
Averting HIV Infections in New York City: A Modeling
Approach Estimating the Future Impact of Additional
Behavioral and Biomedical HIV Prevention Strategies

Jason Kessler1*, Julie E. Myers2,3, Kimberly A. Nucifora1, Nana Mensah2, Alexis Kowalski1,

Monica Sweeney2, Christopher Toohey1, Amin Khademi4, Colin Shepard2, Blayne Cutler2,

R. Scott Braithwaite1

1Division of Comparative Effectiveness and Decision Science, Department of Population Health, New York University School of Medicine, New York, New York, United

States of America, 2 Bureau of HIV/AIDS Prevention and Control, New York City Department of Health and Mental Hygiene, New York, New York, United States of America,

3Division of Infectious Diseases, Columbia University Medical Center, New York, New York, United States of America, 4Department of Industrial Engineering, University of

Pittsburgh, Pittsburgh, Pennsylvania, United States of America

Abstract

Background: New York City (NYC) remains an epicenter of the HIV epidemic in the United States. Given the variety of
evidence-based HIV prevention strategies available and the significant resources required to implement each of them,
comparative studies are needed to identify how to maximize the number of HIV cases prevented most economically.

Methods: A new model of HIV disease transmission was developed integrating information from a previously validated
micro-simulation HIV disease progression model. Specification and parameterization of the model and its inputs, including
the intervention portfolio, intervention effects and costs were conducted through a collaborative process between the
academic modeling team and the NYC Department of Health and Mental Hygiene. The model projects the impact of
different prevention strategies, or portfolios of prevention strategies, on the HIV epidemic in NYC.

Results: Ten unique interventions were able to provide a prevention benefit at an annual program cost of less than
$360,000, the threshold for consideration as a cost-saving intervention (because of offsets by future HIV treatment costs
averted). An optimized portfolio of these specific interventions could result in up to a 34% reduction in new HIV infections
over the next 20 years. The cost-per-infection averted of the portfolio was estimated to be $106,378; the total cost was in
excess of $2 billion (over the 20 year period, or approximately $100 million per year, on average). The cost-savings of
prevented infections was estimated at more than $5 billion (or approximately $250 million per year, on average).

Conclusions: Optimal implementation of a portfolio of evidence-based interventions can have a substantial, favorable
impact on the ongoing HIV epidemic in NYC and provide future cost-saving despite significant initial costs.
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Introduction

New York City (NYC) remains an epicenter of HIV in the U.S.

More than 110,000 New Yorkers are living with HIV, and almost

3,500 new cases of HIV were diagnosed in 2010 [1]. NYC’s AIDS

case rate is almost 3 times the U.S. average, and HIV is the third

leading cause of death for NYC residents aged 35 to 54 [2]. While

no single prevention strategy has materialized to control the HIV

epidemic, a number of behavioral and biomedical approaches have

been developed that reduce the risk of HIV infection [3]. In fact,

some investigators have theorized that the HIV epidemic can even

be extinguished in certain settings with systematic prioritization and

implementation of a package of aggressive interventions (e.g.,

universal annual testing, prompt linkage to care, and immediate

antiretroviral therapy [ART] initiation) [4]. However, these

interventions require substantial resources, and it remains unclear

how to best allocate HIV prevention resources to maximize the

number of new HIV cases prevented. Furthermore, detection and

care patterns in the US differ considerably from the optimistic

assumptions of recent models [4].

While the National HIV/AIDS Strategy (preventing new

infections, increasing access to care, and reducing HIV-related

health disparities) [5] and the new focus of CDC’s ’’High-Impact

Prevention’’ (HIP) (intensifying the use of appropriately combined

evidence-based prevention methods in the most highly affected

geographic areas) [6] may provide new momentum to HIV
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prevention efforts in the United States, additional tools to

prioritize and focus currently available prevention intervention

strategies are clearly needed.

Previous modeling work comparing variegated HIV prevention

interventions and strategies has been relatively scarce to date and

has been associated with several limitations. For example, while a

cost-effectiveness analysis of HIV prevention interventions was

particularly helpful because it enabled interventions to be rank-

ordered by absolute benefit and cost-per-infection averted, [7] it

did not permit decision makers to individualize results based on

the strength and quality of the evidence (e.g., controlled trial based

data vs. observational data). Additionally, a similar model has

evaluated prevention strategies from a nationwide perspective

which may not account for jurisdiction-level differences in

transmission dynamics, cost, and political feasibility of various

interventions, all of which can contribute to local micro-epidemics

and require setting-specific solutions [8].

We created a jurisdiction-specific operations research model of

HIV prevention in NYC to account for complexities and local

dynamics inherent in HIV transmission and treatment. This model

deployed the set of evidence-based HIV prevention interventions

outlined in the 2010 Center for Disease Control’s Enhanced

Comprehensive HIV Prevention Planning (ECHPP) grant, Phase I

(see Table 1) [9]. The aims of this project were to inform HIV

prevention planning in the jurisdiction by comparing cost-per-

infection averted between the various ECHPP strategies and by

identifying the optimal package of prevention services in NYC.

Methods

Overview
An operations research model was constructed to inform HIV

prevention decisions in NYC. This model incorporates informa-

tion from an individual-based, stochastic simulation of HIV

progression into a deterministic epidemic model of HIV transmis-

sion. The simulation estimates the HIV epidemic over varying

time horizons up to 20 years. Different combinations of preven-

tion strategies (‘‘packages’’) were tested. Costs were estimated on

Table 1. HIV prevention interventions and associated costs considered in transmission simulation.

Abbreviation ECHPP Intervention description

Cost range

considered1
Level of

Evidence2

Testing – clinical Enhanced routine opt-out screening for clinical settings $37–147 B

Testing – non-clinical HIV testing in non-clinical settings to identify undiagnosed HIV infection $109–162 B

Condom distribution Condom distribution prioritized to specific populations $0.05–$1.00 A

Post-exposure prophylaxis (PEP)3 Provision of Post-Exposure Prophylaxis to populations $1312–$3938 C

Linkage to care Implement linkage to HIV care, treatment, and prevention services
for those testing HIV positive and not currently in care

$1078–$1424 B

Care coordination Implement interventions or strategies
promoting adherence to antiretroviral medication
and retention in care for HIV-positive persons

$3000–$9000 B

STD Implement STD screening according to
current guidelines for specific populations

$178–230 D

Partner services Implement ongoing partner services for HIV-positive
persons (i.e., provision of partner services both at
the time of diagnosis and as needed thereafter)

$748–2244 B

Risk reduction Behavioral risk screening followed by risk reduction
interventions for HIV-positive persons (including those for
HIV-discordant couples) at risk of transmitting HIV

$1000–2813 D

Linkage to support services Implement linkage to other medical and
social services for HIV-positive persons

$398–1194 D

Social marketing HIV and sexual health communication or social marketing
campaigns targeted to relevant audiences

$4–13 D

Community-level evidence based
interventions

Evidence based community interventions that reduce HIV risk $0.37–$1.10 D

Prioritized use of surveillance data Targeted use of HIV and STD surveillance data to prioritize
risk reduction counseling and partner services for persons
with previously diagnosed HIV infection with a new STD

$52–157 D

Social services For HIV-negative persons at highest risk , linkages
to social support services impacting HIV incidence

$88–263 D

Screening, brief intervention, and
referral to treatment for unhealthy
alcohol users (SBIRT)

Brief alcohol screening, interventions and referral to treatment $55–156 C

Cofactors Brief screening and treatment for comorbid STDs,
substance use and mental health.

$55–156 C

1For all interventions shown (with the exception of linkage to care), cost ranges considered reflect the cost in 2010 USD for each prioritized individual based on actual or
estimated programmatic costs incurred by NYC DOHMH. For linkage to care, cost estimate comes from Gardner LI, et al. 2005 [25].
2Level of evidence assignment reflects weakest evidence for a specific intervention’s effects on pathway(s).
3Includes cost of medications required.
doi:10.1371/journal.pone.0073269.t001
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an incremental basis in 2010 US dollars. Benefits were measured

as number and percentage of infections averted (as compared to

the base case). Cost-per-infection averted ratios were determined

for each package, uncertainty bounds around each estimate were

created by evaluating each intervention using the lower and upper

bounds of efficacy considered (Table 2). Key model parameters

were varied in sensitivity analysis. For the purposes of this analysis,

a threshold of $360,000 per infection averted was selected as cost-

saving, since the downstream medical costs averted from

preventing a new infection would offset the programmatic costs

of preventing that new infection [10].

We sought to identify strategies delivering the greatest health

benefit for a particular a budget scenario, also known as efficient

frontiers [11]. Strategies outside this frontier are unable to deliver

the greatest benefit regardless of budget, and therefore are not

preferred choices regardless of available resources. We identified

efficient frontiers by calculating the incremental cost-effectiveness

ratio (ICER) of combinations of HIV prevention strategies. ICERs

measure the additive benefit of each strategy compared with its

next best alternative, and interpret this benefit together with its

additive cost.

We identified all intervention strategies that the model

estimated would be cost-saving and subsequently ran twenty year

simulations of each combination of these interventions (n = 16 cost

saving interventions, 10 of which were unique; 65,535 possible

combinations of any number of n). The intervention portfolios that

delivered the greatest benefit for any particular budget scenario

(that is, the efficient frontier) were identified using well-established

methods [12]. The ‘‘optimal’’ package of interventions we

assumed to be represented by the farthest point lying on the

frontier as this combination prevented the largest number of

infections and yet remained cost-effective to implement.

HIV transmission
A deterministic compartmental model of HIV transmission was

developed, specified by sets of equations. The model was

implemented in the C++ programming language. Full details of

the conceptualization and parameterization of the model can be

found in File S1. The model includes both sexual transmission and

transmission through needle-sharing during injection drug use.

HIV transmission was modeled using a binomial process and

assumed proportionate mixing in the population. The probability

of transmission between partners was adjusted to account for

infected partner’s gender, disease state and treatment status.

Differences in risk associated with sexual positioning and

positioning preferences between MSM were not considered.

HIV progression and treatment
Disease progression was modeled by incorporating equilibrium

mortality and transition rates between CD4 and HIV-1 viral load

(VL) categories as a function of antiretroviral treatment and

adherence from a previously described and validated HIV

stochastic progression simulation model. Accordingly, the output

distributions of the progression model (stochastic) were collapsed

into point estimates as a byproduct of enabling the transmission

and progression models to exchange information. The progression

model explicitly represents the main cause of ART failure, non-

adherence leading to the accumulation of genotypic resistance,

and has been well-validated in multiple populations [13,14].

The HIV positive population in the transmission simulation at

baseline was divided into compartments based on CD4 and VL

strata. Five CD4 strata were represented (,50, 51–200, 201–350,

351–500, .500 cells/mm3) and five VL logarithmic strata were

represented (,2.5, 2.5–3.5, 3.5–4.5, 4.5–5.5, .5.5 log copies/ml).

The spectrum of infection and care was modeled as a stepwise

progression from HIV acquisition/primary infection to chronic

infection, HIV detection thorough testing, linkage to care,

Table 2. Intervention-pathway effect parameter inputs into ECHPP HIV epidemic computer simulation.

InterventionRpathway effects Effect Size1
Sensitivity

Analysis limits Reference

Condom distribution/use 12.3% increase (RR ,1.12) 3.3–21.5% Charania et al 2010 [26]

Enhanced clinic based HIV testing 32.7% increase (RR,1.33) 29.6–39.5% Anaya et al 2008 [27], Calderon et al 2011 [28],
Mullins et al 2010 [29]

Community based HIV testing 10.2% increase (RR,1.10) 8.0–18.9% Rhodes et al 2011 [30], Wilton et al 2009 [31]

PEP utilization 42.0% increase (RR ,1.42) 25.0–70.0% Barash et al 2010 [32]

Linkage to care 30.0% increase (RR,1.30) 9.0–37.5% Gardner et al 2005 [25,33]

Care coordination/Case management 20.0% increase (RR,1.20) 7.5–32.0% Hart et al 2010 [34], Simoni et al 2006 [35]

STD care and treatment 28.0% decrease (RR,0.72) 8.0–51.0% Grosskurth H et al 1995 [36]

SBIRT component effect size2 15.0% decrease (RR,0.85) 5.0–25.0% Bertholet N et al 2005 [37]

Partner services intervention3 2.8% increase 2.0–5.0% Hogben et al 2007 [38], unpublished data from
NYC DOH

IDU risk reduction 67.4% decrease (RR ,0.33) 15.2–88.5% Latkin et al 2003 [39], Robles et al 2004 [40]

Risky sexual practices 25.0% decrease (RR,0.75) 1.0–50.0% Vissers et al, 2011 [41]

RR: risk ratio; PEP: Post-exposure prophylaxis; STD: sexually transmitted disease; SBIRT: screening, brief intervention and referral for treatment for unhealthy alcohol use;
IDU: injection drug use.
1Values of intervention effect sizes represent relative risk benefits on pathway applied to prioritized population(s) except where noted. For instance, if an intervention
included a condom distribution/use component, this would result in a 12.3% increase in the probability of consistent condom usage amongst a specified risk group.
2The SBIRT intervention acts to reduce the proportion of the population classified as unhealthy alcohol users. The effect size represents the relative decrease in this
proportion.
3The partner services intervention acts to identify previously unknown persons with HIV. The effect size value represents the proportion of undetected HIV positive
individuals who move from the ‘‘chronic HIV’’ state to the ‘‘in care’’ state if the intervention is activated.
doi:10.1371/journal.pone.0073269.t002
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initiation of treatment with antiretroviral therapy, and adherence

to therapy.

Representation of HIV prevention interventions
The transmission simulation includes the capacity to represent

the implementation of one or more HIV prevention interventions.

Each intervention was assumed to impact a specifiable group or

population by activating one or more pathways to reduce HIV

transmission (see Table 2 and File S1 for further details). Here,

‘pathway’ refers to a fundamental mechanism through which

transmission is impacted (e.g. such as reducing the likelihood of

unprotected anal intercourse), or by reducing the probability of

transmission given that a high-risk act occurs (e.g. such as the

likelihood of transmission during unprotected anal intercourse

when an HIV positive person is virally suppressed) (Figure 1). Note

that while some interventions are restricted to a particular

prioritized group by their design (such as medical case manage-

ment, or care coordination for HIV-positive individuals), other

interventions may be applied to multiple alternative groups (for

example, a condom distribution intervention can be alternatively

directed at HIV-persons with high-risk behaviors, all HIV-infected

persons, HIV-negative persons with high-risk behaviors, or all

persons). Prioritized groups for a given intervention are repre-

sented in the model by specifying particular compartments of

specific populations or risk groups (Table 1 and File S1).

The effect of each intervention on each pathway is summarized

using the metrics of effect size (Table 2), statistical certitude (95%

confidence interval or plausible range) (Table 2), and strength of

evidence (‘‘grades’’ A, B, C, or D), based on the investigator’s

published adaptation of the evidence rating scale used by the

United States Preventive Services Task Force (Table 3) [15]. Any

model input with an evidence source that could not be confirmed

was conservatively assigned a default grade of ‘‘D’’ (Table 1). An

intervention was assigned a single level of evidence equivalent to

the ‘‘weakest link’’ in any evidence associated with it (e.g. efficacy

of effect on a specific HIV transmission pathway, uptake of

intervention) for the purposes of examining effects of filtering by

uncertainty.

Under model scenarios where multiple interventions were

incorporated and were hypothesized to affect a similar HIV

transmission pathway we assumed conservatively that the effect of

the strongest intervention would predominate and the weaker

intervention(s) would have no additional effect on that specified

pathway (though their effects on any additional unique pathways

would be maintained). For instance, if intervention A (acting only

through increased condom utilization) prevented 1,000 new

infections and intervention B (acting only through increased

condom utilization) prevented 2,000 new infections the combina-

tion package of A+B would only result in 2,000 new infections

being averted. If, however, A or B had additional effects beyond

condom utilization the combination of A+B could prevent more

than 2,000 infections over the model run.

Parameter inputs
The population of NYC in 2009 (ages 0–75) based on NYC

HIV surveillance data [16] was divided into population compart-

ments based on gender, sexual risk behavior, sexual identity

(straight, gay, bisexual), infection status, treatment status, and

Figure 1. Schematic of constructs in transmission simulation and pathways which impact HIV transmission.
doi:10.1371/journal.pone.0073269.g001
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injection drug use (IDU) (Table 4). Sexual risk was divided into

three categories (abstinent, monogamous, multiple concurrent

partnerships). Proportions of the population within each sexual

risk category remain constant over time. Serial partnerships (i.e.

multiple partners in serial fashion over time) were considered as

monogamous. Abstinent persons were estimated to represent 21%

of the population [17]. The mean CD4 for the initial HIV positive

population was 350 cells/mm3, and the mean VL was 4.5 log [18].

Persons were defined as ‘‘high-risk’’ (for the purposes of

intervention prioritization) if they had multiple sexual partnerships

(whether MSM or heterosexual men or women) and/ or were

injection drug users (IDUs). Other critical inputs were ascertained

from literature estimates, or through discussion and consensus

amongst the study team (Table 5). For the purposes of model

specification, odds ratios derived from the peer-reviewed literature

were converted to appropriate risk ratios using previously defined

techniques when necessary [19].

Costs were considered from the perspective of the NYC

Department of Health and Mental Hygiene (NYC DOHMH)

and the City of New York. Costs were derived per intervention

from estimates of programmatic expenditures within the

DOHMH and did not include costs incurred by other (non-

DOHMH funded) agencies. Programmatic costs typically include

pro-rated staff time, fixed costs and additional materials required

to provide the given intervention (e.g., educational tools or

supplies, including the cost of purchasing condoms). Where

feasible, fee-for-service rates that incorporate these costs for each

unit of service were applied. Plausible cost ranges for many

interventions were provided; if no range was given, sensitivity

analyses employed 650% of the estimated cost as the bounds.

Annual costs for an intervention were calculated using a ‘‘pre-

purchasing’’ perspective – total cost for an intervention equals per

unit cost specific to the intervention (cost input from Table 1) times

the total number of persons estimated to be in the priority

population.

Calibration, validation, and design features
The base case time horizon is 20 years. We performed

sensitivity analyses with alternative time horizons of potential

interest for policy decisions (5 years and 10 years). We did not

discount costs or benefits. We pre-specified three validation

criteria to test whether the model’s predictions were compatible

with observed results: HIV prevalence, HIV incidence, and HIV-

related mortality. We compared data from the most recent year

available (2009), as well as time trends over the longest period of

time (2003 to 2009) during which NYC data were available for all

three criteria. In addition, we tested whether the distribution of

new infections across three risk categories (i.e. MSM, heterosexuals

and IDU) predicted by the simulation resembles observed results.

Results

Model calibration and validation
Comparing simulation estimations with epidemiological data

from NYC, the simulation demonstrated reasonable goodness of fit

with pre-specified validation criteria of HIV incidence and HIV

prevalence, over the timeframe for which NYC data was available

(2003 through 2009) (Figure 2a–b). In addition, the proportions of

new infections among different risk categories (MSM, heterosex-

uals and IDUs) and the overall prevalence predicted by the

simulation during the first year closely resembled the relevant 2009

NYC data (Figure 2).

Results with baseline investment in HIV prevention
programs
Under the base case assumptions, without incremental invest-

ment in HIV prevention programs or strategies, the model

predicted 58,632 new cases of HIV infection over a 20 year time

period, with an average incidence of 2,932 new infections per year.

Over the 20 year simulation, 16,159 persons were predicted to

Table 3. Evidence filters for model inputs.

Level of

Evidence Filter Grading Criteria (Assessment of internal validity based on criteria outlined in Braithwaite RS, et al. 2007[15])

A Systematic review including meta-analysis or individual randomized controlled trial (internal validity: high)

B High quality observational studies (cohort, case-control; internal validity: high) or lower quality individual randomized
controlled trial (internal validity: fair or poor)

C Lower quality observational studies (internal validity: fair or poor)

D Expert opinion

doi:10.1371/journal.pone.0073269.t003

Table 4. Initial New York City-based HIV inputs into ECHPP HIV epidemic computer simulation, 20091.

Subgroup Male HIV+ (known) Female HIV + (known) Total HIV+ (known)

Adults (13–65) 76,770 31,596 108,366

Transmission Risk 2

Heterosexual 5,637 (7%) 15,081 (48%) 20,718 (19%)

MSM 35,882 (47%) – 35,882 (33%)

IDU 15,051 (20%) 6,151 (19%) 21,202 (20%)

1NYC DOHMH, Bureau of HIV/AIDS Prevention and Control, surveillance data, 2009 [42].
2Proportion of HIV-positive adults with a reported transmission risk. Proportions do not equal 100% because of persons with unknown transmission risk.
doi:10.1371/journal.pone.0073269.t004
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Table 5. Generalized inputs into ECHPP HIV epidemic computer simulation.

Parameter or input Value

Sensitivity

analysis limits Reference

Sexual risk characteristics

Proportion of population who are abstinent 21.0% 17.0–32.0% Adimora, et al 2007[17]

Probability of monogamous relationship (if sexually active)

Men who have sex with women (MSW) 78.2% … CHS [43]

Men who have sex with men (MSM) 55.8% … [43]

Women who have sex with men (WSM) 91.1% … [43]

Women who have sex with women (WSW) 48.9% … [43]

Probability of multiple partnerships (if sexually active)

MSW 21.8% 16.1– 23.6% [43]

MSM 44.2% 25.6–63.6% [43]

WSM 8.9% 6.9–10.4% [43]

WSW 51.1% … [43]

Proportion of men who are MSM 5.6% 2–10% [43]

Proportion of men who are MSW 94.4% … [43]

Proportion of women who are WSW 2.4% … [43]

Proportion of women who are WSM 97.6% … [43]

Injection Drug Use Characteristics

Proportion of population that injects drugs 1.43% 1.33–1.91% Brady JE, et al 2008 [44]

Proportion of injection drug users (IDUs) who have unsafe injection
practices

32% 15%–50% NHBS NYC Data 2009 [45]

Proportion of IDUs who are male 70% … NHBS NYC Data 2009 [45]

Sexual and IDU transmission

Transmission risk per sex act

Male-to-male 0.00167* … Jin F [46]; Baggaley[47]

Female-to-male 0.00042 … Boily[48]

Male-to-female 0.00081 … Boily[48]

Transmission risk per unsafe needle sharing act 0.003 … Tokars JL, et al 1993 [49]

Relative risk of transmission if viral load

0–2.5 log copies/ml 0.16 … Attia S, et al 2009 [50]

2.5–3.5 log copies/ml 1.87 … [50]

3.5–4.5 log copies/ml 6.54 … [50]

4.5–5.5 log copies/ml 8.85 … [50]

.5.5 log copies/ml 9.03 … [50]

Sex acts (per partnership) per year 89 69–112 Mosher WD, et al 2005 [51]

Shared injections per year 70 25–100 Assumption

HIV risk behaviors and biological/behavioral modifiers of

transmission

Prevalence of untreated sexually transmitted infection 6.9% 0.1–10% Epiquery—STD registry [52];
Benedetti J, et al 1994 [53]

Prevalence of unhealthy alcohol use 5% 2–10% Wunsch-Hitzig R, et al 2003 [54]

Prevalence of consistent condom usage 35% 20–50% CHS [43]

HIV disease related

Probability of annual HIV test 31% 20%–50% CHS [43]

Probability of linkage to care 75% … Unpublished NYC DOMH data

Probability of initiating ART if in care 87% 65–95% Unpublished NYC DOMH data

Demographics

Age-related mortality rate 0.0068 (6.8/1000 pop) … NYC vital statistics, 2009 [16]

Fertility rate 0.0156 (15.6/ 1000
pop/year)

… NYC Vital statistics 2009 [16]

ART: antiretroviral therapy; * represents an average of different risks per act based on sexual positioning.
doi:10.1371/journal.pone.0073269.t005

Comparison of HIV Prevention Interventions – NYC

PLOS ONE | www.plosone.org 6 September 2013 | Volume 8 | Issue 9 | e73269



have died of AIDS-related conditions, with an average 808 deaths

per year.

Results with increases in investment in HIV prevention
programs
Simulation of the implementation of each of the considered

HIV prevention interventions resulted in fewer overall number of

infections and HIV/AIDS-related deaths than the base case

scenario; however, there was notable heterogeneity in the effect

and the cost-per-infection averted of each strategy (Table 6). Some

of the interventions with the potential to avert the greatest number

of new infections (e.g., post-exposure prophylaxis) had a very high

cost (.$9 million per-infection averted).

Analysis limited to cost-saving interventions
A group of ten unique interventions had the potential to be cost-

saving: condom distribution; social marketing; community-based

prevention; prioritized use of surveillance data (i.e., targeted use of

HIV and STD surveillance data to prioritize risk reduction

counseling and partner services for persons with previously

Figure 2. Validation of the HIV epidemic model. a. Comparing model prevalence results with reported data for New York City for 2003–2009. b.
Comparing model incidence results with reported data from New York City 2003–2009. c. Comparison of observed versus simulated results, based on
most recent year for which DOHMH results are available.
doi:10.1371/journal.pone.0073269.g002
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Table 6. Selected single policy options, and their impact on HIV infections averted and the cost per infection averted.

Intervention Target Group

Total cost (x

$1million), 20

years

# new infections,

20 years

# infections

averted,

20 years

Cost per

Infection

Averted

Favorable

Value

(Yes/No)

Base case (No additional
interventions)

N/A N/A 58,632 N/A N/A

Condom distribution HIV-infected, high-risk $4.5 57,118 (58,227–
55,977)

1,514 (405–2,655) $2,969 ($1,690–
11,100)

Yes

Social marketing HIV-infected $18.6 53,280 (48,287–
57,895)

5,352 (737–10,345) $3,474 ($1,770–
25,500)

Yes

Condom
distribution

HIV-infected $13.5 56,321 (54,581–
58,014)

2,312 (619–4,052) $5,854 ($3,326–
21,966)

Yes

Community
intervention

All $82.9 47,071 (37,701–
57,085)

11,562 (1,548–20,931) $7,173 ($3,962–
53,570)

Yes

Prioritized use of
surveillance data

HIV-infected $16.7 58,029 (57,480–
58,560)

603 (73–1,152) $27,663 ($14,405–
230,854)

Yes

Cofactors HIV-infected, high-risk. $65.5 56,540 (55,744–
57,344)

2,092 (1,288–2,888) $31,304 ($25,948–
58,741)

Yes

SBIRT HIV-infected, hazardous
alcohol users

$11.6 58,316 (58,250–
58,381)

317 (251–382) $36,772 ($35,032–
53,330)

Yes

Social marketing Providers $715.6 49,832 (42,565–
57,467)

8,801 (1,165–16,607) $81,315 ($44,544–
614,177)

Yes

Social marketing All $954.2 47,071 (37,701–
57,085)

11,562 (1,548–20,931) $82,532 ($45,595–
616,407)

Yes

Linkage to care HIV-infected $59.6 57,852 (56,860–
58,426)

780 (206–1,772) $380,906 ($161,007–
1,564,241)

Yes

Social marketing HIV-uninfected, high-risk $935.1 49,997 (43,377–
57,203)

8,635 (1,429–15,255) $108,291 ($61,314–
654,404)

Yes

Condom distribution HIV-uninfected, high-risk $358.5 55,847 (53,771–
57,884)

2,785 (748–4,861) $128,715 ($73,747–
479,120)

Yes

Linkage to support HIV-infected $1,681.9 45,100 (37,198–
54,584)

13,532 (4,048–21,434 $124,291 ($76,929–
425,376)

Yes

Condom distribution All $590.3 55,479 (53,132–
57,785)

3,153 (847–5,501) $187,212 ($107,311–
696,563)

Yes

Partner services HIV-infected and partners $74.0 58,259 (58,232–
58,288)

373 (344–400) $198,253 ($184,854–
215,195)

Yes

STD screening HIV-infected, high-risk $332.1 57,653 (57,380–
57,966)

980 (666–1,253) $339,026 ($264,888–
499,101)

Yes

STD screening HIV-infected $501.1 57,584 (57,291–
57,919)

1,048 (713–1,341) $477,984 ($373,509–
703,563)

No

Risk reduction HIV-infected $4,107.7 53,280 (48,287–
57,895)

5,352 (737–10,345) $767,431 ($391,903–
5,637,789)

No

Social services HIV-uninfected, high-risk $3,986.6 54,822 (51,710–
58,082)

3,810 (550–6,922) $1,046,387 $568,274–
7,340,070)

No

Care coordination HIV-infected, on ART $12,597.5 47,755 (41,841–
54,717)

10,877 (3,915–16,791) $1,158,199 $740,254–
3,268,504)

No

Testing – clinical HIV uninfected $8,124.0 54,024 (52,036–
55,831)

4,608 (2,801–6,597) $1,763,061 ($1,231,602–
2,899,854)

No

Testing – non-clinical HIV-uninfected $13,110.1 54,417 (51,444–
57,566)

4,215 (1,066–7,188) $3,110,381 ($1,823,909–
12,298,571)

No

Cofactors HIV-uninfected, high-risk $2,298.8 57,999 (57,592–
58,407)

633 (225–1,040) $3,631,257 ($2,537,148–
11,767,147)

No

SBIRT HIV-uninfected, high-risk $540.9 58,493 (58,442–
58,544)

139 (88–190) $3,895,458 ($3,276,457–
7,079,913)

No

PEP HR(-) HIV-uninfected, high-risk $176,466.0 40,632 (41,427–
52,469)

18,000 (6,164–17,205) $9,803,449 ($10,256,032–
28,602,672)

No

STD screening HR(-) HIV-uninfected, high-risk $15,437.6 57,279 (56,903–
57,711)

1,354 (921–1,730) $11,404,509 ($8,924,995–
16,758,381)

No

Comparison of HIV Prevention Interventions – NYC

PLOS ONE | www.plosone.org 8 September 2013 | Volume 8 | Issue 9 | e73269



diagnosed HIV infection with a new STD); cofactor risk reduction;

screening, brief intervention and referral for treatment for

unhealthy alcohol use (SBIRT); linkage to care; linkage to support

services for HIV-positive persons; partner services (defined here as

just partner notification and testing); and STD screening. These

ten unique interventions could avert each new HIV infection at a

lower cost than the estimated downstream cost of that infection

[10].

When the simulation evaluated all possible combinations of

these ten interventions (16 non-unique interventions) that are

potentially cost-saving and sought to identify the package of

interventions that would avert the most HIV infections for

particular budget scenarios, seven of these interventions were

included in the different packages located on the efficient frontier,

including condom interventions (prioritized for high-risk HIV-

infected persons), social marketing for HIV-infected persons,

community interventions, interventions to address cofactors for

HIV-infected persons, linkage to support for HIV-infected

persons, and partner services (Figure 3). For an additional budget

of ,$1 million USD annually, a social marketing campaign

focused on persons living with HIV could avert an additional

5,352 (9%) new HIV infections over the next twenty years

(Package 2; Figure 3).

The package of potentially cost-saving interventions predicted

by the model to prevent the most infections was implementation of

evidence-based community-level interventions, STD screening for

high-risk HIV infected persons, partner services, and a linkage to

support interventions (Package 7; Figure 4). Such a package would

result in 20,211 (34%) of new HIV infections averted. The cost per

infection averted for this package is predicted to be $106,378;

however, the total cost savings would be more than $5 billion (or

approximately $250 million per year, on average) because the

$2 billion of program costs over the 20 year time horizon would be

offset by the predicted downstream savings from infections averted

totaling more than $7 billion. This package would result in a

corresponding early increase in prevalence followed by a later

decline, reflecting the package’s impact on the kinetics of detection

and entry into care (Figure 4).

Analyses considering all interventions regardless of cost
The package of interventions predicted by the model to prevent

the greatest number of infections (without regard for cost, in order

of strongest effect) included expanded provision of post-exposure

prophylaxis for HIV uninfected persons, linkage to support, social

marketing for HIV-infected persons, evidence-based community

level interventions, and enhanced HIV testing in clinical settings.

An estimated 33,004 (56%) of infections would be averted

implementing this package of interventions at an estimated cost-

per infection averted of nearly $9 million (see File S2).

Implementation of a package of interventions representing a

‘‘test and treat’’ only strategy (i.e., enhanced HIV testing in clinical

settings, linkage to care intervention and care coordination

intervention) without some of the other interventions listed above

included in the portfolio, assuming uptake of testing, linkage and

treatment at levels predicted in the literature, resulted in 14,048

(25%) infections averted during the twenty year simulation.

However, near perfect efficacy of ‘‘test and treat’’ (i.e., universal

annual screening, immediate linkage to care, universal ART, and

perfect adherence to ART) predicted that .80% of new HIV

infections would be averted and the cost-per-infection averted

would be ,$360,000. In addition, reduction by a factor of ten in

the cost of the ‘‘test and treat’’ package rendered the intervention

cost-saving even under the base case efficacy assumptions.

Sensitivity analysis
Several of the interventions had .10% absolute change in their

projected effectiveness in one-way sensitivity analysis (see File S2).

Varying all parameters (listed in Tables 1–2 and 4–5) across the

plausible ranges for each and evaluating the effects of all

interventions under these conditions demonstrated that the

prevention interventions considered to be of favorable value were

robust. No intervention with a cost-per-infection averted greater

than the $360,000 threshold under base case assumptions crossed

this threshold under any other conditions. However, several of the

interventions, including condom distribution to high risk, HIV-

negative persons; linkage to support; condom distribution to the

whole population; partner services; and STD screening for high-

risk, HIV-infected persons, that were considered cost-saving under

base case assumptions had cost-per-infection ratios which

increased above the threshold considered as cost-saving under

other, specific conditions (see File S2).

Under conditions where ART initiation was not restricted by

CD4 count (as has been recommended by the DHHS [20]) there

were no differences in the list of interventions that were considered

to be cost-saving or in the relative rankings of interventions by

cost-per-infections averted (data not shown). Similarly, when we

varied the time horizon of the analysis, the group of interventions

considered cost-saving did not change (see File S2).

Effects of optimization by level of evidence
The efficient frontiers of combined HIV prevention interven-

tions were highly dependent on quality of evidence criteria. If

Table 6. Cont.

Intervention Target Group

Total cost (x

$1million), 20

years

# new infections,

20 years

# infections

averted,

20 years

Cost per

Infection

Averted

Favorable

Value

(Yes/No)

PEP HIV-uninfected $284,790.0 39,042 (26,554–
46,910)

19,590 (11,722–32,076) $14,537,519 ($8,884,247–
24,285,093)

No

STD screening – all All $25,423.1 57,191 (56,791–
57,651)

1,441 (981–1,841) $17,640,475 ($13,805,927–
25,920,175)

No

Results are shown for infections averted over a time horizon of 20 years. Costs reflect additional increases in expenditures. An intervention is considered to be of
favorable value if cost-per-infection averted ,$360,000). Values in parenthesis represent upper and lower bounds of estimates related to assumptions regarding
intervention efficacy (lower, upper).
SBIRT: screening, brief intervention and referral for treatment for unhealthy alcohol use; STD: sexually transmitted disease; PEP: Post-exposure prophylaxis.
HR(2): high risk, HIV-uninfected.
doi:10.1371/journal.pone.0073269.t006
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analysis was limited to only those packages supported by the

strongest evidence (Level A), only condom distribution interven-

tions would be included in the intervention portfolio. However, as

evidence limitations were relaxed to include all interventions

supported by at least some observational data, more interventions

were included in the intervention portfolio, and more infections

could be averted, albeit at a higher cost (see File S2).

Discussion

We have developed an innovative, jurisdiction-specific simula-

tion that can identify the most cost-effective portfolio of

interventions to maximize HIV infections averted in a major

urban area of the United States for a defined budget. Great

variation was found in the cost per infection averted by the HIV

prevention strategies considered, ranging more than 1,000-fold.

Ten of these interventions prevented new HIV infections at

favorable value, with costs-per-infection averted falling below the

expected downstream costs of the HIV infections (had they

occurred). Our results suggest that the highest value interventions

focus on individuals already HIV-infected, rather than the much

larger number of individuals who are not known to be HIV-

infected, reinforcing conclusions from Lasry et al [21]. While not

suggesting that prevention resources should be targeted exclusively

to HIV-infected persons, our results do indicate that altering the

balance of services in favor of HIV-infected persons, particularly

those at high risk of onward transmission, may avert a high

proportion of new infections at relatively low cost.

Figure 3. Efficient frontier for HIV prevention interventions found to have ‘‘favorable value’’ during a 20 year simulation of HIV
epidemic in NYC. a. Graphical representation of frontier. Diamonds represent packages of intervention(s) on the frontier. b. Interventions and the
pathways they activate contained within each efficient frontier package. X, pathway activated within package.
doi:10.1371/journal.pone.0073269.g003
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Figure 4. Epidemic curves for 20 year simulation. Black line- Base case scenario; Grey line- optimized package (Package 7 from Figure 3b)
implemented. a. New HIV diagnoses over 20 years. b. HIV prevalence over 20 years. c. HIV incidence over 20 years.
doi:10.1371/journal.pone.0073269.g004
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While the results varied somewhat in sensitivity analyses that

considered statistical uncertainty, they did not vary sufficiently to

alter likely decisions about intervention prioritization. A similar

group of interventions fell below the cost-of-infection threshold,

regardless of the optimism of assumptions or the time horizon

used. Results do appear to be very sensitive to analyses that

considered uncertainty of level of evidence. When we required that

only level A and B evidence interventions were considered, the

optimized package of interventions could only avert 6% of

infections as compared to 23% when relaxing the evidence criteria

to include all intervention strategies supported by some observa-

tional data (levels A–C).

While others have reported results of a model using an

extremely optimistic ‘‘test and treat’’ strategy in the South African

context, suggesting potential reductions in HIV infections of up to

95% [4], our model found much more conservative results, albeit

with much more conservative assumptions. With base-case

assumptions, an ‘‘optimized’’ package of non-ART dependent

interventions would reduce new infections by 20–30%, whereas

under assumed thresholds a ‘‘test and treat’’ strategy alone would

reduce new infections to a lesser degree (,25% reduction), but at a

greater cost. However, if we are able to approach the theoretical

limits of ‘‘test and treat’’ efficacy (universal annual screening,

immediate linkage, universal ART and perfect adherence) near

elimination of ongoing HIV transmission could be realized. Our

results are consistent with model based cost-effectiveness estimates

of similar intervention strategies published previously [7,8,21,22].

For the many evidence-based interventions that can prevent

large numbers of infections but only at very high costs per infection

averted (e.g., PEP, adherence interventions) scale up across a large

segment of the population who may be at low risk of HIV

acquisition or transmission may be cost prohibitive. For those

individuals with both high infectivity and ongoing behavioral risk

(for example, a probability of infecting at least one other person of

greater than 10% per year), up to $18,000 could be spent per year

(over 20 years) on a highly tailored package of HIV-reduction

interventions for that person while still spending less than $360,000

to avert each infection. Our results suggest the potential benefit of

developing even more sophisticated operations research to

prioritize the allocation of resources to these individuals more

effectively, despite the inherent challenges of doing so.

It is important to note that NYC’s high rates of testing (31% of

adult NYC residents reported HIV testing in past 12 months in

2009) and linkage to care (75% of persons diagnosed were linked

to care in 3 months in 2009 using prevailing definitions) may have

had an important impact on our findings because we analyzed

marginal rather than absolute resource allocation questions (i.e.,

additional benefit from increased funding rather than expected

benefit from existing funding). Interventions to improve linkage to

care had comparatively small effects, and correspondingly

unfavorable cost-effectiveness, because the vast majority of newly

infected NYC were already linked during the period of study.

Similarly, interventions to improve testing rates had comparatively

small effects, and correspondingly unfavorable cost-effectiveness,

because a substantial proportion of New Yorkers were already

tested for HIV annually during the period of study.

Limitations
Like any computer simulation, not all inputs are known with

certainty, and results are partially dependent on the assumptions

embedded in the model. Costs in our model were not addressed

from the comprehensive societal perspective, but were rather

assessed based primarily on the costs to local public health

authorities in NYC. They may not be inclusive or reflective of all

costs incurred by society or specific payers. Specifically, the cost of

antiretroviral therapy for treatment is not included here, largely

because this particular model sought to specifically address the list

of initial CDC ECHPP interventions on which this model was

originally based. A related limitation is that some of the more

innovative and recently approved biomedical interventions, such

as rapid HIV self-testing and pre-exposure prophylaxis (neither of

which were part of ECHPP nor FDA-approved at the time of

model development/validation) were not modeled here. Modal-

ities still under investigation, such as microbicides or HIV

vaccines, were also not included. Further, interventions considered

in the model are not always discrete (i.e., interventions may impact

more than one of the components/pathways), and some may be

defined more narrowly in the model than they are implemented in

reality (e.g., partner services can link persons to care and services

and distribute condoms in addition to partner notification and

testing). In general, interactions between different interventions

are also not taken into account here, either wasteful or synergistic.

Per-person costs in our model were derived from programmatic

estimates from the DOHMH and were applied in a ‘‘pre-

purchased’’ approach (i.e., extrapolating the cost to assume that

every intervention is purchased every year in a sufficient quantity

to reach every person in the target population). This neither

accounts for the potential economies of scale that may be

operational nor the actual utilization of an intervention (as

represented by its effect size in our model). Therefore, potential

bias towards overestimation of costs of interventions may occur,

leading to a more conservative estimate of portfolios of interven-

tions that may be ‘‘cost-saving.’’ This bias may explain, in part,

why expanded HIV testing in our model appears to be less cost-

effective than it was found to be in other published mathematical

models [23,24]. In addition, our model does not explicitly consider

costs of the antiretroviral medications or the routine care needed

by a person living with HIV/AIDS, although these costs informed

the estimation of the $360,000 threshold.

Assumptions we made may have also contributed to the model’s

limitations. We made assumptions about the mechanisms of action

of the HIV prevention interventions and the lack of interactions

between interventions when more than one was implemented as a

part of a specific package. Our mapping process (assessing which

pathways were influenced by which interventions) was reviewed

and agreed upon by members of both the academic modeling

team and the DOHMH, and many of these assumptions were

based on expert opinion where sufficient data was unavailable or

inadequate. There are little to no reliable data to inform how

different interventions would impact on each other if implemented

in tandem. We chose a conservative approach by hypothesizing

that specific interventions act through mutually exclusive mech-

anisms and that a pathway for a specific person/population could

only be ‘‘activated’’ once no matter how many interventions

affected it.

Conclusions
This computer simulation, constructed using operations re-

search methods, may be useful to inform program and policy

decisions for HIV prevention and care in NYC and other major

urban areas. Based on the needs and settings of particular

decision-makers, this model can represent the interplay between

different combinations of interventions and can generate highly

jurisdiction-specific results. After validation of this model using

inputs from the NYC epidemic and incorporating the interven-

tions prioritized in CDC’s ECHHP project, these results suggest

that many infections can be prevented at acceptable cost by

systematically prioritizing and implementing known interventions.
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Preliminary results from this modeling effort were used, in part, to

help inform the development of a new solicitation for HIV

prevention services in New York City as well as pilot clinic-based

activities that prioritize secondary HIV prevention interventions

among persons living with HIV in NYC.

Supporting Information

File S1 Supporting text, tables, and figures. Supporting
Methods. Table S1. Components of population matrix. Fig-
ure S1. Schematic diagram of HIV transmission model. Fig-
ure S2. Who Can Partner With Who matrix depicting possibility

of a partnership occurring between two groups (defined by gender

and sexual orientation). Table S2. Input parameters. Figure S3.
Probability distributions for initialization of CD4 count strata and

VL strata within HIV infected compartments. a. Probability

distribution (Q9cd,v) of CD4 and VL categories for HIV infected

persons on ART at initialization. b. Density map of probability

distribution Q9. c. Probability distribution (Qcd,v) of CD4 and VL

categories for HIV infected persons not on treatment at

initialization. d. Density map of probability distribution Qcd,v.

Figure S4. HIV transmission ‘‘pathways’’ that are influenced by

prevention interventions. a. Schematic of constructs in transmis-

sion simulation and pathways which impact HIV transmission. b.
Pathway mechanisms. Table S3. ECHPP interventions, HIV

transmission pathway mapping and targeted populations. Ta-
ble S4. New York City derived HIV data and transmission risks

in 2009. Table S5. Calculated initial population distribution

across risk strata and HIV infection spectrum of care/engagement.

(DOCX)

File S2 Supporting text, tables, and figures. Additional
results. Figure S5. Efficient frontier of most efficacious packages of HIV
prevention strategies in NYC over 20 years. a. Packages (1–7) consist of
those combinations of the 16 most effective (as measured by # of

infections averted) interventions that have the most favorable

incremental cost to effectiveness ratios. All other combinations of

the 16 considered interventions fall to the right of the curve and

are therefore not preferred. b. Table which provides details on the

7 packages which lie on the efficient frontier including the specific

pathways activated by the package of interventions. Figure S6.

One way sensitivity analyses for effectiveness and cost-effectiveness ratio of HIV

prevention strategies in NYC. a. Range of values for % of HIV averted

for each intervention when all input parameters are varied across

their spectrum of values that were considered. b. range of values

for cost-per-infection averted among those interventions found to

be cost-saving under reference case assumptions. Note that STD

screening intervention effect size plausible range includes a null effect, therefore,

the upper limit of the cost-per-infection averted parameter for this intervention is

undefined. Table S6. Alternate time horizons (5, 10 years) of

computer simulation and comparative effectiveness of HIV

prevention strategies in NYC. Figure S7. Effects of optimization by

level of evidence. a. Efficient frontier of combinations of HIV

prevention strategies filtered by level of evidence. Packages

represent combinations of only those strategies that met or

exceeded a specified level of evidence and which had an ICER

that was of optimal value. All other combinations fall to the right

of the curve and are therefore not preferred (and not shown on the

figure). Level A (denoted by a purple triangle) included only those

interventions with an evidence grade of A; Level B (denoted by a

green square) included interventions with level of evidence grade A

or B; Level C (denoted by a black diamond) included interventions

with level of evidence grade A or B or C. No optimization curve

could be generated for all interventions (i.e. any evidence grade)

because of a limitation of computing resources and runtime

necessary. b. Table which provides details on the packages which

lie on the efficient frontier including the specific pathways

activated by each package of interventions.

(DOCX)

Acknowledgments

The authors would like to thank Lauren Uhler for her work with

manuscript editing and preparation.

Author Contributions

Conceived and designed the experiments: JK KN CT AK RSB BC JM.

Performed the experiments: JK KN CT AK RSB . Analyzed the data: JK

KN CT RSB JM NM MS CS BC. Wrote the paper: JK KN RSB BC JM

MS CS.

References

1. Auvert B, Males S, Puren A, Taljaard D, Carael M, et al. (2004) Can highly
active antiretroviral therapy reduce the spread of HIV?: A study in a township of
South Africa. J Acquir Immune Defic Syndr 36: 613–621.

2. New York City Department of Health and Mental Hygiene (2009) HIV
Epidemiology and Field Services Program HIV epidemiology and field services
report, October 2009.

3. Kurth AE, Celum C, Baeten JM, Vermund SH, Wasserheit JN (2011)
Combination HIV prevention: significance, challenges, and opportunities. Curr
HIV/AIDS Rep 8: 62–72.

4. Granich RM, Gilks C, Dye C, De Cock KM, Williams BG (2009) Universal
voluntary HIV testing with immediate antiretroviral therapy as a strategy for
elimination of HIV transmission: A mathematical model. Lancet 373: 48–57.

5. El-Sadr WM, Mayer KH, Adimora AA (2010) The HIV epidemic in the United
States: a time for action. Introduction. J Acquir Immune Defic Syndr 55 Suppl
2: S63.

6. Mermin J (2011) Conference on Retroviruses and Opportunistic Infections
(CROI) 2011 Plenary session: The science of HIV prevention.

7. Cohen DA, Wu SY, Farley TA (2004) Comparing the cost-effectiveness of HIV
prevention interventions. J Acquir Immune Defic Syndr 37: 1404–1414.

8. Lasry A, Sansom SL, Hicks KA, Uzunangelov V (2011) A model for allocating
CDC’s HIV prevention resources in the United States. Health Care Manag Sci
14: 115–124.

9. Marcus R, Culver DH, Bell DM, Srivastava PU, Mendelson MH, et al. (1993)
Risk of human immunodeficiency virus infection among emergency department
workers. Am J Med 94: 363–370.

10. Schackman BR, Gebo KA, Walensky RP, Losina E, Muccio T, et al. (2006) The
lifetime cost of current human immunodeficiency virus care in the United States.
Med Care 44: 990–997.

11. Markowitz H (1952) Portfolio selection. Journal of Finance 7: 77–91.

12. Gold MR, Siegel JE, Russell LB, Weinstein MC, editors (2006) Cost-

Effectiveness in Health and Medicine. New York, NY: Oxford University Press.

13. Braithwaite RS, Nucifora KA, Yiannoutsos CT, Musick B, Kimaiyo S, et al.

(2011) Alternative antiretroviral monitoring strategies for HIV-infected patients

in east Africa: opportunities to save more lives? J Int AIDS Soc 14: 38.

14. Braithwaite RS, Justice AC, Chang CC, Fusco JS, Raffanti SR, et al. (2005)

Estimating the proportion of patients infected with HIV who will die of

comorbid diseases. Am J Med 118: 890–898.

15. Braithwaite R, Roberts M, Justice A (2007) Incorporating quality of evidence

into decision analytic modeling. Annals of Internal Medicine 146: 133–141.

16. New York City Department of Mental Health and Hygiene (2009) Vital

statistics.

17. Adimora AA, Schoenbach VJ, Doherty IA (2007) Concurrent sexual

partnerships among men in the United States. American Journal of Public

Health 97: 2230–2237.

18. Buchacz K, Armon C, Palella FJ, Baker RK, Tedaldi E, et al. (2012) CD4 Cell

Counts at HIV Diagnosis among HIV Outpatient Study Participants, 2000–

2009. AIDS research and treatment 2012: 869841.

19. Zhang J, Yu K (1998) What’s the relative risk? A method of correcting the odds

ratio in cohort studies of common outcomes. JAMA 280: 1690–1691.

20. Department of Health and Human Services (2012) Guidelines for the use of

antiretroviral agents in HIV-1-infected adults and adolescents. Panel on

Antiretroviral Guidelines for Adults and Adolescents.

21. Lasry A, Sansom SL, Hicks KA, Uzunangelov V (2012) Allocating HIV

Prevention Funds in the United States: Recommendations from an Optimiza-

tion Model. PLoS One 7: e37545.

Comparison of HIV Prevention Interventions – NYC

PLOS ONE | www.plosone.org 13 September 2013 | Volume 8 | Issue 9 | e73269



22. Walensky RP, Paltiel AD, Losina E, Morris BL, Scott CA, et al. (2010) Test and
treat DC: forecasting the impact of a comprehensive HIV strategy in
Washington DC. Clin Infect Dis 51: 392–400.

23. Paltiel AD, Walensky RP, Schackman BR, Seage GR 3rd, Mercincavage LM, et
al. (2006) Expanded HIV screening in the United States: Effect on clinical
outcomes, HIV transmission, and costs. Annals of Internal Medicine 145: 797–
806.

24. Long EF, Brandeau ML, Owens DK (2010) The cost-effectiveness and
population outcomes of expanded HIV screening and antiretroviral treatment
in the United States. Ann Intern Med 153: 778–789.

25. Gardner LI, Metsch LR, Anderson-Mahoney P, Loughlin AM, del Rio C, et al.
(2005) Antiretroviral Treatment and Access Study Study Group. Efficacy of a
brief case management intervention to link recently diagnosed HIV-infected
persons to care. AIDS 19: 423–431.

26. Charania MR, Crepaz N, Guenther-Gray C, Henny K, Liau A, et al. (2010)
Efficacy of Structural-Level Condom Distribution Interventions: A Meta-
Analysis of U.S. and International Studies, 1998–2007. AIDS and Behavior
15: 1283–1297.

27. Anaya HD, Hoang T, Golden JF, Goetz MB, Gifford A, et al. (2008) Improving
HIV screening and receipt of results by nurse-initiated streamlined counseling
and rapid testing. Journal of General Internal Medicine 23: 800–807.

28. Calderon Y, Cowan E, Nickerson J, Mathew S, Fettig J, et al. (2011) Educational
effectiveness of an HIV pretest video for adolescents: A randomized controlled
trial. Pediatrics 127: 911–916.

29. Mullins TL, Kollar LM, Lehmann C, Kahn JA (2010) Changes in human
immunodeficiency virus testing rates among urban adolescents after introduction
of routine and rapid testing. Arch Pediatr Adolesc Med 164: 870–874.

30. Rhodes SD, Vissman AT, Stowers J, Miller C, McCoy TP, et al. (2011) A CBPR
partnership increases HIV testing among men who have sex with men (MSM):
outcome findings from a pilot test of the CyBER/testing internet intervention.
Health education & behavior: the official publication of the Society for Public
Health Education 38: 311–320.

31. Wilton L, Herbst JH, Coury-Doniger P, Painter TM, English G, et al. (2009)
Efficacy of an HIV/STI prevention intervention for black men who have sex
with men: findings from the Many Men, Many Voices (3MV) project. AIDS and
behavior 13: 532–544.

32. Barash EA, Golden M (2010) Awareness and use of HIV pre-exposure
prophylaxis among attendees of a Seattle gay pride event and sexually
transmitted disease clinic. AIDS Patient Care and STDs 24: 689–691.

33. Gardner LI, Metsch LR, Anderson-Mahoney P, Loughlin AM, del Rio C, et al.
(2005) Efficacy of a brief case management intervention to link recently
diagnosed HIV-infected persons to care. AIDS and Behavior 19: 423–431.

34. Hart JE, Jeon CY, Ivers LC, Behforouz HL, Caldas A, et al. (2010) Effect of
directly observed therapy for highly active antiretroviral therapy on virologic,
immunologic, and adherence outcomes: a meta-analysis and systematic review.
J Acquir Immune Defic Syndr 54: 167–179.

35. Simoni JM, Pearson CR, Pantalone DW, Marks G, Crepaz N (2006) Efficacy of
interventions in improving highly active antiretroviral therapy adherence and
HIV-1 RNA viral load. J Acquir Immune Defic Syndr 43: S23–35.

36. Grosskurth H, Mosha F, Todd J, Mwijarubi E, Klokke A, et al. (1995) Impact of
improved treatment of sexually transmitted diseases on HIV infection in rural
Tanzania: randomised controlled trial. Lancet 346: 530–536.

37. Bertholet N, Daeppen JB, Wietlisbach V, Fleming M, Burnand B (2005)
Reduction of alcohol consumption by brief alcohol intervention in primary care:
systematic review and meta-analysis. Arch Intern Med 165: 986–995.

38. Hogben M, McNally T, McPheeters M, Hutchinson AB (2007) The effectiveness

of HIV partner counseling and referral services in increasing identification of

HIV-positive individuals a systematic review. American Journal of Preventive

Medicine 33: S89–100.

39. Latkin CA, Sherman S, Knowlton A (2003) HIV prevention among drug users:

Outcome of a network-oriented peer outreach intervention. Health Psychology

22: 332–339.

40. Robles RR, Reyes JC, Colon HM, Sahai H, Marrero CA, et al. (2004) Effects of

combined counseling and case management to reduce HIV risk behaviors

among Hispanic drug injectors in Puerto Rico: A randomized controlled study.

J Subst Abuse Treat 27: 145–152.

41. Vissers DC, De Vlas SJ, Bakker R, Urassa M, Voeten HA, et al. (2011) The

impact of mobility on HIV control: A modelling study. Epidemiol Infect: 1–9.

42. New York City Department of Health and Mental Hygiene (2009) New York

City HIV/AIDS annual surveillance statistics. New York.

43. New York City Department of Health and Mental Hygiene (2009) Community

Health Survey.

44. Brady JE, Friedman SR, Cooper HL, Flom PL, Tempalski B, et al. (2008)

Estimating the prevalence of injection drug users in the U.S. and in large U.S.

metropolitan areas from 1992 to 2002. Journal of urban health: bulletin of the

New York Academy of Medicine 85: 323–351.

45. New York City Department of Health and Mental Hygiene (2009) HIV Risk

and Prevalence among New York City Injection Drug Users.

46. Jin F, Jansson J, Law M, Prestage GP, Zablotska I, et al. (2010) Per-contact

probability of HIV transmission in homosexual men in Sydney in the era of

HAART. AIDS 24: 907–913.

47. Baggaley RF, White RG, Boily MC (2010) HIV transmission risk through anal

intercourse: systematic review, meta-analysis and implications for HIV

prevention. International journal of epidemiology 39: 1048–1063.

48. Boily MC, Baggaley RF, Wang L, Masse B, White RG, et al. (2009)

Heterosexual risk of HIV-1 infection per sexual act: systematic review and

meta-analysis of observational studies. The Lancet infectious diseases 9: 118–

129.

49. Tokars JI, Marcus R, Culver DH, Schable CA, McKibben PS, et al. (1993)

Surveillance of HIV infection and zidovudine use among health care workers

after occupational exposure to HIV-infected blood. The CDC Cooperative

Needlestick Surveillance Group. Ann Intern Med 118: 913–919.

50. Attia S, Egger M, Muller M, Zwahlen M, Low N (2009) Sexual transmission of

HIV according to viral load and antiretroviral therapy: systematic review and

meta-analysis. AIDS 23: 1397–1404.

51. Mosher WD, Chandra A, Jones J (2005) Sexual Behavior and Selected Health

Measures: Men and Women 15–44 Years of Age, United States, 2002. Advance

Data 362.

52. Blower S, Ma L, Farmer P, Koenig S (2003) Predicting the impact of

antiretrovirals in resource-poor settings: preventing HIV infections whilst

controlling drug resistance. Curr Drug Targets Infect Disord 3: 345–353.

53. Benedetti J, Corey L, Ashley R (1994) Recurrence rates in genital herpes after

symptomatic first-episode infection. Ann Intern Med 121: 847–854.

54. Wunsch-Hitzig R, Engstrom M, Lee R, King C, McVeigh K (2003) Prevalence

and Cost Estimates of Psychiatric and Substance Use Disorders and Mental

Retardation and Developmental Disabilities in NYC. New York: New York City

Department of Health and Mental Hygiene.

Comparison of HIV Prevention Interventions – NYC

PLOS ONE | www.plosone.org 14 September 2013 | Volume 8 | Issue 9 | e73269


