC with positive local Lyapunov exponent, but the relative

separation of a pair remains largely static. However, for �
�0, disintegration of a pair happens routinely, followed by a

gradual reunion, and this cycle continues ad infinitum. These

occasional sudden, large excursions from the synchronized

state is generally known as modulational or on-off intermit-

tency �30,31�, and is a characteristic behavior of a random

multiplicative process, of which our system is an example.

Now let us examine the stationary distribution U��� of the

phase difference �. We expect the distribution of � to be

qualitatively different between � of different sign. Figures 2

and 3 show the distribution of � for additive impulses

���v ,c��c, c=0.5,−0.2, respectively� at various intensities

of independent noise for PRCs with negative and positive �.

In all figures, theoretical curves obtained using our

Frobenius-Perron equation for the phase difference nicely fit

the results of direct numerical simulations, which indicates

that the approximations we have made so far are reasonable

for the parameter values we use. It is readily apparent that, if

the synchronized state is stable, the synchronized peaks be-
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FIG. 1. �Color online� �a� PRC G��� for various values of additive impulse intensity c for the FHN oscillator with I=0.34, with the PRCs

of smaller amplitudes shown enlarged in the inset. �b� Averaged phase difference transition probability X�� ,��� for additive impulses with

c=−0.2, D=2.5�10−5, corresponding to the case shown in Fig. 2. �c�, �d� PRCs for I=0.875 with multiplicative impulses, and correspond-

ing transition probability for c=0.5, D=2.5�10−5, corresponding to the case shown in Fig. 5. The PRC of FHN gains additional symmetry

G���=G��+0.5� �as does the transition probability X�� ,���=X���0.5,���0.5�� with application of balanced, multiplicative noise,

��v ,c�=cv.
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FIG. 2. �Color online� Comparison of U��� for the case of ��0 calculated using the averaged Frobenius-Perron equation �FPE� and

measured via simulation �Sim�. �a� shows the global distribution on a semilogarithmic scale, and �b� the distribution near �=0 on a log-log

scale for ��0. The intensity of independent, additive noise �diffusion� is varied �D=9�10−8, 1�10−6, 2.5�10−5� while the intensity of the

common impulse �c=0.5� is kept constant for FHN oscillators with I0=0.875. It can be seen that lowering the independent noise narrows and

increases the height of the peaks of the distribution near �=0. Because the Lyapunov exponent remains constant, the slope is preserved for

various diffusion strengths.

AVERAGING APPROACH TO PHASE COHERENCE OF… PHYSICAL REVIEW E 78, 066220 �2008�

066220-5



come taller and narrower as the diffusion is made smaller,

while � far away from the stable peaks become increasingly

rare. On the other hand, if the synchronized state is unstable,

the distribution for rare � reaches a limiting value, while only

the tip of the synchronized peak increases in height and the

width of the peak remains constant. The distributions exhibit

a power-law dependence near �=0, a characteristic of ran-

dom multiplicative processes �30–33�. As shown in Fig. 4,

different power-law exponents are obtained by changing the

impulse strength c �=−0.2,0.05,0.1�, where the Lyapunov

exponent � determines whether the slope of the power law is

steeper or shallower than −1 �30–33�.

Figure 5 shows the same basic mechanism at work for the

case with linear multiplicative impulses ���v ,c�=cv, c=0.5�,
which exhibits symmetric two-cluster states. The distribu-

tion, which is nicely fitted by the theoretical curve, has three

peaks in this case, corresponding to the three possible phase

differences in the two-cluster states ��=0 and �0.5, where

�= +0.5 and −0.5 represent the same phase difference�. Near

each peak, the distribution exhibits power-law dependence,

as for the case of additive impulses.

IV. COMPARISON WITH COUPLED OSCILLATORS

We have shown that common random impulses applied to

a pair of uncoupled limit-cycle oscillators generally produce

phase coherence. Much existing work focuses on the self-

organizing coherence brought about through coupled ele-

ments, so we would like to touch upon the similarities and

differences between the coherence observable between

coupled and uncoupled systems receiving a common random

input. For simplicity, we consider a pair of identical oscilla-

tors.

Sufficiently weak common random input to uncoupled os-

cillators always tends to stabilize the synchronized state at

zero phase difference regardless of the shape of the PRC.

The probability density function U��� of the phase difference

� always has a peak at �=0, as we have seen in Figs. 2, 3,

and 5. When the common input is stronger, the in-phase syn-

chronized state �=0 can be unstable. We nevertheless ob-

serve that U��� has a local maximum at �=0 as shown in Fig.

3 for weakly unstable situations. For much stronger inputs,

the PRC can take highly irregular forms that contain many

discontinuities or with many rapid, large-amplitude oscilla-

tions. It is then possible for U��� to have a local minimum at

�=0.
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FIG. 3. �Color online� Comparison of U��� for the case of ��0 calculated using the averaged Frobenius-Perron equation �FPE� and

measured via simulation �Sim�. �a� shows the global distribution on a semilogarithmic scale �note the y-axis range in comparison with Figs.

2 and 5�, and �b� the distribution near �=0 on a log-log scale. The intensity of independent, additive noise is varied �D=9�10−8, 1

�10−6, 2.5�10−5� while the intensity of the common impulse �c=−0.2� is kept constant for FHN oscillators with I0=0.34. Due to the

inherent instability of the �=0 state, the distribution of � reaches a limiting value as the independent, additive noise is lowered.
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FIG. 4. �Color online� Power-law distributions of phase differ-

ence U��� near �=0 on a log-log scales for the FHN oscillator with

I=0.34. The intensity of independent, additive noise is kept con-

stant �D=1�10−6� while the intensity of the common impulse is

varied �c=−0.2,0.05,0.1�. As the Lyapunov exponent of the system

is changed, the slope of the power law changes correspondingly.
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In contrast, for oscillators with weak mutual coupling, the

in-phase synchronized state may be either stable or unstable

depending on the shape of the PRC and the interaction func-

tion between the oscillators. If the in-phase state is unstable,

there will be no peak appearing at �=0; instead, a peak is

expected at some other ��0 �28,34�.
This illustrates the biggest difference between coherence

in mutually coupled and uncoupled systems subject to com-

mon inputs. In coupled systems, it is possible to have a

single stable phase-locked state with ��0, while in un-

coupled systems, this is not possible. One possible point of

confusion that arises here may be our use of the terms

“stable” and “unstable.” For uncoupled oscillators driven by

a common input, these terms represent the statistical stability

of the synchronized state. Even if the synchronized state in-

duced by a common input is slightly unstable, the distribu-

tion of the phase differences can still have a shallow maxi-

mum at zero phase difference. The vicinity of �=0 is an

attractive region even if the synchronized state is weakly

unstable. In contrast, these terms represent deterministic sta-

bility for coupled systems. If the state is unstable, we never

observe such a maximum even if independent noises are

added.

If the natural frequencies of the oscillators are different,

the difference in phase coherence behavior will be more

subtle. In this case, a local extremum in U��� at ��0 appears

for two nonidentical oscillators driven by a common input,

and may be a maximum or minimum depending on the de-

gree of statistical stability or instability of the locked state

�data not shown�. In weakly mutually coupled systems, the

deterministic stability is once again dependent on the inter-

action function, and, in addition, the magnitude of the differ-

ence of the natural frequencies. Furthermore, combined ef-

fects of coupling and common input, which may be

important in practical situations, will lead to more intriguing

behavior.

V. SUMMARY

We have found an approximate method to calculate the

steady-state probability distribution of the pairwise phase

difference in an ensemble of uncoupled oscillators receiving

random impulses. The system is essentially a random multi-

plicative process, and as such shows modulational intermit-

tent behavior and power-law dependence of the distribution

near its peak. Qualitative and quantitative features of the

distributions have been found relating the results to the

Lyapunov exponents that characterized the stability of clus-

tered states in earlier works �7,16�.
Our treatment is conceptually a generalization of our pre-

vious result �17� on uncoupled limit-cycle oscillators subject

to common and independent infinitesimal Gaussian white

noises. In that case, the common noise always stabilizes the

synchronized state as long as the oscillator possesses a con-

tinuous phase sensitivity function. The oscillators form one

or more synchronized clusters, depending on the degree of

symmetry possessed by the system. By contrast, in the sce-

nario studied in this paper, there is the further possibility that

common impulses may destabilize the synchronized state,

which can still quantitatively be analyzed within our theoret-

ical framework based on the averaged Frobenius-Perron

equation.
4

In this work, we considered a pair of identical oscillators

subject to the same common impulses, and considered the

diffusion in between received impulses as the effect of inde-

pendent noises. Our method can also be applicable if the

natural frequencies or the PRCs of the oscillators are slightly

different. Furthermore, we can also interpret the diffusion as

the result of inherently noisy response of an oscillator to

4
The slope of the power-law dependence of U��� near the peak is

always −2 for the infinitesimal Gaussian white drive, while it can

take a range of values in the present impulsive drive.
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FIG. 5. �Color online� Comparison of two-clustered � distribution for the case of ��0 calculated using the averaged Frobenius-Perron

equation �FPE� and measured via simulation �Sim� for impulses with c=0.5, FHN bifurcation parameter I0=0.875, and independent additive

noise �D=9�10−8, 1�10−6, 2.5�10−5�. �a� shows the global distribution on a semilogarithmic scale and �b� the distribution near �=0 on

a log-log scale.
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pulsatile inputs. The consequences of a noisy PRC have been

treated recently in the case of mutually coupled neural oscil-

lators �28�. Mildly chaotic, nonmixing oscillators also show

a similar noisiness in their responses. A noisy PRC also

arises in the case of globally coupled oscillators exhibiting a

collective coherent oscillation, where the response of the col-

lective oscillation is inherently fluctuating due to finite-size

effects, in particular near the critical point of the synchroni-

zation transition �35�. The method developed within this pa-

per may prove to be useful in analyzing the dynamics of such

systems. Further results will be reported in the near future.
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