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I N contemporary medicine, the relief of moderate to severe 
pain is principally managed by treatment with opioid analgesic 

medication. Such drugs act at one or more of the opioid recep-
tors within the central nervous system (CNS) and produce potent 
analgesia. However, these beneficial effects come with numerous 
side effects, including euphoria, nausea and vomiting, constipa-
tion, sedation, dizziness, respiratory depression, abuse, and addic-
tion.1 Opioid-induced respiratory depression occurs both in the 
acute and chronic treatment settings.2–4 Although the occurrence 
of severe respiratory depression and related deaths in the treatment 
of acute and perioperative pain seems constant over the years (with 
an incidence of at least 0.5%),1,5 over the last decade there has been 
a dramatic surge in fatalities from prescription opioids in chronic 
pain patients due to a dramatic increase in opioid consumption.6–8 
This is not surprising because opioids cause physical dependence 
and may trigger unsafe behavior such as abuse and misuse. The 
combination of dependence, abuse/misuse, and respiratory 
depression is potentially lethal. Opioid deaths in the community 
not only occur in patients but also in others due to selling, sharing, 
stealing, and diversion of prescribed tablets.8

Opioid-induced Respiratory Depression
Opioid-induced respiratory depression is caused by the activa-
tion of µ-opioid receptors expressed on the surface of neurons 
in brainstem respiratory centers.1,9 For example, brain cen-
ters such as the pre-Bötzinger complex and the parabrachial 
nucleus are involved in respiratory pattern generation and 
express opioid receptors.10,11 Activation of these opioid recep-
tors by exogenous opioids may initiate respiratory compro-
mise, which in many individuals is short-lived or reverts to 
normal breathing activity. In some individuals, often due to an 
opioid overdose or the combination of opioid use with other 
centrally depressant drugs (such as sleep medication or alco-
hol), diminished breathing progresses into irregular (or cyclic) 
breathing and eventually into apnea (the complete cessation 
of breathing). This may lead to cardiorespiratory collapse and 
ultimately death.1–4,12 Currently, two main strategies emerge 
that are aimed at mitigation of opioid-induced respiratory 
depression and lowering the probability of opioid fatalities. 
One approach is the design of opioids with minimal respira-
tory effect (or at least a respiratory effect that is less than that 
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observed with current available opioids); the other is the use of 
drugs that stimulate breathing through nonopioidergic path-
ways.13 The discussion of novel opioids is beyond the scope of 
the current review and has been discussed in excellent reviews 
elsewhere.14–23 Here, we focus on the discussion of respiratory 
stimulants that may be combined with opioid medication and 
then will prevent (rather than treat) opioid-induced respira-
tory depression without affecting analgesia.

Breathing is controlled by a complex brainstem neuronal 
network with inputs from higher brain centers and chemo-
receptors located at central sites (i.e., central chemoreceptors 
in the brainstem) and peripheral sites (i.e., peripheral che-
moreceptors in the carotid bodies situated at the bifurcation 
of the common carotid artery; fig. 1).1,9 Various excitatory 
and inhibitory neuromodulators and receptors are involved 
in the generation of respiratory rhythm and tidal volume. 
Several mainly experimental drugs that interact with specific 
excitatory receptor systems within the respiratory network 
to offset opioid-induced respiratory depression are currently 
being studied. It is important to realize that because these 
stimulants should not interfere with analgesic efficacy or 
enhance opioid-related side effects (such as sedation and 
withdrawal), naloxone, a nonselective antagonist of the opi-
oid receptors, seems not prudent in this respect because it 
rapidly reverses opioid-induced respiratory depression but 
at the expense of loss of pain relief or rapid induction of 
withdrawal.1 Apart from its effect on analgesia, naloxone has 

additional disadvantages: it cannot reverse potent opioids 
with high affinity at the opioid receptor (e.g., carfentanil, 
buprenorphine);24 due to naloxone’s short half-life, opioid-
induced respiratory depression may reappear after some time 
(renarcotization);1,25 and acute opioid withdrawal induces a 
surge in sympathetic activity, which may cause pulmonary 
edema, cardiac dysrhythmias, hypertension, and cardiac 
arrest in opioid tolerant individuals, as well as in opioid-
naïve postoperative patients experiencing severe pain and 
stress.1,26–30

Most respiratory stimulants that we will discuss are still 
experimental, and we envision that such drugs will be given 
in the perioperative setting by continuous infusion or in 
the chronic setting as a separate pharmaceutical preparation 
(e.g., tablet or patch) or combined in one formulation with 
the opioid. We will discuss and distinguish between drugs 
that act primarily at central (within the brainstem respira-
tory network) and drugs that act primarily at peripheral 
sites (at the carotid bodies). Certainly other agents than 
discussed below exist that theoretically could offset opioid-
induced respiratory depression, such as the carbonic anhy-
drase inhibitor acetazolamide,31 the antioxidants ascorbic 
acid and α-tocopherol,32 the cholinesterase inhibitor phy-
sostigmine,33 or the hormone progesterone.34 All have been 
implicated as respiratory stimulants. However, their use in 
opioid-induced respiratory depression still warrants further 
research.

Fig. 1. Simplified schematic representation of the ventral aspect of the rat brainstem. The retrotrapezoid nucleus and midline 
raphe nuclei contain brainstem carbon dioxide-sensitive neurons (central chemoreceptors) that activate premotor neurons of 
the ventral respiratory group (VRG) that includes the pre-Bötzinger complex, an area with respiratory rhythm–generating neu-
rons. Afferent sensory input from the peripheral chemoreceptors of the carotid bodies activates the nucleus tractus solitaries 
(red arrow), which also projects to the VRG. The VRG send signals to respiratory motoneurons in the spinal cord and phrenic 
nucleus that control intercostal muscles and the diaphragm. Another structure containing respiratory neurons is the pontine 
respiratory group (parabrachialis medialis and Kolliker–Fuse nucleus) that is implicated in volume and rate control. Other areas 
involved in ventilatory control (such as the locus coeruleus and areas in the cerebellum) are not depicted. The locations of 
action of ampakines, 5-hydroxytryptamine (5HT) agonists, and phosphodiesterase-4 inhibitors are indicated by blue, red, and 
green colors, respectively. Data redrawn from Dahan et al.1 with permission.
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Respiratory Stimulants Acting within the 
Brainstem Respiratory Network
We will discuss the following pharmaceutical agents with 
demonstrated efficacy in the reversal of opioid-induced 
respiratory depression by actions within the brainstem 
respiratory network: (1) α-amino-3-hydroxy-5-methyl-4-
isoxazole-proprionic acid (AMPA) receptor agonists; (2) 
5-hydroxytryptamine receptor agonists; (3) phospodiester-
ase-4 inhibitors; (4) D1-dopamine receptor agonists; (5) 
glycyl-glutamine; and (6) thyrotropin-releasing hormone.

Ampakines
The AMPA receptor is an ionotropic transmembrane recep-
tor for glutamate in the CNS. AMPA receptors are criti-
cally important for maintaining synaptic input, structure, 
and plasticity (see recent reviews).35,36 AMPA receptors are 
present in key CNS centers of respiratory drive, such as 
the pre-Bötzinger complex, where they play an important 
role in the maintenance of respiratory rhythmogenesis and 
inspiratory drive, as well as sites outside the pre-Bötzinger 
complex (fig.  1).37 Stimulation or inhibition of AMPA 
receptors, therefore, induces respiratory stimulant or inhibi-
tory effects, respectively.37,38 A wide variety of compounds 
may stimulate or modulate AMPA receptors and thus have a 
potential to act as respiratory stimulants in opioid-induced 
respiratory depression, but with AMPA receptors being 
located very widely throughout the brain, the introduction 
of site of action selectivity is of key importance. The com-
plex structure of AMPA receptors, however, may help in 
this regard, there being a number of possible sites within 
the subunit structure of the AMPA receptor for drug inter-
action.35 With regard to respiratory stimulation, the focus 
over recent years has fallen on to a family of benzamide 
compounds called ampakines,13,37 which act allosterically to 
potentiate AMPA receptor–mediated synaptic responses.39 
Ampakines have been demonstrated to increase the respira-
tory drive in both animal and human studies, but only in 
hypoventilatory conditions. For instance, in a mouse model 
of Pompe’s disease (a glycogen storage disease affecting mus-
cle and nerve cells causing severe respiratory dysfunction), 
CX717 increased ventilation by increasing respiratory vol-
ume and frequency but not in wild-type mice.40

Hypoventilation induced by opioids is also reversed by 
amapkines in both animal and human models. In acute rat 
models, fentanyl-induced breathing depression was reversed 
by CX546 and CX717.41,42 Importantly, CX717 is able to 
reverse or prevent deep levels of respiratory depression such 
as fentanyl-induced apneic events that without treatment 
would have been lethal.42 Respiratory depression of inspira-
tory-related motoneuron activity induced by µ-opioid recep-
tor agonist [D-Ala,2 N-MePhe,4 Gly-ol]-enkephalin in an in 
vitro preparation of rat hypoglossal nerve was reversed by 
CX614 and CX717.43 Finally, in healthy human volunteers, 
alfentanil-induced respiratory depression was partly reversed 

by oral administration of CX717, but it led to an increase in 
tiredness during administration of the opioid.44

Given the results of both preclinical and experimental 
human studies, ampakines may represent a promising class 
of compounds for therapeutic use in opioid-induced respi-
ratory depression without affecting opioid-induced analge-
sia.45 CX1739 is a newer potent ampakine that reportedly 
readily crosses the blood–brain barrier, is metabolically sta-
ble, and has passed through phase I and II clinical trials in 
adults.46 These researchers suggested a possible therapeutic 
use of this ampakine, that is, to treat apnea of prematurity 
in infants, because they showed that it improved respiratory 
drive in newborn rat pups that displayed slow breathing and 
marked apneas but was without effect if breathing of the 
newborn pups was faster with more stable rhythms and in 
older pups.46

Another drug that interacts with the AMPA receptor sys-
tem is the antidepressant and cognitive enhancer tianeptine. 
Tianeptine induces neuroplasticity and modulates norad-
renergic, dopaminergic, and glutamatergic pathways.47,48 
For example, tianeptine facilitates AMPA-mediated gluta-
matergic transmission and reduces AMPA receptor surface 
diffusion.47,48 One animal study, which investigated the respi-
ratory effects of tianeptine on morphine-induced respiratory 
depression, showed that tianeptine pretreatment prevented 
opioid-induced respiratory depression, similar to the effects 
observed after pretreatment with an ampakine (CX546) and 
without affecting antinociception.49 Tianeptine is marketed 
currently in a number of countries primarily as an antide-
pressant, which could enable further clinical studies on this 
agent to be carried out to explore a possible therapeutic role 
to mitigate opioid-induced respiratory depression.

Although the number of animal studies is ample, there are 
very limited and insufficient human studies to support a pos-
sible therapeutic role of ampakines as respiratory stimulants 
in opioid-induced respiratory depression or other causes of 
hypoventilation, including a lack of safety and toxicity stud-
ies. Compounds that could possibly be suitable for human 
use include CX717 and CX1739 (and possibly tianeptine), 
especially with the observation in rats that deep levels of 
respiratory depression (including apnea) may be reversed or 
prevented by CX717.

Serotonin (5-Hydroxytryptamine) Receptor Agonists
Perhaps one of the most obvious targets for reversal of 
opioid-induced respiratory depression is to stimulate the 
respiratory system by activation of the 5-hydroxytryptamine 
system, because 5-hydroxytryptamine is a neuronal trans-
mitter widely located throughout the respiratory control 
system.9,50–52 For example, the pontomedullary system is an 
important central respiratory region comprising both inspi-
ratory and expiratory functions. More specifically within the 
pontomedullary system, involved with respiratory rhythm 
generation and regulation, are the pre-Bötzinger complex 
and the Köllinker Fuse nuclei (fig.  1).50–52 At these sites, 
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opioid and 5-hydroxytryptamine receptors influence respira-
tory functions but in opposite directions.52 Hence, stimu-
lation of opioid receptors, particularly µ-opioid receptors, 
induces depression of respiratory drive, whereas 5-hydroxy-
tryptamine receptor stimulation enhances activity in respira-
tory neurons and reduces respiratory rhythm variability.52–54 
For example, the partial agonist buspirone has been shown 
to stimulate breathing (breathing frequency and minute 
ventilation) in the mouse at rest,55 whereas the antagonist 
WAY100635 has been shown in mice to destabilize respi-
ratory rhythm, possibly by an action at the Köllinker Fuse 
nuclei pontomedullary site.56

In various animal models, selective 5-hydroxytrypta-
mine 1a receptor agonists reversed opioid-induced respi-
ratory depression without compromising opioid-induced 
antinociception. For example, in rats, repinotan prevented 
morphine- and remifentanil-induced respiratory depres-
sion without compromising the antinociceptive effects of 
morphine and even prolonged those of remifentanil.57,58 
However, the effect of retinopan was dose-dependent with a 
reduced effect at higher doses (i.e., bell-shaped dose-response 
curve). Some 5-hydroxytryptamine a1 receptor agonists not 
only reverse opioid-induced respiratory depression but also 
reduce opioid antinociception. One example is the selective 
5-hydroxytryptamine 1a receptor agonist befiradol, which 
reversed fentanyl-induced respiratory depression (breath-
ing rate and minute volume) in rats at the price of reduced 
fentanyl-induced antinociception.59 Other 5-hydroxytryp-
tamine receptors, including 5-hydroxytryptamine 4a recep-
tors and 5-hydroxytryptamine 7 receptors, may be targets to 
reverse opioid-induced respiratory depression. For example, 
in rats, treatment with 5-hydroxytryptamine 4a receptor-
specific agonist BIMU8 overcame fentanyl-induced respi-
ratory depression and reestablished stable respiratory 
rhythm without loss of fentanyl analgesic effects52; in goats, 
the 5-hydroxytryptamine 4a receptor agonist zacopride 
reversed opioid-induced respiratory depression; and in rats, 
5-hydroxytryptamine 1a/7 agonist 8-OH-DPAT reversed 
morphine-induced respiratory depression.60,61

5-Hydroxytryptamine 1a and 4a selective agonists have 
been investigated in humans for various clinical indications, 
although few studies have been carried out on the potential 
reversal of opioid-induced respiratory depression. The results 
of these limited studies, however, are negative. Neither clini-
cal studies with buspirone nor with mosapride were able 
to demonstrate reversal of morphine-induced respiratory 
depression in healthy volunteers.62,63 The negative results 
may be due to inadequate dosing and/or limited active site 
concentrations of drug being achieved due to limited CNS 
penetration of 5-hydroxytryptamine agonists.64 This field is 
further hindered by the lack of drugs with high and spe-
cific selectivity for the various 5-hydroxytryptamine recep-
tor subtypes, and all of the 5-hydroxytryptamine ligands 
discussed in this section have additional actions on other 
receptor sites. Buspirone, for example, is a partial agonist 

at 5-hydroxytryptamine 1a receptor but is also a dopa-
mine autoreceptor antagonist and a dopamine D3 receptor 
antagonist.64 Further research is required to discover and 
investigate new agonists with greater selectivity, particularly 
at 5-hydroxytryptamine 1a receptor and related receptor 
sites.65,66

Phosphodiesterase-4 Inhibitors
Methylxanthine alkaloids such as caffeine, aminophylline, 
and theophylline stimulate respiratory rhythmogenesis and 
cause hyperexcitability of respiratory motor neurons by 
increasing cyclic adenosine monophosphate (cAMP) through 
inhibition of the enzyme phosphodiesterase 4 within the 
CNS.67–69 Caffeine was used historically to treat opium and 
morphine poisoning and is still used to counter apnea of 
prematurity and stabilize breathing in preterm infants.70,71 
For example, a report from 1913 showed a brisk increase in 
respiratory rate after caffeine injection in rabbits pretreated 
with morphine.71 Animal studies show that nonselective 
phospodiesterase-4 inhibitors caffeine and theophylline and 
the selective phospodiesterase-4 inhibitor rolipram reversed 
[D-Ala,2 N-MePhe,4 Gly-ol]-enkephalin–, fentanyl-, and 
morphine-induced depression of respiratory activity, with-
out much effect on analgesic responses.67–69 Furthermore, 
rolipram further improved incomplete recovery by theoph-
ylline of [D-Ala,2 N-MePhe,4 Gly-ol]-enkephalin–depressed 
respiratory activity.68 Human data on the effect of methylx-
anthines on the relief of opioid-induced respiratory depres-
sion are sparse. A recent case report showed that 5 mg of 
caffeine was able to restore respiratory activity after remi-
fentanil-induced apnea in a 65-yr-old patient.72 Finally, in 
patients after propofol/remifentanil anesthesia, aminophyl-
line shortened the time to return to spontaneous breathing, 
increased tidal volumes and respiratory rate, and increased 
bispectral index values compared to placebo.73

D1-dopamine Receptor Agonists
D1-dopamine receptor agonists activate cAMP–protein 
kinase A signaling within neurons of the respiratory net-
work.74–77 Down-regulation of cAMP–protein kinase A is 
an underlying cause of opioid-induced respiratory depres-
sion. In a series of animal experiments, it was shown that 
increasing neuronal cAMP after administration of potent 
opioids (fentanyl, [D-Ala,2 N-MePhe,4 Gly-ol]-enkephalin, 
enkephalin) restored breathing activity.74–76 D1-dopamine 
receptor agonists such as 6-chloro-APB and dihydrexidine 
increase cAMP levels via D1-dopamine receptor-mediated 
stimulation of adenylyl cyclase.74,75 Both 6-chloro-APB and 
dihydrexidine counter opioid-induced depression of respi-
ratory rhythm, whereas dihydrexidine additionally restored 
fentanyl-induced impairment of ventilatory reactivity to car-
bon dioxide.75 Both D1-dopamine receptor agonists have no 
effect on fentanyl-induced antinociception. D1-dopamine 
receptor agonists and cAMP, however, induce pharma-
cologic effects other than those on the respiratory system, 
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and selectivity of action must remain a question with this 
approach.

Glycyl-l-glutamine
Glycyl-glutamine (β-endorphin30-31) is an endogenous 
dipeptide converted from the opioid peptide β-endorphine 
in proopiomelanocortin neurons in brain regions that regu-
late breathing and autonomic function (e.g., nucleus of the 
tractus solitarius).77–79 Glycyl-glutamine inhibits the fir-
ing frequency of brainstem neurons and has been shown 
to inhibit opioid-induced hypotension. Importantly, stud-
ies in the anesthetized and conscious rat show that glycyl-
glutamine inhibits morphine-induced respiratory depression 
without affecting antinociception even at a high dose; glycyl-
glutamine is without effect when respiration is not depressed 
by opioids.79 More recently it was shown that glycyl-gluta-
mine abolishes the rewarding effect of morphine by inhibi-
tion of morphine-induced dopamine release in the nucleus 
accumbens.80 The receptor target of glycyl-glutamine 
remains still unknown, but the inability to antagonize its 
effects with opioid antagonists precludes an opioid receptor 
target.77 Currently no human data are available on the effect 
of glycyl-glutamine on depressed breathing.

Thyrotropin-releasing Hormone
The tripeptide thyrotropin-releasing hormone (Glu-His-
Pro-NH2) is a potent but short-lived respiratory stimulant 
in animals and humans.80–84 It induces rhythmic bursting in 
respiratory neurons of the nucleus tractus solitarius through 
modulation of membrane excitability.81 In rabbit and monkey, 
thyrotropin-releasing hormone produces a rapid arousal from 
penthobarbital anesthesia.85,86 Although in the rabbit single 
bolus infusions of thyrotropin-releasing hormone were unable 
to reverse morphine-induced respiratory depression,85 stud-
ies in the vagotomized artificially ventilated rat showed that 
thyrotropin-releasing hormone and its analog RGH 22012 
effectively antagonized morphine-induced respiratory depres-
sion as measured by diaphragmatic activity, possibly through an 
action at N-methyl-D-aspartate acid receptors.87 Additionally, a 
more recent study showed that thyrotropin-releasing hormone 
antagonized morphine respiratory depression in an in vitro 
brainstem-spinal cord preparation from 1- to 4-day-old rats.88

Respiratory Stimulants Acting at the Carotid 
Bodies
Brainstem respiratory centers receive inputs from multiple 
sites to modulate breathing activity, most importantly from 
peripheral chemoreceptors at the carotid bodies located at 
the bifurcation of the common carotid artery.89,90 Among 
other stimuli, the carotid bodies are particularly sensitive to 
changes in arterial PO2. Hypoxia causes a brisk hyperventila-
tory response, the mechanism of which has not been eluci-
dated fully. One oxygen-sensing pathway involves K+ channels 
expressed on so-called type 1 glomus cells, which are the 

oxygen-sensing cells of the carotid bodies.89 Buckler and his 
research team91–93 showed that hypoxia-induced depolariza-
tion of the carotid body was mediated through a K+ chan-
nel of a type associated with the maintenance of background 
levels of potassium. This channel was different from the hith-
erto known conventional K+ channels and was not blocked 
by conventional K+ channel inhibitors, such as tetraethylam-
monium. The characteristics of these background, hypoxia- 
and acid-stimulated K+ channels were identical to those of 
TASK-1 and TASK-3 channels.91–93 TASK-1, TASK-3, and 
the heterodimer TASK-1/TASK-3 are tandem pore potassium 
channel subunits, with the latter heterodimer providing the 
predominant hypoxia-sensitive background potassium con-
ductance in carotid body type 1 cells.94 The K2P potassium 
channel family (potassium channel subfamily K member 2; 
there are 15 members in humans) regulate background (or 
leak) potassium and determine membrane resting potential.

A number of K+-channel blockers have been identified 
with respiratory stimulant properties that in fact mimic the 
effect of hypoxia at the carotid bodies. We discuss the fol-
lowing K+-channel blockers with proven efficacy in rever-
sal of opioid-induced respiratory depression: (1) almitrine, 
(2) doxapram, and (3) GAL021 (Galleon Pharmaceuticals 
Corp., USA; fig. 1).

Almitrine
Almitrine is a piperazine derivative that induces long-lasting 
stimulation of ventilation and increases the slope of the ven-
tilatory response to carbon dioxide even under hyperoxic 
conditions (where peripheral ventilatory responses to car-
bon dioxide is greatly reduced).95,96 None of these effects are 
observed after bilateral carotid body resection or after carotid 
sinus nerve denervation.97,98 Further evidence for an effect of 
almitrine at the carotid bodies comes from feline studies using 
the dynamic end-tidal forcing technique by which central 
and peripheral components of ventilatory response to carbon 
dioxide are separated, and the stimulatory effects of almitrine 
were concluded to be entirely peripheral in origin.99,100

In dogs, almitrine was shown to antagonize the depres-
sant effects of fentanyl on respiratory neurons recorded in 
anesthetized dogs.101 Similarly, in patients after surgery, 
almitrine reversed fentanyl-induced respiratory depression 
without affecting analgesia.102 However, almitrine does not 
represent a potential way forward in humans for treatment 
of opioid-induced respiratory depression because its mar-
keting license was withdrawn by the European Medicines 
Agency in 2013 because of severe side effects, particularly 
peripheral neuropathy.13,103,104 Almitrine was never licensed 
for use in Europe outside of France, Poland, and Portugal or 
in the United States.13

Doxapram
Doxapram (1-ethyl-4-[2-morpholinoethyl]-3,3-diphenyl-
2-pyrrolidinone) is a respiratory stimulant acting at K2P 
channels at type 1 glomus cells of the carotid bodies and 
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increasing tidal volume and respiratory rate.105–107 It has 
been used clinically for more than 40 yr and is still licensed 
for use to stimulate respiration in a number of clinical con-
ditions of compromised respiration108 but not prescribed 
widely, possibly due to its analeptic side effect profile.

At low doses, doxapram has a respiratory stimulant effect 
exclusively at the carotid bodies, with loss of activity after 
bilateral sectioning of the carotid sinus nerves.105,109,110 
However, at higher doses of doxapram, nonselective, direct 
stimulation of medullary neurons is observed, and very early 
studies failed to show abolition of the action of doxapram 
by sectioning the sinus or vagus nerves in the dog.110 More 
recently, studies in newborn rats support a greater role of a 
medullary action of doxapram on preinspiratory and inspira-
tory nerves in respiratory rhythm generation.111 That doxa-
pram exerts central actions is indisputable: doxapram shows 
marked CNS stimulant effects, but the relative contribution 
of the peripheral and central components to respiratory 
stimulation is less clear and seems dose-dependent.

Animal (mice, rats, rabbits) and human studies show 
that doxapram effectively reverses opioid-induced respi-
ratory depression without compromising analgesia.112–116 
However, reversal of depressed ventilation is short-lived 
and ceases within 15 min after a single injection.115 In 
humans, a single injection of doxapram administered dur-
ing propofol/remifentanil anesthesia induced an increase in 
respiratory rate after 2 to 8 min but decreased significantly 
thereafter.116 These observations are similar to the renar-
cotization seen after single doses of the µ-opioid receptor 
antagonist naloxone when used for recovery of respira-
tion in opioid-induced respiratory depression.1 In a recent 
study that illustrates the importance of understanding the 
pharmacokinetics and pharmacodynamics of both reversal 
agent and opioid, we studied the effect of a continuous 
infusion of doxapram on alfentanil-induced respiratory 
depression.117 Doxapram reduced the plasma concentra-
tions of the opioid, most probably related to a doxapram-
induced increase in cardiac output. The reduced alfentanil 
plasma concentration was subsequently responsible for 
both a reduction in analgesia and a modest relief of respira-
tory depression. Finally, doxapram exhibits a considerable 
number of analeptic side effects (flushing, sweating, head-
ache, nausea, hyperactivity, anxiety, panic attacks) that may 
limit its use.13,108

GAL021
A respiratory stimulant that is one of the latest claimants for 
a therapeutic use in opioid-induced respiratory depression is 
the experimental drug GAL021.118,119 GAL021 (N-[4,6-bis-
n-propylamino-(1,3,5)-triazin-2-yl]-N,O-dimethylhydrox-
ylamine) is an analog of almitrine13 but lacks a fluorinated 
piperazine ring of the type that may cause neuronal and 
muscular toxicity.120 Like acute hypoxia, almitrine, and 
doxapram, GAL021 also acts as a K+-channel blocker at 
the carotid bodies. Similar to almitrine, it acts through 

interactions with the large conductance Ca2+/voltage acti-
vated K+ channels. GAL021 predominantly stimulates 
breathing at the carotid bodies, because carotid sinus nerve 
transaction in the rat markedly diminished its hyperven-
tilatory effect.118 The respiratory stimulant properties of 
GAL021 have been demonstrated in healthy volunteers 
showing an increase in minute ventilation and a decrease in 
end-tidal carbon dioxide during a 1-h infusion.118,119,121,122

In animals (rat and monkey) intravenous GAL021 antag-
onized morphine-induced respiratory depression without 
affecting analgesia.118 Also in healthy volunteers, continuous 
infusions of GAL021 reversed opioid-induced respiratory 
depression.121,122 Integrated pharmacokinetic and pharma-
codynamic analyses revealed that GAL021 showed a rapid 
attainment of maximal effect and a rapid onset time/offset 
time but with a reduced effect at deeper levels of respiratory 
depression (i.e., ceiling effect).122 Blood pressure and cardiac 
output during GAL021 infusion remain stable. These data 
indicate that GAL021 is a potential candidate for clinical use 
in opioid-induced respiratory depression and may demonstrate 
respiratory efficacy without comprising analgesia and with a 
favorable side-effect profile. Clearly, many further studies are 
still required to support the initial promise of this compound. 
For example, one final item that needs further study is the 
preliminary outcome from the pharmacokinetic-pharmacody-
namic analysis that at deeper levels of opioid-induced respira-
tory depression GAL021 is less effective (ceiling effect).121

Discussion and Future Perspectives
We discussed seven pharmaceutical classes of nonopioid 
respiratory stimulants that could theoretically be used to pre-
vent opioid-induced respiratory depression without compro-
mising analgesia (table 1). Six of them act within the CNS 
(ampakines, 5-hydroxytryptamine agonists, phosphodiester-
ase-inhibitors, D1-dopamine receptor agonists, the endog-
enous peptide glycyl-glutamine, and thyrotropin-releasing 
hormone), and one class acts at the carotid bodies (almitrine, 
doxapram, and GAL021; all are drugs that block background 
potassium channels of type 1 carotid body cells). Some are 
obsolete (almitrine), some seem more promising than others, 
but most of the drugs discussed are still experimental. It is our 
impression that none of them will be registered any time soon 
as respiratory stimulants because just a few studies with these 
compounds are currently being planned. We retrieved one 
(still nonrecruiting) study in the registry of the U.S. Library 
of Medicine (clinicaltrials.gov) on the effect of ampakine 
CX1739 in opioid-induced respiratory depression (identi-
fier NCT02735629; website accessed January 3, 2018); no 
current or future studies on CX717 were retrieved. To the 
best of our knowledge, no further studies are being planned 
with GAL021 in compromised breathing (opioid-related or 
otherwise).

Although the drugs that we discussed are predominantly 
studied under acute conditions, the requirement in medicine 
for respiratory stimulants is much wider than just in the acute 
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Table 1.   Overview of Animal and Human Studies on Nonopioid Reversal of Opioid-induced Respiratory Depression

 Animal Studies Human Studies

Reversal of opioid-induced respiratory depression within the brainstem respiratory network

  Ampakines   
    CX717 Respiratory stimulation in an animal model of  

Pompe’s disease40; Reversal of fentanyl- and 
DAMGO-induced respiratory depression42,43

Reversal of alfentanil-induced respiratory depres-
sion44

    CX546 Reversal of fentanyl- and morphine-induced  
respiratory depression41,49

 

    CX614 Reversal of DAMGO-induced respiratory  
depression43

 

    XD-8-17C Reversal of TH030418-induced respiratory  
depression45

 

    Tianeptine Prevention of morphine-induced respiratory  
depression49

 

  5HT agonists (receptor subtype)  
    Buspirone (5HT1aR)  No effect on morphine-induced respiratory 

depression62

    Repinotan (5HT1aR) Prevention of remifentanil- and morphine-induced 
respiratory depression57,58

 

    Befiradol (5HT1aR) Reversal of fentanyl-induced respiratory depression  
(but also of antinociception)59

 

    BIMU8 (5HT4aR) Reversal of fentanyl-induced respiratory depression52  
    Zacopride (5HT4aR) Reversal of etorphine-induced respiratory depres-

sion60
 

    8-OH-DPAT (5HT1a/7R) Reversal of etorphine- and fentanyl-induced  
respiratory depression60,61

 

    Mosapride (5HT4aR)  No effect on morphine-induced respiratory 
depression63

  Phosphodiesterase-4 inhibitors
    Caffeine Reversal of DAMGO- and morphine-induced  

respiratory depression67,68
Case report on reversal of remifentanil- 

induced respiratory depression72

    Theophylline Reversal of DAMGO-induced respiratory  
depression68,69

 

    Aminophylline  Shortening of time to spontaneous ventilation 
after propofol/remifentanil anesthesia73,114

    Rolipram Reversal of morphine-induced respiratory  
depression67,68

 

  D1-dopamine receptor agonists  
    6-Chloro-APB Reversal of fentanyl-induced respiratory  

depression75,76
 

    Dihydrexidine Reversal of fentanyl-induced respiratory  
depression75,76

 

  Glycyl-L-glutamine  
    Glycyl-glutamine Inhibits cardiorespiratory depression by β-endorphin 

and morphine77–79; Abolishes the rewarding effects 
of morphine80

 

   Thyrotopin-releasing  
hormone 

No effect on morphine-induced respiratory depres-
sion 
 in the rabbit85;

Reversal of respiratory depression in in vitro and in 
vivo rat models of morphine-induced respiratory 
depression86,87

 

Reversal of opioid-induced respiratory depression at the carotid bodies
  Almitrine Reversal of fentanyl-induced respiratory 

depression101
Reversal of fentanyl-induced respiratory depres-

sion102;
In humans associated with development of 

peripheral neuropathy
  Doxapram Reversal of fentanyl/droperidol- and  

morphine-induced respiratory depression112,113,115
Reversal of morphine- and alfentanil- 

induced respiratory depression114,117;
Shortening of time to spontaneous ventilation 

after propofol/remifentanil anesthesia116

  GAL021 Reversal of morphine-induced respiratory  
depression118

Reversal of alfentanil-induced respiratory depres-
sion120,122

DAMGO = [D-Ala,2 N-MePhe,4 Gly-ol]-enkephalin; 5HT = 5-hydroxytryptamine; R = receptor.
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and perioperative setting. The number of patients that take 
opioids outside the hospital setting is soaring. For example, 
in The Netherlands opioid consumption has increased to 1.3 
million users or 8% of the population in 2017, a more than 
250% increase since 2004 (Dr. Dahan, unpublished observa-
tion, January 2018). Equally important is our experience that 
a large number of physicians that prescribe these drugs are not 
accustomed to dealing with the multifarious opioid side effects. 
In an increasingly aging population, more common obesity 
and a predisposition of such patients to obstructive sleep apnea 
and hence respiratory compromise, opioid treatment may eas-
ily produce life-threatening side effects. Additionally, opioid 
consumption for hedonistic pleasure, opioid use in opioid-
naïve patients, or consumption together with centrally acting 
sedatives (including alcohol) will increase the risk of opioid-
induced cardiorespiratory collapse. Finally and most impor-
tantly, the opioid epidemic has taken too many lives because 
of inadvertent overdose and fatal respiratory depression, and 
urgent measures are required. One such measure could be the 
further study and development of respiratory stimulants for 
prevention of opioid-induced respiratory depression.123 For 
example, it might be of interest to study whether the combi-
nation of stimulants, for example combining a stimulant that 
acts at central sites and one that acts peripherally, increases the 
efficacy of respiratory stimulation under even deep levels of 
opioid-induced respiratory depression.

It is important to realize that life-threatening opioid-induced 
respiratory depression demands rapid and effective interven-
tion. Such an action can currently only be achieved reliably by 
the administration of opioid antagonists such as naloxone. This 
is true in acute and chronic settings. So-called take home naloxone 
programs have been shown to reduce opioid overdose mortality 
rates, with little risks in naloxone administration by non–med-
ically trained individuals.124–126 Hence, nonopioid respiratory 
stimulants should be used as drugs that prevent rather than treat 
opioid-induced respiratory depression. Still, none of the available 
pharmaceutical agents highlighted in this review are currently 
adequately scrutinized to allow their therapeutic use in opioid-
induced respiratory depression because they either have ample 
side effects that limit their use (e.g., doxapram) or require further 
study of efficacy and toxicity. Nonetheless, these studies do use-
fully highlight potential mechanisms of action and possible tem-
plates for further study. In future experimental studies in human 
volunteers, we will further explore whether existing drugs such as 
tianeptine, ketamine, and thyroid-releasing hormone are viable 
alternatives to the experimental drugs discussed in this review.
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