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Abstract
All around the world, there are species of birds that have developed the ability to acquire toxic chemicals in their bodies 
making them less palatable or even lethal when consumed or contacted. Exposure to poisonous bird species is rare among 
humans, yet their poisons can produce serious clinical outcomes. In this study, we conducted a literature search focusing 
on seven avian species: the pitohuis (Pitohui spp.), blue-capped ifrita (Ifrita kowaldi), European quail (Cortunix cortur-
nix coturnix), spur or spoor-winged goose (Plectropterus gambensis), North American ruffed grouse (Bonasa umbellus), 
Brush bronzewings (Phaps elegans), and European hoopoes and woodhoopoes (Upupa epops and Phoeniculus purpureus, 
respectively). We present the geographic distribution of each poisonous bird, toxin physiology and origin, clinical signs 
and symptoms of poisoning, cases of human toxicity if available and discuss the birds’ ability to prevent self-intoxication. 
Our results suggest that most cases of contact with toxic birds produce mild symptoms as most of these birds apart from the 
European quail (C. c. corturnix) and North American ruffed grouse (B. umbellus) are not commonly consumed by humans. 
Furthermore, we discuss several methods of toxin acquisition in these bird species, which are mostly diet acquired apart from 
the hoopoes and woodhoopoes (Upupa and Phoeniculus spp.) who have a symbiotic relationship with chemical-producing 
bacteria in their uropygial glands. In summary, our study provides a comprehensive review of the toxic physiology, clinical 
manifestations, and evolutionary insight to avian toxins.

Keywords Poisonous birds · Avian · Ornithology · Toxinology · Toxic chemical defense

 “It is not only fine feathers that make fine birds.” 
-Aesop

Introduction

Birds have evolved to acquire a variety of adaptations to 
survive the hostile animal kingdom. While there are those 
who use camouflage to hide in their environment or devel-
oped increased agility to fly or run away from predators, 
others have developed ability to acquire toxic chemicals in 
their bodies making them less palatable or even lethal when 
consumed. Some birds have additionally developed symbi-
otic relationships with other organisms for mutual survival 
and chemical defense against predators. While poisonous 
animals abound in the animal kingdom, human exposures to 
avian species are rare yet their poisons can produce serious 
clinical outcomes.

Bird species that possess chemical defense by contain-
ing or using behaviorally one or more chemical substances 
to deter predators or parasites have often been described 
as poisonous or toxic to humans and animals alike [1, 2]. 
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Common poisonous avian species will be discussed in this 
comprehensive review article which include the Pitohuis 
(Pitohui spp., Melanorectes nigrescens, Ornorectes crista-
tus, and Pseudorectes ferrugineus), blue-capped ifrita (Ifrita 
kowaldi), European quail (Cortunix corturnix coturnix), spur 
or spoor-winged goose (Plectropterus gambensis), North 
American ruffed grouse (Bonasa umbellus), Brush bronzew-
ings (Phaps elegans), European hoopoes and woodhoopoes 
(Upupa epops and Phoeniculus purpureus, respectively). 
In this manuscript, common poisonous bird species will be 
highlighted with emphasis on the toxicologic properties of 
these compounds. Specific treatments beyond supportive 
care for poisonings will also be discussed. Furthermore, 
theories behind the evolutionary ability of these unique spe-
cies to prevent self-intoxication will also be explored.

Methods

We conducted a literature search in MEDLINE / PubMed, 
Hollis, and Google Scholar of the English language, which 
included peer-reviewed investigations as well as case reports 
describing toxicological profiles, pharmacology, and patho-
physiology on the avian species of interest. The search terms 
included each avian species: (Pitohui spp. which include 
hooded pitohui (Pitohui dichrous), variable pitohui (Pito-
hui kirhocephalus), black pitohui (Melanorectes nigres-
cens), crested pitohui (Ornorectes cristatus), rusty pitohui 
(Pseudorectes ferrugineus), and white-bellied pitohui (Pito-
hui icnertus), blue-capped ifrita (Ifrita kowaldi), European 
migratory quail (Coturnix coturnix coturnix), Spur or Spoor-
Winged goose (Plectropterus gambensis), North American 
ruffed grouse (Bonasa umbellus), Bronzewings (Phaps 
elegans, Phaps chalcoptera), European hoopoes (Upupa 
epops), and Green woodhoopoes (Phoeniculus purpureus)); 
the avian species’ toxin of interest: (homobatrachotoxin, 
palasonin, cantharidin, demethylcantharidin, grayanotoxin, 
and monofluoroacetate); and other keywords listed after each 
specific species: (toxin, toxicity, poison, chemical defense). 
We recognize that literature and research on toxic or poison-
ous avian species are limited and thus included both peer-
reviewed and non-peer-reviewed manuscripts and literature. 
Exclusion criteria included gray literature, lay press, letters 
to the editor, and editorials. We excluded articles that had no 
discussion of toxicological poisoning related to the birds of 
interest or discussion of clinical presentations related to poi-
sonings or toxic exposure. There was no time restriction or 
specific date range placed on our search or selection process.

Chemical structures were created with the program ACD/
ChemSketch. High-resolution photographs of each bird spe-
cies were selected from the Macaulay Library at the Cornell 
Lab of Ornithology used with permission.

Results and Data Summary

Table 1 summarizes each poisonous bird’s toxin physiol-
ogy and origin, along with clinical signs and symptoms of 
toxicity. Table 2 provides the chemical structure of each 
avian toxin. Map 1 depicts the geographic distribution of 
these poisonous bird species.

Discussion of Poisonous Bird Species

Pitohuis and Ifrita kowaldi

The Pitohuis and Ifrita kowaldi are colorful birds that are 
endemic to New Guinea. There are six species of Pitohuis 
with varying levels of toxicity with the hooded (Pitohui 
dichrous) and variable pitohui (Pitohui kirhocephalus) 
more toxic than other related species [3]. The hooded 
pitohui can be identified with its distinct jet-black head 
and brick red belly (Photograph 1). Black (Melanorectes 
nigrescens) and crested pitohui (Ornorectes cristatus) have 
traces of toxicity and the rusty (Pseudorectes ferrugineus) 
and white-bellied pitohui (Pitohui icnertus) have no toxic-
ity. The blue-capped ifrita (Ifrita kowaldi) is also a bird 
endemic to New Guinea restricted to high montane rain-
forests (> 1,500 m). Species plumage is yellowish brown 
with a blue and black crown (Photograph 2). Although 
their toxicity profile is similar to the Pitohuis, I. kowaldi 
belongs to a different family [4]. Initial analysis of the 
skin and feathers from the birds revealed a single, toxic 
alkaloid called homobatrachotoxin (Fig. 1) [5]. Subsequent 
studies have shown that the Pitohuis and I. kowaldi contain 
a series of batrachotoxins [3]. These toxins are concen-
trated in the breast and belly feathers with the thought 
that the toxins not only deter predators from consuming 
the bird itself but can be transferred to nests and eggs, 
thereby deterring egg-eating predators [3]. Furthermore, 
the presence of toxins in the feathers has been proposed to 
promote defense against ectoparasites [6].

Batrachotoxins are potent neurotoxic steroid alkaloids 
with neuro- and cardiotoxic properties [7, 8]. These toxins 
were originally found in the skin of neotropical frogs from 
the genus Phyllobates commonly known as poison-dart 
frogs (family Dendrobatidae) [9]. These toxins occur at 
high levels in the true poison dart frogs from Columbia 
(Phyllubetes terribilis) and to a lesser degree in other 
Central American species [7]. They target voltage-gated 
sodium channels at receptor site II in nerve and muscle 
membranes and stabilize the open forms of these channels 
[10]. Binding of the receptors causes persistent activa-
tion of the channel subsequently leading to depolarization 
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of cells. While no antidote exists, certain agents can be 
used to reverse membrane depolarization. For example, 
tetrodotoxin can be used through its antagonistic effect on 

sodium channels [11]. In rodent models, batrachotoxins 
are some of the most potent alkaloids known. The intrave-
nous  LD50 in mice is 2 µg/kg for batrachotoxin and 3 µg/kg 

Table 2  The names and chemical structures of each toxin of interest are illustrated in the table below

Species Structure 
Pitohui spp. 

Ifrita kowaldi 

     (-) Batrachotoxinin A     (-) Batrachotoxin         Homobatrachotoxin 

European migratory 

quail (Coturnix 
coturnix coturnix) 

eniinoC

Spur or Spoor-

Winged goose 

(Plectropterus 
gambensis)  

Structure of cantharidin and demethylcantharidin (R=H) 

North American 

Ruffed grouse 

(Bonasa umbellus) 

Grayanotoxin 

Bronzewings (Phaps
spp.) 

Monofluoroacetate 

European hoopoes 

(Upupa epops) 

Green woodhoopoes 

(Phoeniculus 
purpureus) 

Mix of volatiles compounds 
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for homobatrachotoxin [10, 12]. Meanwhile, its derivative, 
batrachotoxinin A, has a much lower toxicity with an  LD50 
of 1 µg/kg. Symptoms manifested in rodent studies include 
muscle contractions, convulsions, salivation, dyspnea, and 
death following lethal  (LD50) doses.

While contact with dendrobatid frogs can cause severe 
symptoms, toxin exposures from the birds are milder. The 
most likely explanation is that birds carry lower levels of 
toxin compared to dendrobatid frogs [5]. Symptoms of expo-
sure include numbness, burning, nausea, and bitter taste if 
consumed [13]. These toxins are nonvolatile, but if released 
into the air from dander or feather bits, they can be inhaled 
or cause upper respiratory irritation [3]. Researchers who 
worked directly with these bird species experienced sneez-
ing, numbness and burning of oral mucosa [5]. Natives of 
New Guinea report that these species have long been avoided 
for consumption unless prepared in a specific manner as they 
are known for having a bitter odor and sour taste [14].

There are various hypotheses as to how the Pitohui and I. 
kowaldi. acquired their toxicity. Dumbacher et al. proposed 
that while both Pitohuis and I. kowaldi demonstrated toxic-
ity, they were found in different geographic regions of New 
Guinea and occupied different niches, and yet, both were 
poisonous [3]. Furthermore, the Pitohuis had varying levels 
of toxicity with the hooded (P. dichrous) being most toxic 
and white-bellied pitohui (P. icnertus) having no toxicity 
further supporting that toxicity was acquired through envi-
ronment and most likely through diet [3]. It is proposed that 
melrid beetles (Choresine spp.) may be a source of batra-
chotoxins as they are observed to be part of the diet of Pito-
hui and I. kowaldi [15]. In addition, melrid beetles are also 
found in Colombian rainforests, which could link the simi-
larities in toxicity with these birds and poisonous dendro-
batid frogs despite being indigenous to different continents. 
An alternative theory is that both birds and beetles acquire 

toxins through a plant source either through ingestion of 
plant seeds or from insects who obtain molecular scaffolds 
for batrachotoxin after eating plants. However, I. kowaldi is 
almost exclusively insectivorous, whereas the Pitohuis are 
omnivorous making this plant theory less likely [15]. Phylo-
genetic comparisons have shown that the clusters of both the 
Pitohuis and I. kowaldi appear at the tips of the phylogeny, 
but overall, there is a higher rate of losing the poisonous 
trait opposed to gaining, suggesting that many lineages have 
subsequently lost that toxic ability [16].

Common Quail (Coturnix coturnix coturnix)

The common quail  (Coturnix coturnix coturnix) is a 
small and compact bird (16–18 cm in length; wingspan 
32–35 cm) with streaks of brown with white eye stripes 
(Photograph 3). As this species of quail is migratory, they 
have long wings compared to the short-winged gamebird 
species [17]. Toxicity is primarily associated with the Euro-
pean subspecies of migratory quails and observed around 
autumn season during quail migratory seasons [18, 19].

Consumption of these birds can cause a toxic myopathy 
associated with acute rhabdomyolysis termed coturnism. 
Symptoms include weakness, myalgias, muscle stiffness, and 
cramps. Laboratory abnormalities include myoglobinuria, 
increased levels of aldolase, aspartate transaminase, creatine 
kinase, and lactate dehydrogenase. Treatment is generally 
supportive with crystalloid fluid replacement, urine alka-
linization, and hemodialysis for severe cases of renal failure. 
Plasmapheresis may be an option for life-threatening cases 
of rhabdomyolysis [20].

There have been several case reports of patients develop-
ing rhabdomyolysis after consumption of quail meat with 
mild-to-moderate symptoms and laboratory abnormalities 
requiring supportive care and urine alkalinization [21–23]. 
In one case report by Gokhan et al., a 58-year-old male pre-
sented to the emergency department in Turkey with com-
plaints of weakness, muscle pain, nausea, vomiting, and 
decreased and dark urine [22]. The patient had consumed 
quail meat approximately four hours prior to symptoms 
onset. Laboratory workup was notable for elevated lactate 
dehydrogenase (LDH) 872 IU/L (reference 120–130), cre-
atine phosphokinase (CPK) 17,480 IU/L (25–190), aspar-
tate aminotransferase (AST) 834  IU/L (10–40), alanine 
aminotransferase (ALT) 376 IU/L (10–40), and urinalysis 
showed myoglobinuria and proteinuria. Patient’s medi-
cal history excluded any other possible cause of rhabdo-
myolysis, and thus, his presentation was consistent with 
acute rhabdomyolysis from quail meat. He was admitted 
to the hospital and received intravenous fluids, mannitol, 
and urine alkalinization with intravenous sodium bicarbo-
nate and orally administered acetazolamide. His muscu-
lar pain and weakness resolved in three days and muscle 

Figure  1.  Batrachotoxin Structures  adapted from Ligabue-Braun, 
Rodrigo, and Carlini, Célia Regina. “Poisonous Birds: A Timely 
Review. ”Toxicon (Oxford), vol. 99, 2015, pp. 102–108
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enzymes normalized over nine days, and he was ultimately 
discharged. While this case report did not comment on time 
of year, three other case reports have reported that patients 
diagnosed with coturnism all consumed quail during the 
autumn migratory season [21].

The toxicity is theorized to be from an alkaloid toxin, 
coniine which is commonly found in poison hemlock 
(Conium maculatum). Coniine is a nicotinic acetylcholine 
receptor (nAChR) agonist (Fig. 2). Studies have proposed 
that the toxin is acquired through the bird’s consumption 
of seeds from poison or spotted hemlock (Conium macu-
latum), hemlock water dropwort (Oenanthe crocata), red 
hemp-nettle (Galeopsis ladanum), as well as the anticho-
linergic alkaloid-containing plants henbane (Hyoscyamus 
niger) and black nightshade (Solanum nigrum) [24, 25]. 
Other alkaloids such as stachydrine (L-proline betaine) 
have been studied but have not been shown to be toxic. A 
focused study on the red-hemp nettle (Galeopsis ladanum) 
and the compound stachydrine demonstrated that feeding 
both the seeds extracts or quail meat to mice did not produce 
signs or symptoms or rhabdomyolysis [26]. An alternative 
hypothesis to coturnism observed in humans is a combined 
effect of the bird toxin and a hereditary enzyme deficiency 
in the affected individual; however, no specific enzyme has 
yet been identified [27].

Spur or Spoor‑winged Goose (Plectropterus 
gambensis)

The Spur (or Spoor)-winged goose (Plectropterus gamben-
sis) is found in wetlands throughout sub-Saharan Africa. 
These birds are mainly black with a white face and white 
wing patches (Photograph 4). The geese acquire the toxin 
from consumption of blister beetles (family Meloidae) [28]. 
The main compounds in the beetles are terpenes, specifically, 
cantharidin and demethylcantharidin, commonly known as 
palasonin [29] (Fig. 3). Cantharidin binds to protein phos-
phatase 2A and inhibits serine-/threonine-specific protein 

phosphatases [30], which are important in reversible protein 
phosphorylation processes. These processes are involved in 
various cellular functions including neurotransmission, mus-
cle contraction, glycogen synthesis, T-cell activation, and 
cell proliferation [31–33].

Two routes of exposure to cantharidin can occur. The 
toxin can be absorbed directly through skin and mucous 
membranes. Common skin manifestations include a der-
matitis rash with blister formation. Specifically, cantharidin 
causes release of serine proteases that cause desmosomal 
plaque disruption leading to acantholysis, intradermal blis-
tering, and nonspecific lysis of the skin [34]. The toxic 
effects on mucosal membranes can lead to blistering in the 
oropharynx, dysphagia, and abdominal cramping [35–37]. 
Furthermore, poisoning after oral ingestion can cause dehy-
dration due to excess free fluid losses. This occurs through 
inhibition of renal cortical collecting ducts, increase con-
tractility, vasoconstriction, endothelial cell leakage, and 
overall pro-inflammatory state from upregulated cytokine 
genes [38–40]. Systemic symptoms include abdominal pain, 
hematuria, cool, mottled extremities, and dehydration. In 
rare cases, priapism has been described, a potential desired 
effect of commercially available cantharidin or “Spanish 
Fly” aphrodisiac [40, 41]. Furthermore, cantharidin can 
cause spontaneous abortions in females and has historically 
been used as an abortifacient [42, 43]. Mortality has been 
commonly observed in farm animals and in some cases 
humans who consume the actual beetle [44–46]. However, 
there is no recent literature or research that has documented 
or reported human toxicity from cantharidin after consump-
tion of this avian species. There are no specific antidotes to 
treat cantharidin poisoning. Supportive care and adminis-
tration of oral activated charcoal for recent ingestions are 
recommended.

North American ruffed grouse (Bonasa umbellus)

The North American ruffed grouse (Bonasa umbellus) is a 
non-migratory bird found in forests of the US Appalachian 
Mountains across Canada to Alaska. They are chunky, 
medium-sized birds that appear in both grey and brown 
morphs with ruffs that appear on the side of their necks 
(Photograph 5). They harbor the toxin, grayanotoxin, 
which is acquired through consumption of the mountain 
laurel (Kalmia latifolia) (Fig. 4). Reports of human poi-
soning from grouse consumption have occurred during 
late winter and early spring as it is thought that the snow-
covered terrain forced the birds to seek food in trees and 
tall shrubs. Specifically, the leaves and buds of the laurel 
would be consumed during that season [47]. Grayanotoxin 
is a diterpene that can bind to group II receptor sites in 
cellular voltage-gated sodium channels leading to preven-
tion of inactivation of these channels, thus keeping the 

Figure 2.  Coniine

Figure 3.  Structure of Cantha-
ridin and demethylcantharidin 
(R = H)
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cell in a depolarized or “open” state [48]. This can lead 
to both neurotoxic and cardiotoxic effects. Symptoms of 
systemic toxicity include dizziness, weakness, diaphoresis, 
hypersalivation, nausea, vomiting, and paresthesia. Severe 
toxicity can lead to life-threatening arrhythmias due to the 
increase in resting sodium permeability and activation of 
voltage-sensitive sodium channels [49]. Management is 
mainly supportive care, and if necessary, atropine can be 
administered for symptomatic bradycardia.

Grayanotoxins have largely been studied in honey 
containing Rhododendron spp. nectar. Human toxicity, 
often referred to as “mad honey disease” [50], occurs 
after ingestion of contaminated honey, more commonly 
observed along the Black Sea coast of Anatolia. Poison-
ings from grouse consumption have been documented 
as early as the late eighteenth to mid-nineteenth century 
when physicians observed side effects in those who had 
consumed grouse meat [47, 51]. While there are no recent 
published case reports of human poisoning in the twenti-
eth and twenty-first century, medical literature from 1821 
to 1882 has shown human poisonings after grouse meat 
consumption in multiple cities from northeastern USA, 
eastern Canada as well as the UK where they receive ship-
ments of grouse from the USA and Canada [51–53]. Dr. 
Jacob Bigelow described ten cases of human poisoning 
from grouse meat consumption observed on the northeast-
ern coast of the USA. In one case, he described a 60-year-
old man who consumed grouse meat one hour prior to 
developing symptoms of gastrointestinal upset, dizziness, 
weakness, nausea, and vomiting. He received ipecac and 
fluids but remained delirious for several hours prior to 
resolution of his symptoms [54]. Per case reports from Dr. 
Bigelow’s reports, no fatalities have been documented as 
symptoms have been mostly mild and required supportive 
care only.

Bronzewings (Phaps elegans, Phaps chalcoptera)

The Bronzewings (Phaps elegans and Phaps chalcoptera) 
are medium-sized pigeons that are native to Australia. While 
each species has slightly distinct plumage, all bronzewing 
pigeons share the characteristic patches of red, blue, and 
green on their wings (Photograph 6). They are known to 
acquire monofluoroacetate from consumption of flowering 
plant species such as wattle or acacia (Acacia spp.), Gas-
trolobium spp., and shaggy pea (Oxylobium spp.) [2, 55]. 
Sodium monofluoroacetate is also the main component of 
the potent rodenticide commercially known as Compound 
1080 [56] (Fig. 5).

Monofluoroacetate is both neuro and cardiotoxic. It can 
be absorbed in both the respiratory and gastrointestinal tract 
as well as mucous membranes. Fluoroacetate’s mechanism 
of action affects cellular respiration, in the citric acid or 
Krebs cycle [57]. Once absorbed, fluoroacetate is combined 
with acetyl CoA and metabolized to fluorocitrate. While cit-
rate can continue through the citric acid cycle, fluorocitrate 
does not. Fluorocitrate is converted to 4-hydroxy-trans-aco-
nitate (HTn), which leads to inactivation of aconitase, thus 
inhibiting citrate and succinate metabolism within the citric 
acid cycle. High citrate concentrations can lead to inhibition 
of phosphofructokinase, which leads to further disruption of 
cellular energy metabolism [58–60] (Fig. 6). Furthermore, 
fluoride can bind to calcium causing significant hypocal-
cemia. Studies in sheep have shown acute cardiac toxicity 
manifesting as both myocardial ischemia and arrhythmias 
[61]. Toxicity observed in canines include central nervous 
system excitation and gastrointestinal tract hypermotility 
[56]. There is no recent documentation of human poisoning 
from consuming bronzewing meat; most observations are 
made from carnivores and zoo animals that have consumed 
these birds [62, 63]. Signs and symptoms include seizures, 
excessive salivation, vomiting, defecation, and tenesmus 
[64, 65]. From veterinary data, treatment of Compound 
1080 poisoning includes administering acetamide, but if 
not available, initiating a sodium bicarbonate infusion [66]. 
Fomepizole (4-methylpyrazole or 4-MP), the alcohol dehy-
drogenase inhibitor used to treat methanol and ethylene gly-
col poisoning, has been shown in one rodent study to reduce 
toxic effects of a similar compound to Compound 1080 via 
reduction of oxaloacetate production, which then reduces 
erythrofluorocitrate production [67]. While it is possible that 
4-MP may be used to treat human poisoning due to known 

Figure 4.  Grayanotoxin

Figure 5.  Monofluoroacetate
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mechanism of action, there are no known recent studies that 
have investigated its use on sodium monofluoroacetate tox-
icity, and therefore, initial management remains supportive 
with decontamination Figs. 7 8, 9, 10, 11, 12, 13 and 14. 

Hoopoes

The European hoopoes (Upupa epops) and green wood-
hoopoes (Phoeniculus purpureus) are found in Africa, 
Asia, and Europe and have distinct “crowns” of feathers 
(Photograph 7). Uropygial glands are specialized exocrine 
glands in avian species that produce a range of biochemi-
cals. Hoopoes have symbiotic bacteria in their uropygial 
glands, which produce noxious volatile compounds such 
as dimethyl sulfide [68]. Martin-Vivaldi et al. [69] dem-
onstrated that common symbionts in the European hoo-
poes’ uropygial glands are Enterococcus spp. but hypoth-
esize there could be other bacterial species that were not 
cultivable with standard methods. The composition of the 
uropygial secretions in European hoopoes does change 
between breeding and non-breeding seasons. Breeding 

females and nestlings will produce malodorous dark 
secretions that contain anti-microbial properties. During 
the non-breeding season, a white secretion is produced, 

Figure 6.  Fluorocitrate is 
converted to 4-hydroxy-trans-
aconitate (HTn), which leads to 
inactivation of aconitase, thus 
leading to citrate accumulation 
and shortage of aconitase lead-
ing to disruption of citric acid 
(TCA) cycle

Map 1  Geographic distribution 
of poisonous bird species 

Photograph 1  Hooded pitohui (Pitohui dichrous)
Frédéric PELSY / Macaulay Library at the Cornell Lab (ML206167861)
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which does not have volatile chemicals [69]. There are 
no known major human toxicities from Hoopoes as they 
are not known to be consumed by humans. Researchers of 
these birds have reported smelling the noxious fumes for 
several hours when they get the chemicals on their hands 
after handling the birds [68].

Ability to Withhold Toxin

Many theories have been proposed as to how birds have 
acquired such toxins. The intriguing evolutionary ques-
tion is how birds acquire and harbor such toxins in their 
bodies without getting poisoned themselves. Ecologists 
and chemists alike have attempted to study and elucidate 
the idea of sequestered defensive chemicals (SDCs) [70]. 
While species such as the European hoopoes and wood-
hoopoes can avoid self-intoxication given they have a 
dedicated gland that contains the chemicals, species such 
as the Pitohui spp. and Ifrita contain toxin in their tissues 
and feathers.

Photograph 2   Blue-capped ifrita (Ifrita kowaldi) 
Frédéric PELSY / Macaulay Library at the Cornell Lab (ML206205861)

Photograph 3  Common quail (Coturnix coturnix) European subspe-
cies (Coturnix coturnix coturnix)
Rajesh Shah / Macaulay Library at the Cornell Lab (ML379431801)

Photograph 4  Spur (or Spoor)-winged goose (Plectropterus gamben-
sis)
Greg Hudson / Macaulay Library at the Cornell Lab (ML375975451)

Photograph 5  North American ruffed grouse (Bonasa umbellus) 
Rejean Beauchesne / Macaulay Library at the Cornell Lab (ML380801351)
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Like poison dart frogs, these birds do not succumb to 
their own lethal doses of batrachotoxin contained within 
their skin and tissues. In a recent study, a single amino acid 
substitution on the poison dart frog's sodium channel ren-
dered resistance to the effects of batrachotoxin [71]. Studies 
of natricine snakes (Thamnophis spp.) demonstrate that they 
have mutations in their sodium channel proteins allowing 
them to be resistant to the effects of tetrodotoxin after con-
suming poisonous newts [72, 73]. It is plausible that both 
predator and prey have adapted by genetically altering their 
proteins, thus enabling them not only to be resistant to toxins 
sequestered within their body but also to toxins consumed.

Other explanations beyond genetic mutations include her-
bivores having the ability to modify ingested toxic alkaloids 

from plants in the gut into non-toxic bases. It is proposed that 
re-activation of non-toxic alkaloids into their toxic forms is 
conducted through cytochrome P450 enzymes [74]. Another 
example is the chrysomelid beetle avoiding self-intoxication 
by moving toxic bases effectively to specialized exocrine 
glands and away from susceptible tissues [75]. While these 
are all proposed theories for birds as demonstrated by other 
vertebrate and invertebrate species, further investigation 
will need to be performed to identify the exact chemical 
and biological adaptations for each poisonous bird species. 
While there is no clear explanation as to how avian species 
sequester and maintain non-toxic forms in their body, it can 
be speculated based on observations from non-avian species 
that self-intoxication could be prevented through metabolic 
pathways, specialized organs for sequestration, or genetic 
modifications that confers resistance.

Conclusion

The toxicologic risk from exposure to various poisonous 
birds lies on a spectrum. Most often, dermal exposure leads 
to mild symptoms, while ingestion leads to systemic and 
even lethal toxicity. While most reports of human toxicity 
have been observed in both quail (C. c. coturnix) and the 
North American ruffed grouse (B. umbellus), the risk of 
human toxicity from the other avian species is extremely 
low based on the limited to no reports of human exposure 
or toxicity.

Poisonous birds have evolved multiple strategies to use 
chemicals as defense against predators and to protect their 
broods. From dietary sources to symbiotic relationship with 
bacteria, these bird species have developed sophisticated 
methods of using chemical defense. Globally, poisonous 
birds alike have evolved to use their environment as part of 
their defense strategies. Apart from the hoopoes and wood-
hoopoes, most poisonous birds acquire their toxins second-
arily through diet of either plant or invertebrate species.

Most intriguing is the ability of birds to manage seques-
tered defensive chemicals and not succumb to self-intoxi-
cation. While there have been studies on other vertebrate 
and invertebrate species to investigate this protection, the 
direct mechanism of protection, whether it be modification 
of toxins to non-toxic bases during storage or nucleotide 
polymorphisms in targeted receptors in birds has yet to be 
elucidated fully. Further studies defining the intricacies of 
avian chemical defense and their potential clinical applica-
tions are warranted.
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