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AVERAGING THEORY AT ANY ORDER FOR

COMPUTING PERIODIC ORBITS

JAUME GINÉ1, MAITE GRAU1 AND JAUME LLIBRE2

Abstract. We provide an explicit expression for the solutions of the
perturbed first order differential equations. Using it we give an averaging
theory at any order in ε for the following two kinds of analytic differential
equations

dx

dθ
=

∑

k≥1

εk Fk(θ, x),
dx

dθ
=

∑

k≥0

εk Fk(θ, x).

We apply these results for studying the limit cycles of planar polynomial
differential systems after passing them to polar coordinates.

1. Introduction and statement of the main results

In this work first we deal with the analytic differential equation

(1)
dx

dθ
=
∑

k≥1

εk Fk(θ, x),

where x ∈ R, θ ∈ S1 and ε ∈ (−ε0, ε0) with ε0 a small positive real value, and
the functions Fk(θ, x) are 2π–periodic in the variable θ. So, this differential
equation is defined in the cylinder S1 × R. We are interested in the limit
cycles of the differential equation (1), i.e. in the isolated periodic orbits
respect to the set of all periodic orbits of equation (1).

We denote by xε(θ, z) the solution of equation (1) with initial condition
xε(0, z) = z. Due to the analyticity of the differential equation (1) and the
fact that when ε = 0 we have the trivial equation dx/dθ = 0, the solution
can be written as

(2) xε(θ, z) = z +
∑

j≥1

xj(θ, z)ε
j ,

where xj(θ, z) are real analytic functions such that xj(0, z) = 0.

We remark that if the solution xe(θ, z) is defined for all θ ∈ S1, then we
can consider the Poincaré displacement map associated to the differential
equation (1) given by Pε(z) = xε(2π, z)− z. We observe that a limit cycle
of equation (1) corresponds to an isolated zero of the Poincaré map. We
are interested in the limit cycles which bifurcate from the periodic orbits of
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the unperturbed equation, that is from equation (1) with ε = 0. We say
that a limit cycle bifurcates from the periodic orbit at level z∗ ∈ R if there
exists an analytic function ζ(ε) defined in a neighborhood of ε = 0 such that
Pε(ζ(ε)) = 0 for all ε in this neighborhood, this zero is isolated for each
fixed value of ε 6= 0, and ζ(0) = z∗.

A limit cycle is said to be of multiplicity m, with m ≥ 1 an integer, if this
is the multiplicity of ζ(ε) as a zero of Pε(z) in a punctured neighborhood
of ε = 0. We note that the expansion of the Poincaré map in powers of
ε is Pε(z) =

∑
j≥1 xj(2π, z)ε

j . We consider s ≥ 1 the lowest index such

that xs(2π, z) is not identically zero. If there exists a limit cycle of equation
(1) bifurcating from z∗, then xs(2π, z

∗) = 0. Indeed, if there are m limit
cycles bifurcating from z∗ counted with their multiplicity, then z∗ is an
isolated zero of xs(2π, z) of multiplicity at least m. On the other hand, for
each simple (that is, of multiplicity one) zero z∗ of xs(2π, z), there exists a
unique limit cycle of equation (1) bifurcating from z∗. For the details about
the previous statement, see for instance [8].

The following result provides the explicit expression of the function xn(θ, z)
for any value of n.

Theorem 1. The solution (2) of equation (1) satisfies

x1(θ, z) =

∫ θ

0
F1(ϕ, z) dϕ,

xn(θ, z) =

∫ θ

0

(
Fn(ϕ, z) +

n−1∑

`=1

∑̀

i=1

1

i!

∂iFn−`
∂xi

(ϕ, z)

∑

j1+j2+···+ji = `

xj1(ϕ, z)xj2(ϕ, z) · · ·xji(ϕ, z)


 dϕ,

for n ≥ 2, where jm ≥ 1 is an integer for m = 1, 2, . . . , i.

This result is proved in section 2.

Now we shall apply Theorem 1 for obtaining the averaging theory of
arbitrarily high order for the differential equations (1), and we develop this
theory explicitly until order four. The averaging theory of first order for
studying periodic orbits of the differential equations (1) in arbitrary finite
dimension is very classical (see for instance [9, 10]), until third order was
developed in [1]. More precisely, these authors studied the averaging theory
for the differential equations (1) in Rn up to order 3 in ε. Note that here
we are studying the averaging theory for differential equations (1) in R but
at arbitrary order in ε. We are aware that the formula of fourth order was
already known by Xiang Zhang, see [11].

We consider the differential system

(3)
dx

dθ
= εF1(θ, x) + ε2F2(θ, x) + ε3F3(θ, x) + ε4F4(θ, x) + ε5R(θ, x, ε),
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where Fi(θ, x), i = 1, 2, 3, 4, are the functions defined in (1) and

R(θ, x, ε) =
∑

k≥5

εk−5 Fk(θ, x).

We define the real functions Fi0(z) of real variable z

F10(z) =

∫ 2π

0
F1(ϕ, z) dϕ,

F20(z) =

∫ 2π

0

(
F2(ϕ, z) +

∂F1

∂z
(ϕ, z)x1(ϕ, z)

)
dϕ,

F30(z) =

∫ 2π

0

(
F3(ϕ, z) +

∂F2

∂z
(ϕ, z)x1(ϕ, z) +

∂F1

∂z
(ϕ, z)x2(ϕ, z)

+
1

2

∂2F1

∂z2
(ϕ, z)x1(ϕ, z)2

)
dϕ,

F40(z) =

∫ 2π

0

(
F4(ϕ, z) +

∂F3

∂z
(ϕ, z)x1(ϕ, z) +

∂F2

∂z
(ϕ, z)x2(ϕ, z)

+
1

2

∂2F2

∂z2
(ϕ, z)x1(ϕ, z)2 +

∂F1

∂z
(ϕ, z)x3(ϕ, z)

+
∂2F1

∂z2
(ϕ, z)x1(ϕ, z)x2(ϕ, z) +

1

6

∂3F1

∂z3
(ϕ, z)x1(ϕ, z)3

)
dϕ.

Corollary 2 (Averaging theory for periodic orbits up to fourth order for a
differential equation (3)). The following statements hold.

(a) If F10(z) is not identically zero, then for each simple zero z∗ of
F10(z) = 0 there exists a periodic solution xε(θ, z) of equation (3)
such that xε(0, z)→ z∗ when ε→ 0.

(b) If F10(z) is identically zero and F20(z) is not identically zero, then
for each simple zero z∗ of F20(z) = 0 there exists a periodic solution
xε(θ, z) of equation (3) such that xε(0, z)→ z∗ when ε→ 0.

(c) If F10(z) and F20(z) are identically zero and F30(z) is not identically
zero, then for each simple zero z∗ of F30(z) = 0 there exists a periodic
solution xε(θ, z) of equation (3) such that xε(0, z)→ z∗ when ε→ 0.

(d) If F10(z), F20(z) and F30(z) are identically zero and F40(z) is not
identically zero, then for each simple zero z∗ of F40(z) = 0 there
exists a periodic solution xε(θ, z) of equation (3) such that xε(0, z)→
z∗ when ε→ 0.

This corollary of Theorem 1 is proved in section 2.

Remark 3. Assume that F10(z) is not identically zero. If z∗ is a zero
of F10(z) with multiplicity larger that 1, then considering the zeros of the
function F10(z) + εF20(z), we can study how many periodic orbits bifurcate
from z∗. This observation for statement (a) of Corollary 2 extends in a
natural way to the other statements of that corollary.
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We also deal with the following, more general, analytic differential equa-
tion

(4)
dx

dθ
= G0(θ, x) +

∑

k≥1

εkGk(θ, x),

where x ∈ R, θ ∈ S1 and ε ∈ (−ε0, ε0) with ε0 a small positive real value,
and the functions Gk(θ, x) are 2π–periodic in the variable θ. We consider
a particular solution x0(θ, z) of the unperturbed system, i.e. equation (4)
with ε = 0, satisfying that x0(0, z) = z. As before, we denote by xε(θ, z) the
solution of equation (4) with initial condition z when θ = 0, which writes as

(5) xε(θ, z) = x0(θ, z) +
∑

j≥1

xj(θ, z)ε
j ,

where xj(θ, z) are real analytic functions with xj(0, z) = 0, for j ≥ 1.

We consider the unperturbed equation (4) with ε = 0 and we assume that
its solution x0(θ, z), such that x0(0, z) = z, is 2π–periodic for z ∈ I with
I a real open interval. We are interested in the limit cycles of equation (4)
which bifurcate from the periodic orbits of the unperturbed equation with
initial condition z ∈ I. We define the Poincaré map in an analogous way as
we have done for the differential equation (1).

Let u = u(θ, z) be the solution of the variational equation

(6)
∂u

∂θ
=

∂G0

∂x
(θ, x0(θ, z))u,

satisfying u(0, z) = 1. For each i ≥ 1, we define the functions ui(θ, z) as

xi(θ, z) = u(θ, z)ui(θ, z).

The following result provides explicit expressions of the function xn(θ, z)
for any value of n.

Theorem 4. The solution (5) of equation (4) satisfies xn(θ, z) = u(θ, z)
un(θ, z) with

u1(θ, z) =

∫ θ

0

G1(ϕ, x0(ϕ, z))

u(ϕ, z)
dϕ,

un(θ, z) =

∫ θ

0

(
Gn(ϕ, x0(ϕ, z))

u(ϕ, z)
+

n−2∑

`=0

n−∑̀

i=1

1

i!

∂iGn−`−i
∂xi

(ϕ, x0(ϕ, z))

u(ϕ, z)i−1
∑

j1+j2+···+ji = `+i

uj1(ϕ, z)uj2(ϕ, z) · · ·uji(ϕ, z)


 dϕ,

for n ≥ 2, where jm ≥ 1 is an integer for m = 1, 2, . . . , i.

This result is proved in section 3.
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We consider the differential equation

(7)
dx

dθ
= G0(θ, x) + εG1(θ, x) + ε2G2(θ, x) + ε3G3(θ, x) + ε4R(θ, x, ε),

where Gi(θ, x), i = 0, 1, 2, 3, are the functions defined in (4) and

R(θ, x, ε) =
∑

k≥4

εk−4Gk(θ, x).

Now we shall apply Theorem 4 for providing the averaging theory at arbi-
trarily high order for the differential equation (4), and we develop this theory
explicitly until order three. The averaging theory of first order for studying
periodic orbits of a differential equation (4) in Rn is very classical, see for
instance Malkin [6], Roseau [7], Buică, Françoise and Llibre [2] where the
authors studied the first order averaging theory of equations (7), and Buică,
Giné and Llibre [3] where is studied the second order averaging theory of
equations (7) in Rn. Here we shall provide the explicit averaging theory of
third order with x ∈ R.

We define the real functions Gi0(z) of real variable z

G10(z) =

∫ 2π

0

G1(ϕ, x0(ϕ, z))

u(ϕ, z)
dϕ,

G20(z) =

∫ 2π

0

(
G2(ϕ, x0(ϕ, z))

u(ϕ, z)
+
∂G1

∂x
(ϕ, x0(ϕ, z))u1(ϕ, z)

+
1

2

∂2G0

∂x2
(ϕ, x0(ϕ, z))u(ϕ, z)u1(ϕ, z)2

)
dϕ,

G30(z) =

∫ 2π

0

(
G3(ϕ, x0(ϕ, z))

u(ϕ, z)
+
∂G2

∂x
(ϕ, x0(ϕ, z))u1(ϕ, z)

+
1

2

∂2G1

∂x2
(ϕ, x0(ϕ, z))u(ϕ, z)u1(ϕ, z)2

+
1

6

∂3G0

∂x3
(ϕ, x0(ϕ, z))u(ϕ, z)2u1(ϕ, z)3

+
∂G1

∂x
(ϕ, x0(ϕ, z))u2(ϕ, z)

+
∂2G0

∂x2
(ϕ, x0(ϕ, z))u(ϕ, z)u1(ϕ, z)u2(ϕ, z)

)
dϕ.

Corollary 5 (Averaging theory for periodic orbits up to third order for a
differential equation (7)). Assume that the solution x0(θ, z) of the unper-
turbed equation (7) such that x0(0, z) = z is 2π–periodic for z ∈ I with I a
real open interval.

(a) If G10(z) is not identically zero in I, then for each simple zero z∗ ∈ I
of G10(z) = 0 there exists a periodic solution xε(θ, z) of equation (7)
such that xε(0, z)→ z∗ when ε→ 0.
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(b) If G10(z) is identically zero in I and G20(z) is not identically zero
in I, then for each simple zero z∗ ∈ I of G20(z) = 0 there exists
a periodic solution xε(θ, z) of equation (7) such that xε(0, z) → z∗

when ε→ 0.
(c) If G10(z) and G20(z) are identically zero in I and G30(z) is not

identically zero in I, then for each simple zero z∗ ∈ I of G30(z) = 0
there exists a periodic solution xε(θ, z) of equation (7) such that
xε(0, z)→ z∗ when ε→ 0.

This corollary is proved in section 3.

We consider arbitrary polynomial perturbations

(8)

ẋ = −y +
∑

j≥1

εjfj(x, y),

ẏ = x+
∑

j≥1

εjgj(x, y),

of the harmonic oscillator, where ε is a small parameter. In this differential
equation, the polynomials fj and gj are of degree n in the variables x and
y and the system is analytic in the variables x, y and ε. We consider the
change to polar coordinates x = r cos θ, y = r sin θ. In coordinates (r, θ) the
differential system (8) becomes

(9)
dr

dθ
=

∑
i≥1 ε

ipi(θ, r)

1 +
∑

i≥1 ε
iqi(θ, r)

,

where

pi(θ, r) = cos θ fi(cos θ, sin θ) + sin θ gi(cos θ, sin θ),

qi(θ, r) =
1

r
(cos θ gi(cos θ, sin θ) − sin θ fi(cos θ, sin θ)) ,

and r ∈ [0, R] with R > 0 is arbitrary. We observe that equation (9) is a
particular case of equation (1).

We denote by rε(θ, z) the solution of the differential equation (9) with
initial condition rε(0, z) = z. Due to the analyticity of this equation in ε,
we write

(10) rε(θ, z) = z +
∑

j≥1

rj(θ, z)ε
j ,

where rj(θ, z) are real functions such that rj(0, z) = 0.

In what follows we state the next result due to Iliev [5] and we shall prove
it in section 2 in a different way using Theorem 1.

Theorem 6. Assume that rs(2π, z) is the first function in (10) which is not
identically zero. Then, rs(2π, z) is a polynomial and it has no more than
[s(n− 1)/2] positive roots counting their multiplicities.
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Here, [a] denotes the integer part function of a. We note that Theorem 6
was stated by Iliev using Melnikov functions and that in dimension two the
zeroes of the s-th Melnikov functions coincide with the zeroes of rs(2π, z),
for more details see [4].

Additional applications of Theorem 1 are the following two propositions.

We consider the ordinary analytic differential equation

(11)
dx

dθ
= a(θ) +

∑

k≥1

εkFk(θ, x),

where x ∈ R, θ ∈ S1 and ε ∈ (−ε0, ε0) with ε0 a small positive real value,
the function a(θ) is 2π–periodic and the functions Fk(θ, x) are 2π–periodic

in the variable θ. We define A(θ) :=
∫ θ

0 a(ϕ)dϕ and the solution xε(θ, z) of
equation (11) with initial condition xε(0, z) = z, writes as

(12) xε(θ, z) = z +A(θ) +
∑

j≥1

xj(θ, z)ε
j .

Proposition 7. Assume that the functions Fk(θ, x) in (11) are polynomials
in x of degree at most n and that A(2π) = 0. Assume that xs(2π, z) is
the first function in (12) which is not identically zero. Then xs(2π, z) is a
polynomial of degree at most s(n− 1) + 1.

This proposition is proved in section 2.

We consider the ordinary analytic differential equation

(13)
dx

dθ
= b(θ)x+

∑

k≥1

εkFk(θ, x),

where x ∈ R, θ ∈ S1 and ε ∈ (−ε0, ε0) with ε0 a small positive real value,
the function b(θ) is 2π–periodic and the functions Fk(θ, x) are 2π–periodic

in the variable θ. We define B(θ) :=
∫ θ

0 b(ϕ)dϕ and the solution xε(θ, z) of
equation (13) with initial condition xε(0, z) = z, can be written as

(14) xε(θ, z) = z eB(θ) +
∑

j≥1

xj(θ, z)ε
j .

Proposition 8. Assume that the functions Fk(θ, x) in (13) are polynomials
in x of degree at most n and that B(2π) = 0. Assume that xs(2π, z) is
the first function in (14) which is not identically zero. Then xs(2π, z) is a
polynomial of degree at most s(n− 1) + 1.

This proposition is proved in section 2.

2. Proof of Theorem 1 and applications

Proof of Theorem 1. By definition we have that the function xε(θ, z) defined
in (2) is the solution of equation (1), for any sufficiently small value of |ε|,
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that is,

(15)
∂xε(θ, z)

∂θ
=
∑

k≥1

εkFk (θ, xε(θ, z)) .

Since this equality is verified for all sufficiently small value of |ε|, we can
equate the coefficients of the same powers of ε in both members of the
equality. Taking into account (2), the expansion in powers of ε in the left-
hand side of (15) is

(16)
∂xε(θ, z)

∂θ
=
∑

n≥1

∂xn(θ, z)

∂θ
εn.

The expansion in powers of ε in the right-hand side of (15) involves more
calculations. First we fix a value of k, k ≥ 1, and we note that

Fk (θ, xε(θ, z)) = Fk


θ, z +

∑

j≥1

xj(θ, z)




= Fk(θ, z) +
∑

i≥1

1

i!

∂iFk
∂xi

(θ, z)


∑

j≥1

xj(θ, z)ε
j



i

,

where we have used the expression of the Taylor expansion of Fk(θ, x)
in a neighborhood of a point x = z. We observe that, the expression(∑

j≥1 xj(θ, z)ε
j
)i

is divisible by εi and that given an integer ` ≥ i, the

coefficient of ε` in the expression
(∑

j≥1 xj(θ, z)ε
j
)i

corresponds to all the

possible ways of obtaining ` by adding i indices j1, j1, . . . , ji (with repeti-
tion). That is

∑

j≥1

xj(θ, z)ε
j



i

=
∑

`≥i
ε`

∑

j1+j2+···+ji = `

xj1(θ, z)xj2(θ, z) · · ·xji(θ, z).

In order to simplify notation, we define

(17) Ωk,`,i(θ, z) =
1

i!

∂iFk
∂xi

(θ, z)
∑

j1+j2+···+ji = `

xj1(θ, z)xj2(θ, z) · · ·xji(θ, z).

We can write

Fk (θ, xε(θ, z)) = Fk(θ, z) +
∑

i≥1

∑

`≥i
ε` Ωk,`,i(θ, z).

By changing the order of the summation indices we have that

Fk (θ, xε(θ, z)) = Fk(θ, z) +
∑

`≥1

ε`
∑̀

i=1

Ωk,`,i(θ, z).
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Hence, the expansion in powers of ε in the right-hand side of (15) is

(18)
∑

k≥1

εkFk (θ, xε(θ, z)) =
∑

k≥1

εkFk(θ, z) +
∑

k≥1

∑

`≥1

εk+`
∑̀

i=1

Ωk,`,i(θ, z).

We see that the second term of the former expression is divisible by ε2. Thus,
the coefficient of ε1 in this expression is F1(θ, z). Equating the coefficient of
ε1 in (16) we deduce that

∂x1(θ, z)

∂θ
= F1(θ, z).

We have, by definition, that xε(0, z) = z for any sufficiently small value of
|ε|. This fact and (2) imply that

(19) xj(0, z) = 0, for all j ≥ 1.

Hence,

x1(θ, z) =

∫ θ

0
F1(ϕ, z) dϕ.

We fix an integer n > 1, and the coefficient of εn in (18) is Fn(θ, z) plus all
the terms of the second term such that k ≥ 1, ` ≥ 1 and k + ` = n. We
see that these terms correspond to substituting k by n− ` and adding from
` = 1 to ` = n− 1. Hence, the coefficient of εn in (18) is

Fn(θ, z) +
n−1∑

`=1

∑̀

i=1

Ωn−`,`,i(θ, z).

By equating the same coefficients of εn in (16) and using (19), we get that

xn(θ, z) =

∫ θ

0

(
Fn(ϕ, z) +

n−1∑

`=1

∑̀

i=1

Ωn−`,`,i(ϕ, z)

)
dϕ.

If we substitute the definition of the function Ωn−`,`,i(θ, z) as defined in (17),
we are done. �

Proof of Corollary 2. The perturbed differential equation (3) for a suffi-
ciently small value of |ε| defines a Poincaré map Pε(z) for any initial con-
dition z ∈ R. Since the solution of this differential equation is (2), we note
that the Poincaré map reads for Pε(z) = xε(2π, z)− z =

∑
j≥1 xj(2π, z)ε

j .

As usual, the zeroes of the Poincaré map Pε(z) correspond to periodic orbits
of the differential equation (3).

Given an index k with k ∈ {1, 2, 3, 4}, we note that the expression of the
function Fk0(z) correspond to xk(2π, z) as a direct consequence of Theorem
1. Assume that k is the lowest index such that Fk0(z) is not identically zero.
We want to show that if z∗ is a simple zero of Fk0(z), then there exists a
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periodic solution of equation (3) whose initial condition at θ = 0 tends to
z∗ when ε→ 0. We define the auxiliary function

φ(ε, z) =
xε(2π, z)− z

εk
=

Pε(z)

εk
.

We remark that this function is analytic for z ∈ R and for ε in a neigh-
borhood of ε = 0. Indeed, its Taylor expansion around the point ε = 0 is
φ(ε, z) = Fk0(z) + εψ(ε, z), with ψ(ε, z) an analytic function for z ∈ R
and for ε in a neighborhood of ε = 0. We observe that the function φ(ε, z)
satisfies the hypothesis of the Implicit Function Theorem in a neighborhood
of the point (ε, z) = (0, z∗), that is

φ(0, z∗) = Fk0(z∗) = 0 and
∂φ(ε, z)

∂z

∣∣∣∣
(0,z∗)

= F ′k0(z∗) 6= 0.

Therefore, there exists a unique analytic function ζ(ε) defined in a neigh-
borhood of ε = 0 such that

φ(ε, ζ(ε)) ≡ 0 and ζ(0) = z∗.

We remark that this function also verifies that Pε(ζ(ε)) ≡ 0. Therefore, the
solution xε(θ, ζ(ε)), with initial condition z = ζ(ε), is a periodic solution
of the perturbed differential equation (3), such that xε(θ, ζ(ε)) → z∗ when
ε→ 0. �

The proofs of Propositions 7 and 8 will use the following result.

Lemma 9. Assume that the functions Fk(θ, x) in (1) are polynomials in x
of degree at most n. Assume that xs(2π, z) is the first function in (2) which
is not identically zero. Then, the function xs(2π, z) is a polynomial in z of
degree at most s(n− 1) + 1.

Proof. We remark that the functions xk(θ, z) in (2) verify the integral ex-
pressions given in Theorem 1. We will show by induction on k that the
function xk(θ, z) is a polynomial in z of degree at most k(n− 1) + 1.

Case k = 1. Since F1(θ, z) is a polynomial in z of degree at most n

and x1(θ, z) =
∫ θ

0 F1(ϕ, z)dϕ, we have that x1(θ, z) is a polynomial in z of
degree at most n = 1(n− 1) + 1.

We assume, by induction hypothesis, that xj(θ, z) is a polynomial in z
of degree at most j(n − 1) + 1, for 1 ≤ j ≤ k, and we want to show that
xk+1(θ, z) is a polynomial in z of degree at most (k + 1)(n− 1) + 1. In the
integral expression of xk+1(θ, z) given in Theorem 1, there only appear the
previous functions xj(θ, z), for 1 ≤ j ≤ k. Hence, given ` with 1 ≤ ` ≤ k
and given i with 1 ≤ i ≤ `, the expression

∑

j1+j2+···+ji = `

xj1(ϕ, z)xj2(ϕ, z) · · ·xji(ϕ, z)
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is a polynomial in z of degree at most

(j1(n− 1) + 1) + (j2(n− 1) + 1) + . . .+ (ji(n− 1) + 1) =

= (j1 + j2 + · · ·+ ji) (n− 1) + i = ` (n− 1) + i.

On the other hand, the function (∂iFk+1−`/∂xi)(ϕ, z) is a polynomial in z
of degree at most n− i. Hence, the expression

1

i!

∂iFk+1−`
∂xi

(ϕ, z)
∑

j1+j2+···+ji = `

xj1(ϕ, z)xj2(ϕ, z) · · ·xji(ϕ, z),

is a polynomial in z of degree at most

`(n− 1) + i + n− i = `(n− 1) + n.

Since this degree increases with ` and the maximum value of ` is k, we have
that this expression is a polynomial in z of degree at most k(n − 1) + n =
(k + 1)(n − 1) + 1. Since k ≥ 1, this degree is greater than or equal to n
and, therefore, we have that the integrand of the expression of xk+1(θ, z) in
Theorem 1 is a polynomial in z of degree at most (k + 1)(n − 1) + 1 and,
thus, xk+1(θ, z) is a polynomial in z of degree at most (k + 1)(n− 1) + 1.

We have proved that xs(2π, z) is a polynomial in z of degree at most
s(n− 1) + 1. �

Proof of Proposition 7. We consider the change of the dependent variable x
by y in the differential equation (11) given by x = y + A(θ). We observe
that with this change, the differential equation (11) becomes

(20)
dy

dθ
=
∑

k≥1

εkFk(θ, y +A(θ)),

where the functions Fk(θ, y + A(θ)) are polynomial in y of degree at most
n. We remark that, since A(θ) is 2π-periodic in θ, the number of limit
cycles of the differential equation (11) coincides with the number of limit
cycles of equation (20), counted with multiplicities, by the change x =
y +A(θ). On the other hand, the solution xε(θ, z) given in (12) verifies the
equality xε(θ, z) = A(θ)+yε(θ, z), where yε(θ, z) is the solution of the above
differential equation (20) with initial condition yε(0, z) = z. Therefore, if
we write

yε(θ, z) = z +
∑

j≥1

yj(θ, z)ε
j ,

we have that the function xj(θ, z) coincides with the function yj(θ, z) for
any value of (θ, z) ∈ S1×R and for any j ≥ 1. Hence, assume that xs(2π, z)
is the first function in (12) which is not identically zero, then ys(2π, z) is
the first function in the former expansion which is not identically zero and
we are under the hypothesis of Lemma 9. �
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Proof of Proposition 8. We consider the change of the dependent variable x
by y in the differential equation (13) given by x = y eB(θ). We observe that
with this change, the differential equation is

(21)
dy

dθ
=
∑

k≥1

εkFk(θ, y e
B(θ)),

where the functions Fk(θ, y e
B(θ)) are polynomial in y of degree at most

n. We remark that, since B(θ) is 2π-periodic in θ, the number of limit
cycles of the differential equation (13) coincides with the number of limit
cycles of equation (21), counted with multiplicities, by the change x =

y eB(θ). On the other hand, the solution xε(θ, z) given in (14) verifies the

equality xε(θ, z) = eB(θ) yε(θ, z), where yε(θ, z) is the solution of the above
differential equation (21) with initial condition yε(0, z) = z. Therefore, if
we write

yε(θ, z) = z +
∑

j≥1

yj(θ, z)ε
j ,

we have that the function xj(θ, z) = eB(θ) yj(θ, z) for any value of (θ, z) ∈
S1 ×R and for any j ≥ 1. Hence, assume that xs(2π, z) is the first function
in (14) which is not identically zero, then ys(2π, z) is the first function in
the former expansion which is not identically zero and we are under the
hypothesis of Lemma 9. �

3. Proof of Theorem 4 and applications

Lemma 10. Assume that the solution x0(θ, z) of the unperturbed differential
equation (4) such that x0(0, z) = z is 2π–periodic for z ∈ I with I a real
open interval. Then the function u(θ, z) defined in (6) is 2π–periodic in θ
when z ∈ I.

Proof. We claim that u = ∂x0/∂z. Indeed, since x0(θ, z) satisfies

∂x0

∂θ
= G0(θ, x0(θ, z)),

derivating the equality with respect to z we get that

∂2x0

∂θ∂z
=

∂G0

∂x
(θ, x0(θ, z))

∂x0

∂z
,

or equivalently
∂u

∂θ
=

∂G0

∂x
(θ, x0(θ, z))u,

which is (6). From x0(0, z) = z, it follows that u(0, z) = 1. So the claim is
proved.

Due to the fact that the solution x0(θ, z) of the unperturbed equation (4)
is 2π–periodic for z ∈ I, that is x0(2π, z) = z, it follows (∂x0/∂z)(2π, z) = 1.
Hence, u(2π, z) = 1 when z ∈ I. �
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Proof of Theorem 4. We have defined the function xε(θ, z) given in (5) as
the solution of equation (4). Thus, for any sufficiently small value of |ε|, the
following equality holds

(22)
∂xε(θ, z)

∂θ
=
∑

k≥0

εkGk (θ, xε(θ, z)) .

As we have argued in the proof of Theorem 1, we can equate the coefficients
of the same powers of ε in both members of this equality. Taking into
account (5), the expansion in powers of ε in the left-hand side of (22) is

(23)
∂xε(θ, z)

∂θ
=
∑

n≥0

∂xn(θ, z)

∂θ
εn.

The expansion in powers of ε in the right-hand side of (22) is more involved.
We fix an index k, with k ≥ 0, and by analogous reasonings as the ones
given in the proof of Theorem 1, we have that

Gk (θ, xε(θ, z)) = Gk(θ, x0(θ, z)) +
∑

`≥1

ε`
∑̀

i=1

Θk,`,i(θ, x0(θ, z), z),

where

Θk,`,i(θ, x0(θ, z), z) =

1

i!

∂iGk
∂xi

(θ, x0(θ, z))
∑

j1+j2+···+ji = `

xj1(θ, z)xj2(θ, z) · · ·xji(θ, z).

We consider the function u(θ, z) defined in (6), which is 2π-periodic in θ
as it has been proved in Lemma 10. For each i ≥ 1, we consider the de-
fined functions ui(θ, z) such that xi(θ, z) = u(θ, z)ui(θ, z). Therefore, the
function Θk,`,i(θ, x0(θ, z), z) becomes

(24)

Θk,`,i(θ, x0(θ, z), z) =
1

i!

∂iGk
∂xi

(θ, x0(θ, z)) ·

u(θ, z)i
∑

j1+j2+···+ji = `

uj1(θ, z)uj2(θ, z) · · ·uji(θ, z).

So, the expansion in powers of ε of the right-hand side of equality (22) is

(25)
∑

k≥0

εkGk(θ, x0(θ, z)) +
∑

k≥0

∑

`≥1

εk+`
∑̀

i=1

Θk,`,i(θ, x0(θ, z), z).

From equality (22) we can equate the coefficients of the same powers of ε of
expressions (23) and (25).

The coefficient of ε0 in (25) is G0(θ, x0(θ, z)) and equating with the cor-
responding one in (23) we get that

∂x0(θ, z)

∂θ
= G0(θ, x0(θ, z)).
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This is the definition of the function x0(θ, z) as a particular solution of the
unperturbed equation, that is, equation (4) with ε = 0.

The coefficient of ε1 in (23) is ∂x1/∂θ, where we have avoided to write
the dependence in (θ, z) in order to simplify the notation. Since x1 = uu1,
we have that

∂x1

∂θ
=

∂u

∂θ
u1 + u

∂u1

∂θ
.

The definition (6) of u gives

∂x1(θ, z)

∂θ
=

(
∂G0

∂x
(θ, x0(θ, z))u1(θ, z) +

∂u1(θ, z)

∂θ

)
u(θ, z).

The coefficient of ε1 in (25) is

G1(θ, x0(θ, z)) + Θ0,1,1(θ, x0(θ, z), z) =

= G1(θ, x0(θ, z)) +
∂G0

∂x
(θ, x0(θ, z))u(θ, z)u1(θ, z).

If we equate the two corresponding coefficients, we get that

(26)
∂u1(θ, z)

∂θ
u(θ, z) = G1(θ, x0(θ, z)).

We remark that, given i ≥ 1, since xi(0, z) = 0 and u(0, z) = 1 (see (5)
and (6)), we have that

(27) ui(0, z) = 0 for all i ≥ 1.

From (26) and condition (27) with i = 1, we deduce that

u1(θ, z) =

∫ θ

0

G1(ϕ, x0(ϕ, z))

u(ϕ, z)
dϕ.

Given an integer n ≥ 2 and following similar arguments, we have that the
coefficient of εn in (23) is

(28)
∂xn(θ, z)

∂θ
=

(
∂G0

∂x
(θ, x0(θ, z))un(θ, z) +

∂un(θ, z)

∂θ

)
u(θ, z).

On the other hand, the coefficient of εn in (25) is

Gn(θ, x0(θ, z)) +
n∑

`=1

∑̀

i=1

Θn−`,`,i(θ, x0(θ, z), z),

where we have written k = n − ` and we have considered that k ≥ 0 and
` ≥ 1. We change the order of summation in the indices ` and i and we do
the change ` by s with s = `− i. We get that the previous expression is

(29) Gn(θ, x0(θ, z)) +
n−1∑

s=0

n−s∑

i=1

Θn−s−i,s+i,i(θ, x0(θ, z), z).
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We will write separately the term corresponding to s = n − 1 (and, thus,
i = 1) which is

Θ0,n,1(θ, x0(θ, z), z) =
∂G0

∂x
(θ, x0(θ, z))u(θ, z)un(θ, z),

where we have used the definition (24). Hence, equating (28) with (29) we
obtain

∂un(θ, z)

∂θ
u(θ, z) = Gn(θ, x0(θ, z)) +

n−2∑

s=0

n−s∑

i=1

Θn−s−i,s+i,i(θ, x0(θ, z), z).

From condition (27) and the definition (24) we directly get the integral
expression written in the statement of Theorem 4. �
Proof of Corollary 5. This proof is a verbatim expression of the proof of
Corollary 2 with the obvious changes of notation. �
Proof of Theorem 6. We recall that given any real value |z| < 1, the follow-
ing expansion holds

1

1 + z
=
∑

j≥0

(−1)jzj .

Thus, equation (9) can be written

dr

dθ
=


∑

i≥1

εipi(θ, r)




1 +

∑

j≥1

(−1)j


∑

i≥1

εiqi(θ, r)



j
 .

Given ` ≥ j, we join together the coefficient of ε` in
(∑

i≥1 ε
iqi(θ, r)

)j
which

corresponds to summing up to ` with j indices i1, i2, . . . , ij ≥ 1, that is

∑

i≥1

εiqi(θ, r)



j

=
∑

`≥j
ε`


 ∑

i1+i2+...+ij=`

qi1(θ, r)qi2(θ, r) · · · qij (θ, r)


 .

Hence,

∑

j≥1

(−1)j


∑

i≥1

εiqi



j

=
∑

j≥1

∑

`≥j
ε`(−1)j


 ∑

i1+i2+...+ij=`

qi1qi2 · · · qij




=
∑

`≥1

∑̀

j=1

ε`(−1)j


 ∑

i1+i2+...+ij=`

qi1qi2 · · · qij


 ,

where we have avoided the dependence on (θ, r) for simplifying the notation,
and where we have changed the order of summation in the indices. In order
to simplify notation, we define the auxiliary function

(30) Λ`(θ, r) :=
∑̀

j=1

(−1)j
∑

i1+i2+...+ij=`

qi1(θ, r)qi2(θ, r) · · · qij (θ, r).
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Substituting it in the differential equation we have

dr

dθ
=


∑

i≥1

εipi(θ, r)




1 +

∑

`≥1

ε`Λ`(θ, r)


 .

We write the product of the two summation signs joining together the terms
whose coefficient is εk and we have

dr

dθ
=

∑

i≥1

εipi(θ, r) +
∑

k≥2

(
k−1∑

`=1

pk−`(θ, r)Λ`(θ, r)

)
εk

= p1(θ, r)ε +
∑

k≥2

(
pk(θ, r) +

k−1∑

`=1

pk−`(θ, r)Λ`(θ, r)

)
εk.

Hence, if we define the functions F1(θ, r) := p1(θ, r) and

Fk(θ, r) := pk(θ, r) +
k−1∑

`=1

pk−`(θ, r)Λ`(θ, r),

for k ≥ 2, we have that equation (9) becomes

(31)
dr

dθ
=
∑

k≥1

Fk(θ, r) ε
k.

By assumption, the polynomials fj(x, y) and gj(x, y) of system (8) are of
degree at most n in x and y, which implies that the functions pi(θ, r) and
qi(θ, r) are polynomials in r of degrees at most n and n − 1, respectively.
From the definition (30) of the function Λ`(θ, r), we have that it is a poly-
nomial in r of degree at most `(n− 1). We see that F1(θ, r) is a polynomial
in r of degree at most n and Fk(θ, r) is a polynomial in r of degree at most
(k − 1)(n − 1) + n = k(n − 1) + 1. In summary, the functions Fk(θ, r) in
equation (31) are polynomials in r of degree at most k(n− 1) + 1, for k ≥ 1.

We note that equation (31) is a particular case of equation (1) and, thus,
the functions rj(θ, z) defined in (10) verify the integral expressions given
in Theorem 1. We are going to show, by induction in j, that the function
rj(θ, z) is a polynomial in z of degree at most j(n− 1) + 1.

Case j = 1. Since F1(θ, r) is a polynomial in r of degree at most n, we
have by Theorem 1 that r1(θ, z) is a polynomial in z of degree at most n.

We assume, by induction hypothesis, that ri(θ, z) is a polynomial in z of
degree at most i(n − 1) + 1, for 1 ≤ i ≤ j. In the expression of rj+1(θ, z)
given in Theorem 1, there only appear the previous functions ri(θ, z), for
1 ≤ i ≤ j. We have that, given an integer ` with 1 ≤ ` ≤ j and an integer i
with 1 ≤ i ≤ `, the summation function

∑

j1+j2+···+ji = `

rj1(ϕ, z)rj2(ϕ, z) · · · rji(ϕ, z)
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is a polynomial in z of degree at most

(j1(n− 1) + 1) + (j2(n− 1) + 1) + . . .+ (ji(n− 1) + 1) =

= (j1 + j2 + · · ·+ ji) (n− 1) + i = ` (n− 1) + i.

On the other hand, the function (∂iFj+1−`/∂xi)(ϕ, z) is a polynomial in z
of degree at most (j + 1− `)(n− 1) + 1− i. Hence, the expression

1

i!

∂iFj+1−`
∂xi

(ϕ, z)
∑

j1+j2+···+ji = `

rj1(ϕ, z)rj2(ϕ, z) · · · rji(ϕ, z),

is a polynomial in z of degree at most

`(n− 1) + i + (j + 1− `)(n− 1) + 1− i = jn+ n− j = (j + 1)(n− 1) + 1.

Since j ≥ 1, this degree is greater than or equal to n and, therefore, we
have that the integrand of the expression of rj+1(θ, z) in Theorem 1 is a
polynomial in z of degree at most (j + 1)(n− 1) + 1 and, thus, rj+1(θ, z) is
a polynomial in z of degree at most (j + 1)(n− 1) + 1.

We recall that since the differential equation (9) is the transformation to
polar coordinates of the planar differential system (8), we have that its flow
rε(θ, z) satisfies that rε(θ + π, z) = −rε(θ,−z) for any real value of θ and
z, see for instance [12]. This symmetry implies that rs(2π, z) has z = 0 as
zero and that if z∗ is one of its zeroes, then −z∗ is also a zero.

We have proved that rs(2π, z) is a polynomial in z of degree s(n− 1) + 1.
And we conclude that it can have at most [s(n− 1)/2] positive zeroes. �
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