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Abstract: In this paper, we study the averaging principle for ψ-Capuo fractional stochastic delay
differential equations (FSDDEs) with Poisson jumps. Based on fractional calculus, Burkholder-Davis-
Gundy’s inequality, Doob’s martingale inequality, and the Hölder inequality, we prove that the
solution of the averaged FSDDEs converges to that of the standard FSDDEs in the sense of Lp. Our
result extends some known results in the literature. Finally, an example and simulation is performed
to show the effectiveness of our result.
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1. Introduction

Many systems exhibit natural symmetry, such as chemical, physical, and biological
systems. It is well known that stochastic differential equations play an important role in
explaining some symmetry phenomena (see [1–3]). Additionally, we know that stochastic
differential equations are mathematical tools widely used to simulate and model stochastic
processes. Recently, more in-depth research has been conducted on the theory and applica-
tion aspects of these equations to adapt to more complex systems, such as chemical reaction
networks, atmospheric environments, and financial markets; readers can refer to the papers
[4–7] for more information.

In 1968, Khasminskii [8] extended the averaging principles for ODEs to the case of
stochastic differential equations (SDEs). Since then, the averaging principles for SDEs have
found applications in many areas of science and engineering, including fluid dynamics,
control theory, and climate modeling. Many people have devoted their efforts to the study
of averaging principles for SDEs, for example, see [9–11].

As we all know, compared with integer-order derivatives, fractional-order derivatives
provide a magnificent approach to describe the memory and hereditary properties of
various processes. Thus, fractional differential equations are more accurate and convenient
than integer-order ones. The numerical solution of fractional-order nonlinear systems is
an active research area with ongoing developments and improvements in the different
numerical algorithms and techniques used [12–14].

With the development of fractional calculus, the averaging principles for fractional
stochastic differential equations (FSDEs) have become a widespread concern [15–17]. One
notable approach of research is the fractional averaging principle, which extends the
classical averaging principle to FSDEs. Another approach of research is the stochastic
averaging principle, which combines averaging methods with stochastic calculus. Overall,
research into averaging principles for FSDEs is still ongoing, and there is much to be
explored in terms of developing new methods and exploring their applications.
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Recently, Wang and Lin [18] extended the averaging principle of the following frac-
tional stochastic differential equations (FSDEs){

CDα
0 [x(t)− h(t, x(t)] = f (t, x(t)) + g(t, x(t)) dBt

dt , t ∈ J = [0, T],
x(0) = x0,

(1)

in the sense of mean square (L2 convergence) to Lp convergence (p ≥ 2), which generated
some works on the averaging principle for FSDES [19–21].

The periodic averaging method for impulsive conformable fractional stochastic dif-
ferential equations with Poisson jumps are discussed in [22] by Ahmed. For some recent
works on Hilfer fractional order stochastic differential systems, we refer to [23–26]. In [27],
Ahmed and Zhu investigated the averaging principle for the following Hilfer fractional
stochastic delay differential equation with Poisson jumps in the sense of mean square

Dℵ,h̄
0 x(t) = <(t, x(t), x(t− τ)) + σ(t, x(t), x(t− τ)) dB

dt ,
+
∫

V h(t, x(t), x(t− τ), v)N̄(dt, dv), t ∈ J = (0, T],
x(t) = φ(t), −τ ≤ t ≤ 0,
I(1−ℵ)(1−h̄)
0+ x(0) = φ(0).

(2)

In [28], Almeida generalized the definition of the Caputo fractional derivative by
considering the Caputo fractional derivative of a function with respect to another function
ψ. Since then, there have been so many papers involving the ψ-Caputo fractional derivative,
see [29–32]. Recently, there have been many works on SDEs with Poisson jumps, see, for
example, [33–35] and the references therein. However, to the best of our knowledge, the
averaging principle for the ψ-Capuo fractional stochastic delay differential equation with
Poisson jumps in the sense of Lp convergence has not yet been researched in the literature.
In the present paper, motivated by the above-mentioned works, we study the following
ψ-Caputo fractional stochastic delay differential equation with Poisson jumps

CDα,ψ
0 [x(t)− h(t, x(t)] = f (t, x(t), x(t− τ)) + σ(t, x(t), x(t− τ)) dBt

dt ,
+
∫

V g(t, x(t), x(t− τ), v)N̄(dt, dv), t ∈ J = (0, T],
x(t) = φ(t), −τ ≤ t ≤ 0,

(3)

where CDα,ψ
0 is the left ψ-Caputo fractional derivative with 0 < α < 1 and ψ ∈ C1([a, b])

is an increasing function with ψ′(t) 6= 0 for all t ∈ [0, T], J = (0, T], x ∈ Rn is a stochastic
process, h, f : J×Rn ×Rn → Rn, σ : J×Rn ×Rn → Rn×m, and g : J×Rn ×Rn ×V → Rn.
Let (Ω,F , P) be a complete probability space equipped with a filtration (Ft)t≥0 satisfying
the usual condition. Here, Bt is an m-dimensional Brownian motion on the probability
space (Ω,F , P) adapted to the filtration (Ft)t≥0. Let (V, Φ, λ(dv)) be a σ-finite measurable
space, given the stationary Poisson point process (pt)t≥0, which is defined on (Ω,F , P)
with values in V and with the characteristic measure λ. We denote by N(t, dv) the counting
measure of pt such that N̄(t, Θ) := E(N(t, Θ)) = tλ(Θ) for Θ ∈ Φ. Define N̄(t, dv) :=
N(t, dv)− tλ(dv), and the Poisson martingale measure is generated by pt .

In this paper, we prove that the solution of the averaged neutral SFDDEs with Poisson
random measure converges to that of the standard one in Lp sense. The main contributions
and advantages of this paper are as follows:

(i) For the first time in the literature, the averaging principle for ψ-Capuo fractional
stochastic delay differential equations with Poisson jumps is investigated.

(ii) The fractional calculus, stochastic inequality, and Hölder inequality are effectively
used to establish our result.

(iii) Our work in this paper is novel and more technical. Our result has greatly
promoted and extended the main result of [18].

This paper will be organized as follows. In Section 2, we will briefly recall some
definitions and preliminaries. Section 3 is devoted to obtaining an averaging principle for
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the solution of the considered system (3). Additionally, a numerical simulation example is
provided to illustrate our main result. Finally, the paper is concluded in Section 4.

2. Preliminaries

In this section, we recall some basic definitions and lemmas, which are used in the
sequel.

Definition 1 ([36]). Let α > 0, f be an integrable function defined on [a, b] and ψ ∈ C1([a, b]) be
an increasing function with ψ′(t) 6= 0 for all t ∈ [a, b]. The left ψ-Riemann-Liouville fractional
integral operator of order α of a function f is defined by

a Iα,ψ
t f (t) =

1
Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1 f (s)ds. (4)

Definition 2 ([28,36]). Let n− 1 < α < n, f ∈ Cn([a, b]) and ψ ∈ Cn([a, b]) be an increasing
function with ψ′(t) 6= 0 for all t ∈ [a, b]. The left ψ-Caputo fractional derivative of order α of a
function f is defined by

C
a Dα,ψ

t f (t) = (a In−α,ψ
t f [n])(t)

=
1

Γ(n− α)

∫ t

a
(ψ(t)− ψ(s))n−α−1 f [n](s)ψ′(s)ds, (5)

where n = [α] + 1 and f [n](t) :=
(

1
ψ′(t)

d
dt

)n
f (t) on [a, b].

In the following, we will give some properties of the combinations of the fractional
integral and the fractional derivatives of a function with respect to another function.

Lemma 1 ([28]). Let f ∈ Cn([a, b]) and n− 1 < α < n. Then, we have

(1) C
a Dα,ψ

t a Iα,ψ
t f (t) = f (t);

(2) Iα,ψ
t

C
a Dα,ψ

t f (t) = f (t)−
n−1

∑
k=0

f [k](a+)
Γ(k− α)

(ψ(t)− ψ(a))k.

In particular, given α ∈ (0, 1), one has

Iα,ψ
t

C
a Dα,ψ

t = f (t)− f (a).

To study the averaging method of Equation (3), we impose the following conditions
on data of the problem.

(H1) If |h(0, φ(0))| < ∞, t ∈ [0, T] and for all x, y ∈ Rn, a constant C1 ∈ (0, 1) exists
such that

|h(t, x)− h(t, y)| ≤ C1|x− y|.

(H2) For any x1, x2, y1, y2 ∈ Rn and t ∈ J, two constants C2, C3 > 0 exist such that
| f (t, x1, y1)− f (t, x2, y2)|p ∨ |σ(t, x1, y1)− σ(t, x2, y2)|p

∨
∫

V
|g(t, x1, y1, v)− g(t, x2, y2, v)|pλ(dv) ≤ Cp

2 (|x1 − x2|p + |y1 − y2|p),

and

| f (t, x1, y1)|p ∨ |σ(t, x1, y1)|p ∨
∫

V
|g(t, x1, y1, v)|pλ(dv) ≤ Cp

3 (1 + |x1|p + |y1|p).

According to Lemma 1 and [37], an Rn-value stochastic process {x(t),−τ ≤ t ≤ T} is
called a unique solution of Equation (3) if x(t) satisfies the following :



Symmetry 2023, 15, 1346 4 of 15

x(t) =


φ0 − h(0, φ0) + h(t, x(t)) +

1
Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s) f (s, x(s), x(s− τ))ds

+ 1
Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1ψ′(s)σ(s, x(s), x(s− τ))dBs

+ 1
Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1ψ′(s)

∫
V g(s, x(s), x(s− τ), v)N̄(ds, dv), t ∈ J,

φ(t), t ∈ [−r, 0],

(6)

where φ0 = φ(0).

For each t ∈ J, we consider the standard form of Equation (6)

xε(t) = φ0 − h(0, φ0) + h(t, xε(t)) +
ε

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s) f (s, xε(s), xε(s− τ))ds

+

√
ε

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)σ(s, xε(s), xε(s− τ))dBs

+

√
ε

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)

∫
V

g(s, xε(s), xε(s− τ), v)N̄(ds, dv), t ∈ J, (7)

where ε ∈ (0, ε0] is a positive small parameter with ε0 being a fixed number.

Consider the averaged form, which corresponds to the standard form (7) as follows:

yε(t) = φ0 − h(0, φ0) + h(t, yε(t)) +
ε

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s) f̄ (yε(s), yε(s− τ))ds

+

√
ε

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)σ̄(yε(s), yε(s− τ))dBs

+

√
ε

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)

∫
V

ḡ(yε(s), yε(s− τ), v)N̄(ds, dv), t ∈ J, (8)

where f̄ : Rn × Rn → Rn, σ̄ : Rn × Rn → Rn×m, and ḡ : Rn × Rn ×V → Rn satisfying the
following averaging condition :

(H3) For any T1 ∈ [0, T], x, y ∈ Rn and p ≥ 2, a positive bounded function β(·) exists
such that

1
T1

∫ T1

0
| f (t, x, y)− f̄ (x, y)|pdt ∨ 1

T1

∫ T1

0
|σ(t, x, y)− σ̄(x, y)|pdt

∨ 1
T1

∫ T1

0

(∫
V
|g(t, x, y, v)− ḡ(x, y, v)|pλ(dv)

)
dt ≤ β(T1)(1 + |x|p + |y|p),

and limT1→∞ β(T1) = 0.

Lemma 2. Suppose that (H2) and (H3) hold. Then, for T1 ∈ (0, T] we have

|σ̄(x, y)|p ≤ C4(1 + |x|p + |y|p) and
∫

V
|ḡ(x, y, v)|pλ(dv) ≤ C4(1 + |x|p + |y|p),

where C4 = 2p−1(β(T1) + Cp
3 ).

Proof. Using (H2), (H3) and Jensen’s inequality, we obtain

|σ̄(x, y)|p ≤ 2p−1

T1

∫ T1

0
|σ̄(x, y)− σ(t, x, y)|pdt +

2p−1

T1

∫ T1

0
|σ(t, x, y)|pdt

≤ 2p−1β(T1)(1 + |x|p + |y|p) + 2p−1Cp
3 (1 + |x|

p + |y|p)
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= 2p−1(β(T1) + Cp
3 )(1 + |x|

p + |y|p).

Similarly, we can prove that∫
V
|ḡ(x, y, v)|pλ(dv) ≤ 2p−1(β(T1) + Cp

3 )(1 + |x|
p + |y|p).

Lemma 3 ([38]). If p ≥ 2 and a, b ∈ Rn, then for any k ∈ (0, 1), one has

|a + b|p ≤ |a|
p

kp−1 +
|b|p

(1− k)p−1 .

Lemma 4 ([39,40]). Let φ : R+ ×V → Rn and assume that∫ t

0

∫
V
|φ(s, v)|pλ(dv)ds < ∞, p ≥ 2.

Then, Dp > 0 exists such that

E
(

sup
0≤t≤u

∣∣∣∣∫ t

0

∫
V

φ(s, v)N̄(ds, dv)
∣∣∣∣p
)

≤ Dp

{
E
(∫ u

0

∫
V
|φ(s, v)|2λ(dv)ds

) p
2
+E

∫ u

0

∫
V
|φ(s, v)|pλ(dv)ds

}
.

Lemma 5 ([41]). Let u, v be two integrable functions and g be continuous defined on domain [a, b].
Let ψ ∈ C1[a, b] be an increasing function such that ψ′(t) 6= 0, ∀t ∈ [a, b]. Moreover, assume that

(1) u and v are nonnegative, and v is nondecreasing;

(2) g is nonnegative and nondecreasing.

If

u(t) ≤ v(t) + g(t)
∫ t

a
ψ′(τ)(ψ(t)− ψ(τ))α−1u(τ)dτ,

then
u(t) ≤ v(t)Eα(g(t)Γ(α)(ψ(t)− ψ(a))α), ∀t ∈ [a, b],

where Eα is the Mittag–Leffler function.

3. Main Results

Theorem 1. Assume that (H1)–(H3) are satisfied. Then, for a given arbitrary small number δ > 0,
p = 2, 1

2 < α < 1, or p > 2 and max
{

p−1
p , p+2

2p

}
< α < 1, M > 0, ε1 ∈ (0, ε0] and γ ∈ (0, 1)

exist such that

E
(

sup
t∈[−τ,Mε−γ ]

|xε(t)− yε(t)|p
)
≤ δ, (9)

for all ε ∈ (0, ε1].

Proof. If p = 2, it is easy to prove that (9) holds by using the similar method as in [27]. In
the following, we will only consider the case p > 2. From Equations (7) and (8), we obtain

xε(t)− yε(t) = h(t, xε(t))− h(t, yε(t))
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+
ε

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)[ f (s, xε(s), xε(s− τ))− f̄ (yε(s), yε(s− τ))]ds

+

√
ε

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)[σ(s, xε(s), xε(s− τ))− σ̄(yε(s), yε(s− τ))]dBs

+

√
ε

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)

∫
V
[g(s, xε(s), xε(s− τ), v))

−ḡ(xε(s), xε(s− τ), v))]N̄(ds, dv).

Choosing k = C1 in Lemma 3, using (H1) and the following elementary inequalities:

|a + b|p ≤ 2p−1(|a|p + |b|p), |a + b + c|p ≤ 3p−1(|a|p + |b|p + |c|p), (10)

we obtain

|xε(t)− yε(t)|p ≤ C1|xε(t)− yε(t)|p

+
3p−1εp

(1− C1)p−1Γ(α)p

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)[ f (s, xε(s), xε(s− τ))− f̄ (yε(s), yε(s− τ))]ds

∣∣∣∣p

+
3p−1ε

p
2

(1− C1)p−1Γ(α)p

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)[σ(s, xε(s), xε(s− τ))− σ̄(yε(s), yε(s− τ))]dBs

∣∣∣∣p

+
3p−1ε

p
2

(1− C1)p−1Γ(α)p

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)

∫
V
[g(s, xε(s), xε(s− τ), v))

−ḡ(xε(s), xε(s− τ), v))]N̄(ds, dv)
∣∣∣∣p. (11)

For any t ∈ [0, u] ⊂ [0, T], taking the expectation on both sides Equation (11), we have

E
(

sup
0≤t≤u

|xε(t)− yε(t)|p
)

≤ 3p−1εp

(1− C1)pΓ(α)p E
(

sup
0≤t≤u

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)[ f (s, xε(s), xε(s− τ))− f̄ (yε(s), yε(s− τ))]ds

∣∣∣∣p
)

+
3p−1ε

p
2

(1− C1)pΓ(α)p E
(

sup
0≤t≤u

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)[σ(s, xε(s), xε(s− τ))− σ̄(yε(s), yε(s− τ))]dBs

∣∣∣∣p
)

+
3p−1ε

p
2

(1− C1)pΓ(α)p E
(

sup
0≤t≤u

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)

∫
V
[g(s, xε(s), xε(s− τ), v))

−ḡ(xε(s), xε(s− τ), v))]N̄(ds, dv)
∣∣∣∣p).

= I1 + I2 + I3. (12)

Applying Jensen inequality, we obtain

I1 ≤
6p−1εp

(1− C1)pΓ(α)p E
(

sup
0≤t≤u

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)[ f (s, xε(s), xε(s− τ))− f (s, yε(s), yε(s− τ))]ds

∣∣∣∣p
)

+
6p−1εp

(1− C1)pΓ(α)p E
(

sup
0≤t≤u

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)[ f (s, yε(s), yε(s− τ))− f̄ (yε(s), yε(s− τ))]ds

∣∣∣∣p
)
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= I11 + I12. (13)

Thanks to the Hölder inequality and (H2), we obtain

I11 ≤
6p−1εp

(1− C1)pΓ(α)p

(∫ u

0
1ds
)p−1

·E
(

sup
0≤t≤u

∫ t

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)p| f (s, xε(s), xε(s− τ))− f (s, yε(s), yε(s− τ))|pds

)

≤ 6p−1εp

(1− C1)pΓ(α)p up−1Kp−1Cp
2

·E
(

sup
0≤t≤u

∫ t

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)[|xε(s)− yε(s)|p + |xε(s− τ))− yε(s− τ))|p]ds

)

≤ A11εpup−1
∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)

[
E
(

sup
0≤θ≤s

|xε(θ)− yε(θ)|p
)

+E
(

sup
0≤θ≤s

|xε(θ − τ)− yε(θ − τ)|p
)]

ds, (14)

where A11 =
6p−1Cp

2 Kp−1

(1−C1)
pΓ(α)p and K = supt∈[0,T] ψ′(t).

Applying the Hölder inequality, we obtain

I12 ≤
6p−1εp

(1− C1)pΓ(α)p

(∫ u

0
(ψ(u)− ψ(s))

(α−1)p
p−1 ψ′(s)

p
p−1 ds

)p−1

·E
(

sup
0≤t≤u

∫ t

0
| f (s, yε(s), yε(s− τ))− f̄ (yε(s), yε(s− τ))|pds

)
. (15)

Since ∫ u

0
(ψ(u)− ψ(s))

(α−1)p
p−1 ψ′(s)

p
p−1 ds =

∫ u

0
(ψ(u)− ψ(s))

(α−1)p
p−1 ψ′(s) · ψ′(s)

1
p−1 ds

≤ K
1

p−1

∫ u

0
(ψ(u)− ψ(s))

(α−1)p
p−1 ψ′(s)ds

= K
1

p−1
p− 1

αp− 1
(ψ(u)− ψ(0))

αp−1
p−1 , (16)

we have by (15), (16), and (H3) that

I12 ≤ A12εp(ψ(u)− ψ(0))αp−1u, (17)

where,

A12 =
6p−1K

(1− C1)pΓ(α)p

(
p− 1

αp− 1

)p−1
‖β‖L∞([0,u])

[
1 +E

(
sup

0≤t≤u
|yε(t)|p

)
+E

(
sup

0≤t≤u
|yε(t− τ)|p

)]
,

here, ‖β‖L∞([0,u]) = supt∈[0,u] |β(t)|.
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For the second term I2, we have

I2 ≤
6p−1ε

p
2

(1− C1)pΓ(α)p E
(

sup
0≤t≤u

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)[σ(s, xε(s), xε(s− τ))− σ(s, yε(s), yε(s− τ))]dBs

∣∣∣∣p
)

+
6p−1ε

p
2

(1− C1)pΓ(α)p E
(

sup
0≤t≤u

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)[σ(s, yε(s), yε(s− τ))− σ̄(yε(s), yε(s− τ))]dBs

∣∣∣∣p
)

= I21 + I22. (18)

In view of the Burkholder–Davis–Gundy’s inequality, Hölder’s inequality, and Doob’s
martingale inequality, a constant Cp > 0 exists such that

I21 ≤
6p−1ε

p
2 Cp

(1− C1)pΓ(α)p E
(∫ u

0
(ψ(u)− ψ(s))2α−2ψ′(s)2|σ(s, xε(s), xε(s− τ))− σ(s, yε(s), yε(s− τ))|2ds

) p
2

≤
6p−1Cp

(1− C1)pΓ(α)p ε
p
2 u

p
2−1E

(∫ u

0
(ψ(u)− ψ(s))(α−1)pψ′(s)p

·|σ(s, xε(s), xε(s− τ))− σ(s, yε(s), yε(s− τ))|pds
)

≤
6p−1Cp

(1− C1)pΓ(α)p ε
p
2 u

p
2−1Kp−1Cp

2 ·E
(∫ u

0
(ψ(u)− ψ(s))(α−1)pψ′(s)

·[|xε(s)− yε(s)|p + |xε(s− τ)− yε(s− τ)|p]ds
)

≤ A21ε
p
2 u

p
2−1

∫ u

0
(ψ(u)− ψ(s))(α−1)pψ′(s)

[
E
(

sup
0≤θ≤s

|xε(θ)− yε(θ)|p
)

+E
(

sup
0≤θ≤s

|xε(θ − τ)− yε(θ − τ)|p
)]

ds, (19)

where A21 =
6p−1CpKp−1Cp

2
(1−C1)

pΓ(α)p .

Since α > p−1
p , we have αp− p + 1 > 0. Applying Lemma 2 and an estimation method

similar to Equation (19), we obtain

I22 ≤
12p−1CpKp−1

(1− C1)pΓ(α)p ε
p
2 u

p
2−1 ·E

(∫ u

0
(ψ(u)− ψ(s))(α−1)pψ′(s)

·(|σ(s, yε(s), yε(s− τ))|p + |σ̄(yε(s), yε(s− τ))|p)ds
)

≤ A22ε
p
2 u

p
2−1(ψ(u)− ψ(0))(α−1)p+1, (20)

where

A22 =
12p−1CpKp−1(Cp

3 + C4)

(1− C1)pΓ(α)p(αp− p + 1)

[
1 +E

(
sup

0≤t≤u
|yε(t)|p

)
+E

(
sup

0≤t≤u
|yε(t− τ)|p

)]
.

Next, we deal with the third term. Similar to the method used in (18), we have

I3 ≤
6p−1ε

p
2

(1− C1)pΓ(α)p E
(

sup
0≤t≤u

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)

∫
V
[g(s, xε(s), xε(s− τ), v)



Symmetry 2023, 15, 1346 9 of 15

−g(s, yε(s), yε(s− τ), v)]N̄(ds, dv)
∣∣∣∣p)

+
6p−1ε

p
2

(1− C1)pΓ(α)p E
(

sup
0≤t≤u

∣∣∣∣∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)

∫
V
[g(s, yε(s), yε(s− τ), v)

−ḡ(yε(s), yε(s− τ), v)]N̄(ds, dv)
∣∣∣∣p)

= I31 + I32. (21)

From Lemma 4, one has

I31 ≤
6p−1ε

p
2

(1− C1)pΓ(α)p Dp

{
E
(∫ u

0
(ψ(u)− ψ(s))2α−2ψ′(s)2

∫
V
|g(s, xε(s), xε(s− τ), v)

−g(s, yε(s), yε(s− τ), v)|2λ(dv)ds
) p

2

+E
(∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)p

∫
V
|g(s, xε(s), xε(s− τ), v)

−g(s, yε(s), yε(s− τ), v)|pλ(dv)ds
)}

. (22)

By using the Hölder inequality and (H2), we obtain

E
(∫ u

0
(ψ(u)− ψ(s))2α−2ψ′(s)2

∫
V
|g(s, xε(s), xε(s− τ), v)− g(s, yε(s), yε(s− τ), v)|2λ(dv)ds

) p
2

≤ (uλ(V))
p−2

2 E
(∫ u

0

∫
V
(ψ(u)− ψ(s))p(α−1)ψ′(s)p|g(s, xε(s), xε(s− τ), v)

−g(s, yε(s), yε(s− τ), v)|pλ(dv)ds
)

≤ (uλ(V))
p−2

2 Kp−1Cp
2E
(∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)[|xε(s)− yε(s)|p + |xε(s− τ)− yε(s− τ)|p]ds

)

≤ Kp−1Cp
2 λ(V)

p−2
2 u

p−2
2

∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)

[
E
(

sup
0≤θ≤s

|xε(θ)− yε(θ)|p
)

+E
(

sup
0≤θ≤s

|xε(θ − τ)− yε(θ − τ)|p
)]

ds, (23)

and

E
(∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)p

∫
V
|g(s, xε(s), xε(s− τ), v)− g(s, yε(s), yε(s− τ), v)|pλ(dv)ds

)

≤ Cp
2E
(∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)p[|xε(s)− yε(s)|p + |xε(s− τ)− yε(s− τ)|p]ds

)

≤ Cp
2 Kp−1

∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)

[
E
(

sup
0≤θ≤s

|xε(θ)− yε(θ)|p
)

+E
(

sup
0≤θ≤s

|xε(θ − τ)− yε(θ − τ)|p
)]

ds. (24)
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Plugging (23) and (24) into (22), we obtain

I31 ≤ A31ε
p
2

(
1 + λ(V)

p−2
2 u

p−2
2

) ∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)

[
E
(

sup
0≤θ≤s

|xε(θ)− yε(θ)|p
)

+E
(

sup
0≤θ≤s

|xε(θ − τ)− yε(θ − τ)|p
)]

ds, (25)

where A31 = 6p−1

(1−C1)
pΓ(α)p DpCp

2 Kp−1. We also have

I32 ≤
6p−1ε

p
2

(1− C1)pΓ(α)p Dp ·
{
E
(∫ u

0
(ψ(u)− ψ(s))2α−2ψ′(s)2

·
∫

V
|g(s, yε(s), yε(s− τ), v)− ḡ(yε(s), yε(s− τ), v)|2λ(dv)ds

) p
2

+E
(∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)p

∫
V
|g(s, yε(s), yε(s− τ), v)− ḡ(yε(s), yε(s− τ), v)|pλ(dv)ds

)}
. (26)

Since α > p+2
2p , we have 2pα− p− 2 > 0. By using the Hölder inequality, (10), (H2),

and (H3), we obtain

E
(∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)p

∫
V
|g(s, yε(s), yε(s− τ), v)− ḡ(yε(s), yε(s− τ), v)|pλ(dv)ds

)

≤ 2p−1E
(∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)p

[∫
V
(|g(s, yε(s), yε(s− τ), v)|p

+|ḡ(yε(s), yε(s− τ), v))|p)λ(dv)ds
])

≤ 2p−1(Cp
3 + C4)Kp−1E

(∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)(1 + |yε(s)|p + |yε(s− τ)|p)ds

)

≤
2p−1(Cp

3 + C4)Kp−1

p(α− 1) + 1
(ψ(u)− ψ(0))p(α−1)+1

[
1 +E

(
sup

0≤t≤u
|yε(t)|p

)
+E

(
sup

0≤t≤u
|yε(t− τ)|p

)]
, (27)

and

E
(∫ u

0
(ψ(u)− ψ(s))2α−2ψ′(s)2

∫
V
|g(s, yε(s), yε(s− τ), v)− ḡ(yε(s), yε(s− τ), v)|2λ(dv)ds

) p
2

≤ E

(∫ u

0

∫
V
(ψ(u)− ψ(s))

2p(α−1)
p−2 ψ′(s)

2p
p−2 λ(dv)ds

) p−2
2

·
(∫ u

0

∫
V
|g(s, yε(s), yε(s− τ), v)− ḡ(yε(s), yε(s− τ), v)|pλ(dv)dsλ(dv)ds

)]

≤ K
p+2

2 λ(V)
p−2

2

(
p− 2

2pα− p− 2

) p−2
2
(ψ(u)− ψ(0))

2pα−p−2
2

·uE
(

1
u

∫ u

0

∫
V
|g(s, yε(s), yε(s− τ), v)− ḡ(yε(s), yε(s− τ), v)|pλ(dv)ds

)
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≤ K
p+2

2 λ(V)
p−2

2

(
p− 2

2pα− p− 2

) p−2
2

β(u)u(ψ(u)− ψ(0))
2pα−p−2

2

·
[

1 +E
(

sup
0≤t≤u

|yε(t)|p
)
+E

(
sup

0≤t≤u
|yε(t− τ)|p

)]
. (28)

Substituting (27) and (28) into (26), we obtain

I32 ≤ A321ε
p
2 (ψ(u)− ψ(0))p(α−1)+1 + A322ε

p
2 β(u)u(ψ(u)− ψ(0))

2pα−p−2
2 , (29)

where

A321 =
12p−1Dp

(1− C1)pΓ(α)p
(Cp

3 + C4)Kp−1

p(α− 1) + 1

[
1 +E

(
sup

0≤t≤u
|yε(t)|p

)
+E

(
sup

0≤t≤u
|yε(t− τ)|p

)]
,

A322 =
6p−1

(1− C1)pΓ(α)p DpK
p+2

2 λ(V)
p−2

2

(
p− 2

2pα− p− 2

) p−2
2

·
[

1 +E
(

sup
0≤t≤u

|yε(t)|p
)
+E

(
sup

0≤t≤u
|yε(t− τ)|p

)]
.

Combining (13), (14), (17)–(21), (25), with (29), for u ∈ (0, T] we obtain

E
(

sup
0≤t≤u

|xε(t)− yε(t)|p
)

≤ A(u) + B(u)
∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)

·
[
E
(

sup
0≤θ≤s

|xε(θ)− yε(θ)|p
)
+E

(
sup

0≤θ≤s
|xε(θ − τ)− yε(θ − τ)|p]

)]
ds, (30)

where

A(u) = A12εp(ψ(u)− ψ(0))αp−1u + A22ε
p
2 u

p
2−1(ψ(u)− ψ(0))(α−1)p+1

+A321ε
p
2 (ψ(u)− ψ(0))p(α−1)+1 + A322ε

p
2 β(u)u(ψ(u)− ψ(0))

2pα−p−2
2 ,

and

B(u) = A11εpup−1 + A21ε
p
2 u

p
2−1 + A31ε

p
2

(
1 + λ(V)

p−2
2 u

p−2
2

)
.

Set

Σ(u) := E
(

sup
0≤θ≤u

|xε(θ)− yε(θ)|p
)

.

Noting that E
(

sup
−τ≤θ<0

|xε(θ)− yε(θ)|p
)

= 0, then

E
(

sup
0≤θ≤s

|xε(θ − τ)− yε(θ − τ)|p
)

= Σ(s− τ).
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Hence, it follows from (30) that

Σ(u) ≤ A(u) + B(u)
∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)(Σ(s) + Σ(s− τ))ds.

For each u ∈ [0, T], denote Φ(u) = sup−τ≤t≤u Σ(t). Then,

Σ(s) ≤ Φ(s) and Σ(s− τ) ≤ Φ(s).

Thus, one has

Φ(u) = sup
−τ≤t≤u

Σ(u) ≤ A(u) + 2B(u)
∫ u

0
(ψ(u)− ψ(s))p(α−1)ψ′(s)Φ(s)ds.

By using Lemma 5, we obtain

Φ(u) ≤ A(u)Ep(α−1)+1

(
2B(u)Γ(p(α− 1) + 1)(ψ(u)− ψ(0))p(α−1)+1

)
.

Moreover, we have

E
(

sup
0≤t≤u

|xε(t)− yε(t)|p
)
≤ A(u)Ep(α−1)+1

(
2B(u)Γ(p(α− 1) + 1)(ψ(u)− ψ(0))p(α−1)+1

)
.

Choose M > 0 and β ∈ (0, 1) such that for all t ∈ (0, Mε−β] ⊂ (0, T]

E
(

sup
0<t≤Mε−β

|xε(t)− yε(t)|p
)
≤ ĀEp(α−1)+1

(
2B̄Γ(p(α− 1) + 1)(ψ(T)− ψ(0))p(α−1)+1

)
ε1−β,

where

Ā = A12Mεp−1(ψ(T)− ψ(0))αp−1 + A22M
p
2−1ε(

p
2−1)(1−β)+β(ψ(T)− ψ(0))(α−1)p+1

+A321ε
p
2−(1−β)(ψ(T)− ψ(0))p(α−1)+1 + A322Mmε

p
2−1(ψ(T)− ψ(0))

2pα−p−2
2 ,

here, m is a positive bounded of function β(·), and

B̄ = A11Mp−1εp−(p−1)β + A21M
p
2−1ε

p
2 (1−β)+β + A31ε

p
2 + A31λ(V)

p−2
2 M

p−2
2 ε

p
2 (1−β)+β,

are two constants. Thus, for any given number δ > 0, ε1 ∈ (0, ε0] exists such that for each
ε ∈ (0, ε1] and t ∈ [−τ, Mε−β],

E

 sup
t∈[−τ,Mε−β ]

|xε(t)− yε(t)|p
 ≤ δ.

Remark 1. If ψ(t) ≡ t, g ≡ 0, and τ = 0, then FSDDEs (3) reduces to FSDEs (1) in [18].
Therefore, Theorem 1 generalizes the main result of [18].

Example 1. Consider the following ψ-Caputo fractional stochastic delay differential equation
(FSDDEs) with Poisson jumps :

CD0.9,
√

t
0

[
xε(t)−

(
1
8 t

1
5 + 1

9 sin(xε(t))
)]

= 1
2 εxε(t− τ) + 3π

4
√

ε sin3 txε(t) dBt
dt

+
√

ε
∫

V 3N̄(dt, dv), t ∈ [0, 25],
xε(t) = 0.5, −0.25 ≤ t ≤ 0,

(31)

where α = 0.9, ψ(t) =
√

t, T = 25, τ = 0.25, and
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h(t, xε(t)) =
1
8

t
1
5 +

1
9

sin(xε(t)), f (t, xε(t), xε(t− τ)) =
1
2

xε(t− τ),

σ(t, xε(t), xε(t− τ)) =
3π

4
sin3 t · xε(t), g(t, xε(t), xε(t− τ), v) = 3.

Then,

f̄ (yε(t), yε(t− τ)) =
1
π

∫ π

0
f (t, yε(t), yε(t− τ))dt =

1
2

yε(t− τ),

σ̄(yε(t), yε(t− τ)) =
1
π

∫ π

0
σ(t, yε(t), yε(t− τ))dt = yε(t),

ḡ(yε(t), yε(t− τ), v) =
1
π

∫ π

0
g(t, yε(t), yε(t− τ), v)dt = 3.

Thus, we have the corresponding averaged FSDDEs with Poisson jumps :
CD0.9,

√
t

0

[
yε(t)−

(
1
8 t

1
5 + 1

9 sin(yε(t))
)]

= 1
2 εyε(t− τ) +

√
εyε(t) dBt

dt
+
√

ε
∫

V 3N̄(dt, dv), t ∈ [0, 25],
yε(t) = 0.5, −0.25 ≤ t ≤ 0.

(32)

It is easy to check that the conditions of Theorem 1 are satisfied. So, as ε→ 0, the original
solution xε and the average solution yε are equivalent in the sense of Lp (p = 2 or p > 2
with max

{
p−1

p , p+2
2p

}
< 0.9). To test this, Equations (31) and (32) are calculated numerically

and error Err = |xε(t)− yε(t)|3 are given in Figures 1 and 2. So, the averaging principle for
the ψ-Capuo FSDDE with Poisson jumps is successfully established.
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Figure 1. Comparison of xε and yε for Equations (31) and (32) with α = 0.9 and ε = 0.1.
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Figure 2. Comparison of xε and yε for Equations (31) and (32) with α = 0.9 and ε = 0.01.
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4. Conclusions

In this article, the averaging principle for FSDDEs in the sense of Lp has been proved.
Hölders inequality, Jensen’s inequality, Burkholder-Davis-Gundys inequality, Doobs mar-
tingale inequality, and fractional Gronwall’s inequality are applied in the estimation. To
the best of our knowledge, this is the first work dealing with the averaging principle for ψ-
Capuo fractional stochastic delay differential equations with Poisson jumps. The obtained
results generalize the two cases of p = 2 and the classical Caputo fractional derivative.
For future research, the averaging principle for fractional stochastic neutral functional
differential equations driven by the Rosenblatt process with delay and Poisson jumps is
both interesting and important. It is worth further investigation in the future.
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