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Averting biodiversity collapse in tropical forest
protected areas
A list of the authors and their affiliations appears at the end of the paper.

The rapid disruption of tropical forests probably imperils global bio-
diversity more than any other contemporary phenomenon1–3. With
deforestation advancing quickly, protected areas are increasingly
becoming final refuges for threatened species and natural ecosystem
processes. However, many protected areas in the tropics are them-
selves vulnerable to human encroachment and other environmental
stresses4–9. As pressures mount, it is vital to know whether existing
reserves can sustain their biodiversity. A critical constraint in
addressing this question has been that data describing a broad array
of biodiversity groups have been unavailable for a sufficiently large
and representative sample of reserves. Here we present a uniquely
comprehensive data set on changes over the past 20 to 30 years in 31
functional groups of species and 21 potential drivers of environ-
mental change, for 60 protected areas stratified across the world’s
major tropical regions. Our analysis reveals great variation in
reserve ‘health’: about half of all reserves have been effective or
performed passably, but the rest are experiencing an erosion of
biodiversity that is often alarmingly widespread taxonomically
and functionally. Habitat disruption, hunting and forest-product
exploitation were the strongest predictors of declining reserve
health. Crucially, environmental changes immediately outside
reserves seemed nearly as important as those inside in determining
their ecological fate, with changes inside reserves strongly mirroring
those occurring around them. These findings suggest that tropical
protected areas are often intimately linked ecologically to their
surrounding habitats, and that a failure to stem broad-scale loss
and degradation of such habitats could sharply increase the
likelihood of serious biodiversity declines.

Tropical forests are the biologically richest ecosystems on Earth1–3.
Growing concerns about the impacts of anthropogenic pressures on
tropical biodiversity and natural ecosystem services have led to
increases in the number and extent of protected areas across the
tropics10. However, much remains unknown about the likelihood of
biodiversity persisting in such protected areas. Remote-sensing tech-
nologies offer a bird’s-eye view of tropical forests and provide many
important insights6,11–13, but are largely unable to discern crucial on-
the-ground changes in forest biodiversity and ecological functioning14.

To appraise both the ecological integrity and threats for tropical
protected areas on a global scale, we conducted a systematic and
uniquely comprehensive assessment of long-term changes within 60
protected areas stratified across the world’s major tropical forest
regions (Supplementary Fig. 1). To our knowledge, no other existing
data set includes such a wide range of biodiversity and threat indicators
for such a large and representative network of tropical reserves. Our
study was motivated by three broad issues: whether tropical reserves
will function as ‘arks’ for biodiversity and natural ecosystem processes;
whether observed changes are mainly concordant or idiosyncratic
among different protected areas; and what the principal predictors
of reserve success or failure are, in terms of their intrinsic character-
istics and drivers of change.

To conduct our study we amassed expert knowledge from 262
detailed interviews, focusing on veteran field biologists and environ-
mental scientists who averaged nearly 2 decades of experience

(mean 6 s.d., 19.1 6 9.6 years) at each protected area. Each interviewed
researcher completed a detailed 10-page questionnaire, augmented by a
telephone or face-to-face interview (see Supplementary Information).
The questionnaires focused on longer-term (approximately 20–
30-year) changes in the abundance of 31 animal and plant guilds
(trophically or functionally similar groups of organisms), which col-
lectively have diverse and fundamental roles in forest ecosystems
(Table 1). We also recorded data on 21 potential drivers of environ-
mental change both inside each reserve and within a 3-km-wide buffer
zone immediately surrounding it (Table 1).

Our sample of protected areas spans 36 nations and represents a
geographically stratified and broadly representative selection of sites
across the African, American and Asia-Pacific tropics (Supplementary
Fig. 1). The reserves ranged from 160 ha to 3.6 million ha in size, but
most (85%) exceeded 10,000 ha in area (median 5 99,350 ha; lower
decile 5 7,000 ha; upper decile 5 750,000 ha). The protected areas fall
under various International Union for Conservation of Nature
(IUCN) reserve classifications. Using data from the World Database
on Protected Areas (http://www.wdpa.org), we found no significant
difference (P 5 0.13) in the relative frequency of high-protection
(IUCN Categories I–IV), multiple-use (Categories V–VI) and

Table 1 | The 31 animal and plant guilds, and the 21 environmental
drivers assessed both inside and immediately outside each protected
area.
Guilds Potential environmental drivers

Broadly forest-dependent guilds
Apex predators Changes in natural-forest cover
Large non-predatory species Selective logging
Primates Fires
Opportunistic omnivorous mammals Hunting
Rodents Harvests of non-timber forest products
Bats Illegal mining
Understory insectivorous birds Roads
Raptorial birds Automobile traffic
Larger frugivorous birds Exotic plantations
Larger game birds Human population density
Lizards and larger reptiles Livestock grazing
Venomous snakes Air pollution
Non-venomous snakes Water pollution
Terrestrial amphibians Stream sedimentation
Stream-dwelling amphibians Soil erosion
Freshwater fish River & stream flows
Dung beetles Ambient temperature
Army or driver ants Annual rainfall
Aquatic invertebrates Drought severity or intensity
Large-seeded old-growth trees Flooding
Epiphytes Windstorms
Other functional groups
Ecological specialists
Species requiring tree cavities
Migratory species
Disturbance-favouring guilds
Lianas and vines
Pioneer and generalist trees
Exotic animal species
Exotic plant species
Disease-vectoring invertebrates
Light-loving butterflies
Human diseases
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unclassified reserves between our sample of 60 reserves and all 16,038
reserves found in the same tropical nations (Supplemen-
tary Fig. 2). We also found no significant difference (P 5 0.08) in the
geographical isolation of our reserves (travel time to the nearest city
with greater than 50,000 residents) relative to a random sample of 60
protected areas stratified across the same 36 nations (Supplementary
Fig. 3).

We critically assessed the validity of our interview data by compar-
ing them to 59 independent time-series data sets in which change in a
single guild or environmental driver was assessed for one of our
protected areas. Collectively, our meta-analysis included some data
on 15 of the guilds, 13 of the drivers and 27 of the protected areas in
our study (Supplementary Table 1). Most (86.4%) of the independent
data sets supported our interview results, and in no case did an
independent test report a trend opposite in sign to our interview-based
findings.

Our analyses suggest that the most sensitive guilds in tropical pro-
tected areas include apex predators, large non-predatory vertebrates,
bats, stream-dwelling amphibians, terrestrial amphibians, lizards and
larger reptiles, non-venomous snakes, freshwater fish, large-seeded
old-growth trees, epiphytes and ecological specialists (all P , 0.0056,
with effect sizes ranging from 20.36 to 21.05; Supplementary Table 2).
Several other groups were somewhat less vulnerable, including
primates, understory insectivorous birds, large frugivorous birds,

raptorial birds, venomous snakes, species that require tree cavities,
and migratory species (all P , 0.05, with effect sizes from 20.27 to
20.53). In addition, five groups increased markedly in abundance in
the reserves, including pioneer and generalist trees, lianas and vines,
invasive animals, invasive plants and human diseases (all P , 0.0056,
with effect sizes from 0.44 to 1.17).

To integrate these disparate data, we generated a ‘reserve-health
index’ that focused on 10 of the best-studied guilds (data for each
available at $ 80% of reserves), all of which seem to be sensitive to
environmental changes in protected areas. Six of these are generally
‘disturbance avoiders’ (apex predators, large non-predatory vertebrates,
primates, understory insectivorous birds, large frugivorous birds
and large-seeded old-growth trees) and the remainder seem to be
‘disturbance-favouring’ groups (pioneer and generalist trees, lianas
and vines, exotic animals and exotic plants). For each protected area,
we averaged the mean values for each group, using negative values to
indicate increases in abundance of the disturbance-favouring guilds.

The reserve-health index varied greatly among the different pro-
tected areas (Fig. 1). About four-fifths of the reserves had negative
values, indicating some decline in reserve health. For 50% of all
reserves this decline was relatively serious (mean score ,20.25), with
the affected organisms being remarkable for their high functional and
taxonomic diversity (Fig. 2). These included plants with varying
growth forms and life-history strategies, and fauna that differed widely
in body size, trophic level, foraging strategies, area needs, habitat use
and other attributes. The remaining reserves generally exhibited
much more positive outcomes for biodiversity (Fig. 2), although a
few disturbance-favouring guilds, such as exotic plants and pioneer
and generalist trees, often increased even within these areas.

An important predictor of reserve health was improving reserve
management. According to our experts, reserves in which actual,
on-the-ground protection efforts (see Supplementary Information)
had increased over the past 20 to 30 years generally fared better than
those in which protection had declined; a relationship that was con-
sistent across all three of the world’s major tropical regions (Fig. 3).
Indeed, on-the-ground protection has increased in more than half of
the reserves over the past 20 to 30 years, and this is assisting efforts to
limit threats such as deforestation, logging, fires and hunting within
these reserves (Supplementary Table 3), relative to areas immediately
outside (Supplementary Table 4).

However, our findings show that protecting biodiversity involves
more than just safeguarding the reserves themselves. In many
instances, the landscapes and habitats surrounding reserves are under
imminent threat5,6,15 (Fig. 4 and Supplementary Tables 3 and 4). For
example, 85% of our reserves suffered declines in surrounding forest
cover in the last 20 to 30 years, whereas only 2% gained surrounding
forest. As shown by general linear models (Supplementary Table 5),
such changes can seriously affect reserve biodiversity. Among the
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Figure 1 | Distribution of the ‘reserve-health index’ for 60 protected areas
spanning the world’s major tropical forest regions. This relative index averages
changes in 10 well-studied guilds of animals and plants, including disturbance-
avoiding and disturbance-favouring groups, over the past 20 to 30 years.
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Figure 2 | Percentages of reserves that are worsening versus improving for key
disturbance-sensitive guilds, contrasted between ‘suffering’ and ‘succeeding’
reserves (which are distinguished by having lower (,20.25) versus higher
($20.25) values for the reserve-health index, respectively). For disturbance-

favouring organisms such as exotic plants and animals, pioneer and generalist
trees, lianas and vines, and human diseases, the reserve is considered to be
worsening if the group increased in abundance. For any particular guild,
reserves with missing or zero values (no trend) are not included.
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potential drivers of declining reserve health, three of the most import-
ant predictors involved ecological changes outside reserves (declining
forest cover, increasing logging and increasing fires outside reserves;
Supplementary Fig. 6). The remainder involved changes within
reserves (particularly declining forest cover and increasing hunting,
as well as increasing logging and harvests of non-timber forest pro-
ducts; Supplementary Table 5).

Thus, changes both inside and outside reserves determine their
ecological viability, with forest disruption (deforestation, logging and
fires), and overexploitation of wildlife and forest resources (hunting

and harvests of non-timber forest products) having the greatest direct
negative impacts. Other environmental changes, such as air and water
pollution, increases in human population densities and climatic
change (changes in total rainfall, ambient temperature, droughts and
windstorms) generally had weaker or more indirect effects over the last
20 to 30 years (Supplementary Table 5).

Environmental degradation occurring around a protected area
could affect biodiversity in many ways, such as by increasing reserve
isolation, area and edge effects15–19. However, we discovered that its
effects are also more insidious: they strongly predispose the reserve
itself to similar kinds of degradation. Nearly all (19 of 21) of the
environmental drivers had positive slopes when comparing their
direction and magnitude inside versus outside reserves (Fig. 5).
Among these, 13 were significant even with stringent Bonferroni cor-
rections (P , 0.0071) and 17 would have been significant if tested
individually (P , 0.05). As expected, the associations were strongest
for climate parameters but were also strong for variables describing air
and water pollution, stream sedimentation, hunting, mining, harvests
of non-timber forest products and fires. To a lesser extent, trends in
forest cover, human populations, road expansion and automobile traffic
inside reserves also mirror those occurring outside reserves (Fig. 5).

Our findings signal that the fates of tropical protected areas will be
determined by environmental changes both within and around the
reserves, and that pressures inside reserves often closely reflect those
occurring around them. For many reasons, larger reserves should be
more resilient to such changes15–22, although we found that removing
the effects of reserve area statistically did not consistently weaken the
correlations between changes inside versus outside protected areas
(Supplementary Table 6).

Our study reveals marked variability in the health of tropical pro-
tected areas. It indicates that the best strategy for maintaining biodi-
versity within tropical reserves is to protect them against their major
proximate threats, particularly habitat disruption and overharvesting.
However, it is not enough to confine such efforts to reserve interiors
while ignoring their surrounding landscapes, which are often being
rapidly deforested, degraded and overhunted5,6,13,15 (Fig. 5). A failure to
limit interrelated internal and external threats could predispose
reserves to ecological decay, including a taxonomically and functionally

Inside 

reserve

Outside 

reserve

Population growth

Forest cover

Logging

Fires

Soil erosion

Stream sedimentation

Water pollution

Road expansion

Automobile traffic

Population growth

Forest cover

Logging

Fires

Soil erosion

Stream sedimentation

Water pollution

Road expansion

Automobile traffic

–100 –50 0 50 100

Worsening (%) Improving (%)

Inside reserves

Outside reserves
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Figure 3 | Effects of improving on-the-ground protection on a relative index of
reserve health. This positive relationship held across all three tropical
continents (a general linear model showed that the protection term was the
most effective predictor of reserve health (Akaike’s information criterion
weight, 0.595; deviance explained, 11.4%), with the addition of ‘continent’
providing only a small improvement in model fit (Akaike’s information
criterion weight, 0.317; deviance explained, 16.3%).
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sweeping array of changes in species communities (Fig. 2) and an
erosion of fundamental ecosystem processes16,18,23.

Protected areas are a cornerstone of efforts to conserve tropical
biodiversity3,4,13,21. It is not our intent to diminish their crucial role
but to highlight growing challenges that could threaten their success.
The vital ecological functions of wildlife habitats surrounding protected
areas create an imperative, wherever possible, to establish sizeable
buffer zones around reserves, maintain substantial reserve connectivity
to other forest areas and promote lower-impact land uses near reserves
by engaging and benefiting local communities4,15,24–27. A focus on man-
aging both external and internal threats should also increase the resi-
lience of biodiversity in reserves to potentially serious climatic
change28–30 in the future.

METHODS SUMMARY
Our interview protocol, rationale, questionnaire and data analyses are detailed in
the Supplementary Information. We selected protected areas broadly to span the
African, American and Asia-Pacific tropics (Supplementary Fig. 1), focusing on
sites with mostly tropical or subtropical forest that had at least 10 refereed pub-
lications and 4–5 researchers with long-term experience who could be identified
and successfully interviewed.

We devised a robust and relatively simple statistical approach to assess temporal
changes in the abundance of each guild and in each potential environmental driver
across our reserve network (see Supplementary Information). In brief, this involved
asking each expert whether each variable had markedly increased, remained stable
or markedly declined for each reserve. These responses were scored as 1, 0 and 21,
respectively. For each response, the expert was also asked to rank their degree of
confidence in their knowledge. After discarding responses with lower confidence,
scores from the individual experts at each site were pooled to generate a mean value
(ranging from 21.0 to 1.0) to estimate the long-term trend for each variable.

The means for each variable across all 60 sites were then pooled into a single data
distribution. We used bootstrapping (resampling with replacement; 100,000 itera-
tions) to generate confidence intervals for the overall mean of the data distribution. If
the confidence intervals did not overlap zero, then we interpreted the trend as being
non-random. Because we tested many different guilds, we used a stringent Bonferroni
correction (P # 0.0056) to reduce the likelihood of Type I statistical errors, although
we also identified guilds that showed evidence of trends (P # 0.05) if tested individu-
ally. For comparison, we estimated effect sizes (bootstrapped mean divided by s.d.,
with negative values indicating declines) for changes in guild abundances and for
potential drivers inside and outside reserves (Supplementary Tables 2–4).
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