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ABSTRACT 

 
Birds are commonly used as biomonitors of environmental pollution, with most tests 
involving invasive or destructive sampling techniques. The need to develop and validate 
non-invasive techniques has long been recognised. From blood, eggs, feathers or guano, 
the last shows most promise in this field. However it constitutes both faecal and urinary 
excretions. The faecal component has serious analytical drawbacks from digestive 
processes and being comprised of both bio-available and unabsorbed components. In 
contrast the typically white urine part of guano represents substances emanating entirely 
from within the bird. Despite the analysis of urine (urinalysis) being widely and 
successfully used in mammals, its limited application to date in birds is at best 
misguided because it disregards the nature of avian urine. This thesis endeavours to 
show how the analysis of the (normally discarded) solid component of avian urine may 
provide a quantifiable measure of both environmental pollutant exposure and 
endogenous stress hormone concentrations in birds. The literature is reviewed with 
regard to birds as biomonitors of the environment and the use of non invasive sampling 
techniques, especially excreta collected from wild animals including birds. Avian renal 
physiology and urine composition is described with specific reference to current avian 
urinalysis methods and how these compare with the proposed use of avian urate spheres 
(AUS) for biomonitoring. It is also shown how the biomineralisation process of AUS 
formation is relevant to their collection, extraction and chemical analysis from bird 
guano. To investigate if AUS contents could be used as a measure of a bird’s 
environmental pollution exposure, concentrations of lead, copper and zinc, were 
determined in urate spheres from domestic chickens (Gallus domesticus) exposed to a 
soil contaminated by these metals. Furthermore an attempt was made to compare metal 
concentrations in AUS with eggs, feathers and whole guano from the same birds. The 
results suggested AUS contained higher levels of the contaminating metals in exposed 
birds compared to control birds. However the aim to show the utility of AUS for 
biomonitoring the birds’ metal exposure was not achieved because of experimental 
design limitations. A similar investigation was carried out into the suspected exposure 
of nestling seabirds to elevated metal concentrations in their fish diet. Metal 
concentrations in urate spheres from the seabirds were measured along with those in 
various body tissues of their young. This metal analysis, although limited by small 
sample size, provided no evidence of an elevated exposure when compared with values 
reported in the literature. Subsequent reanalysis of earlier tested fish samples showed 
normal metal concentrations, suggesting the earlier reported fish data had been 
incorrect. To determine if AUS can be used to measure biologically relevant levels of 
the avian stress hormone corticosterone, a series of experiments is described using 
captive great tits (Parus major). These involved the ELISA detection of excreted 
corticosterone in AUS extracts. The suppressive response to dexamethasone 
administration was measurable in AUS from these birds, suggesting a physiological 
validation. However many issues have still to be resolved concerning this method of 
measuring corticosterone levels in birds. The overall finding of this thesis is that the 
analysis of AUS may have potential value as a noninvasive sampling method to 
biomonitor environmental pollution and stress in birds. 
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Chapter 1. 

Introduction 

 
Birds through the ages have been employed as biomonitors of our environment in many 

and diverse ways. Widely recognised examples are the first swallow heralding the UK 

summer, gulls locating shoals of fish out at sea and canaries detecting gas down a mine. 

Currently avian biomonitoring can employ a wide range of sampling techniques 

(Sutherland et al., 2004), with it being preferable to replace destructive, by non-

destructive or non-invasive methods (Fossi et al., 1999). A commonly used non-

invasive technique involves the analysis of excreta (Chame, 2003). The literature 

reports that concentrations of environmental toxins or their biomarkers in avian excreta 

can be used to quantify local pollution (Fitzner, 1995; Dauwe et al., 2000; Fossi et al., 

1996), while excreted hormone metabolites can determine a bird’s endocrine status 

(Goymann et al., 2002). This thesis explores the utility of the urine fraction of avian 

guano as a non-invasive sampling method to biomonitor environmental pollution and 

stress. 

 

1.1. The importance of avian biomonitoring 

Biomonitoring entails measuring changes in biological systems in response to 

perturbations of their environment. These upsets can be wide ranging and may be 

physical in nature such as habitat destruction or chemical from specific pollutants 

(Walker et al., 2001). An important characteristic of a biomonitor is that it only detects 

bioavailable changes, which impact on the biological system being monitored. The 

value of biomonitoring is highlighted in the case of interpreting pollutant concentrations 

in the environment; such concentrations tell us nothing about actual biological harm 

without knowledge of the pollutant’s bioavailability (Ruby, 2004). The bioavailability 

of a pollutant can be complex, depending on many factors including its interaction with 

other substances in the environment and its propensity for absorption, metabolism and 

excretion by an organism (Ruby, 2004). As a result of these complications only 

biomonitoring can provide information on a pollutant’s bioavailability and so its actual 

biological harm. 
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As birds are highly visible, wide ranging and ubiquitous higher animals, they represent 

ideal sentinels for monitoring environmental pollution and degradation (Hollamby et al., 

2006). 

 

1.2. The utility of avian urinalysis 

The analysis of urine (urinalysis) for monitoring bodily functions and exposures has 

wide applications in man and other mammals (Doxey, 1983). The end product of 

nitrogen metabolism in birds is predominantly uric acid, which being sparingly soluble 

dictates that solid urate spheres are excreted by the avian urinary system (Braun, 2009). 

Approximately 5% of each urate sphere by dry mass is serum albumin derived from the 

bird’s blood stream (Casotti and Braun, 2004), where this protein is the major carrier of 

blood borne substances (Peters, 1996). The main constituent of these urate spheres is 

uric acid, which across diverse bird species consistently makes up 65% of the spheres’ 

dry mass (Casotti and Braun, 2004). This constant value allows for the hypothesis that 

the various sequestered substances in samples of urate spheres can be quantified against 

uric acid content. In this respect the analysis of avian urate spheres represents an ideal 

urinalysis technique to measure blood borne substances without the need to take blood 

samples.  

1.3. Thesis aims 

The overall aim of this thesis is to test the hypothesis that measurement of 

environmental contaminants and stress hormones in the solid component of avian urine, 

principally composed of urate spheres, is a valid non-invasive sampling technique when 

using birds to biomonitor environmental contamination and stress.  

The objectives of this thesis are broadly to: 

1) Develop a method of separating urine from faeces in bird guano; 

2) Quantify the concentrations of chemicals in the extracted urine samples against uric 

acid content to allow sample comparison; 

3) Devise and carry out experiments to measure a selection of suitable substances 

excreted in bird urine in order to validate this method of avian urinalysis. 

 

1.4. Thesis outline 

The thesis may be broadly divided into four sections, reflecting my research into avian 

urinalysis.  The first section (Chapter 2) reviews the literature on birds as biomonitors of 

the environment and how avian renal physiology provides the rationale for using the 

solid component of bird urine as a non-invasive biomonitoring technique.  
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The second section (Chapters 3 and 4) reports on studies using avian urate spheres to 

determine metal exposure in birds and compares this new technique with currently used 

destructive and non-destructive methods. Chapter 3 reports on a project to measure lead 

(Pb), copper (Cu) and zinc (Zn) concentrations, in extracted urine from domestic 

chickens kept on soil contaminated by these heavy metals and compares them with 

concentrations measured in eggs, feathers and guano from the same birds. As a control, 

similar samples were analysed from unexposed birds. Chapter 4 is an account of an 

investigation into the suspected heavy metal contaminated fish diet of nesting seabirds 

on the Farne Islands off the coast of Northumberland in the UK. This chapter compares 

metal concentrations in urate spheres from guano deposits with various body tissues 

from dead nestlings and their fish diet. 

The third section (Chapter 5) describes the development of a method to measure levels 

of the stress hormone corticosterone in birds by the analysis of their urate spheres. This 

involved the experimental manipulation of the stress hormone (corticosterone) in 

captive great tits (Parus major).  

The final section (Chapter 6) draws conclusions from this research and discusses how 

future studies may resolve issues relating to the validation of this proposed method for 

avian urinalysis. 

 

1.5. Conclusions 

Birds are recognised sentinels of environmental change but to date avian biomonitoring 

predominantly involves detecting population changes (Peakall, 2000) or pathology in 

birds found dead (CEH, 2003/04). Consequently these changes record post-impact 

effects that once identified may be difficult to reverse, which is a corollary to the current 

predicament over measuring climate change (Solomon et al., 2009). A better approach 

would be to repeatedly monitor pollutant concentrations in living birds enabling action 

to be taken before lethal concentrations are reached. The proposed technique of avian 

urinalysis presents a widely available non-invasive sampling method in birds, which 

could enhance their use as biomonitors and allow pre-emptive assessment of 

environmental changes. 
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Chapter 2. 

A review of the literature relevant to using bird urine as a new 

biomonitoring technique 

 

2.1. Introduction 

This chapter reviews the role of birds as biomonitors of the environment and the use of 

non invasive sampling techniques, more especially using excreta from wild animals. 

Avian renal physiology and urine composition are described, with specific reference to 

comparing current avian urinalysis methods with the proposed use of avian urate 

spheres (AUS). The process of AUS formation by biomineralisation is explained and its 

relevance to the collection, extraction and chemical analysis of urate spheres from bird 

guano. 

 

2.2. Birds as biomonitors of the environment 

A typical definition of a biomonitor is an organism that is sensitive to, and shows 

measurable responses to, changes in the environment such as changes in pollution 

concentrations (US EPA). 

Man has observed birds for a long time and from them has gained valuable insights into 

the environment. A classic example is fishermen at sea still to this day use flocking 

birds to locate shoals of fish, even in this high tech age of sonar detection. Birds being 

so visible also elicit concern in the general public when they become absent from 

increased mortality or failure to return in the case of migratory species (Bird Life 

International, 2008). The sudden decline in raptor populations in the 1960s alerted the 

world to the unforeseen consequences of widespread pesticide use, notably dichloro-

diphenyl-trichloroethane (DDT) (Walker et al., 2001). More recently a similar 

population decline of vultures in South Asia has occurred from the use of the drug 

diclofenac in farm stock (Green et al., 2006; Swan et al., 2006). Such occurrences, it 

could be argued, make a lasting impression on public awareness of environmental 

toxicology issues. As a consequence many bird monitoring groups similar to those in 

the UK exist around the world, which study different aspects of avian population 

dynamics (Peakall, 2000). Such studies alert us to changes in bird population abundance 

and distribution, categorising different species in terms of their vulnerability, with those 

on the World Conservation Union (IUCN) Red List, being most at risk of extinction 
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(Butchart et al., 2004). The decline of birds such as the grey partridge (Perdix perdix) 

and sky lark (Alauda arvensis) in Britain is blamed on modern farming practices and as 

a result of public and political pressure has led to schemes rewarding farmers for using 

more environmentally friendly production methods (Peakall, 2000).   

However bird monitoring restricted  just to population studies only measures impacts 

which have occurred, by which point it may be too late to reverse the damage. For this 

reason a more pre-emptive approach is called for, where bird sampling will alert us to 

developing problems such as rising body concentrations of pesticides, in advance of 

them reaching fatal concentrations. An example of this is the Predatory Bird Monitoring 

Scheme (PBMS) run by the Centre for Ecology and Hydrology (CEH) in the UK (CEH, 

2003/04). The PBMS is a long-term monitoring programme, set up in the 1960s, to 

measure concentrations of certain pollutants in the livers of discovered carcasses and in 

un-hatched addled eggs of selected predatory bird species. These pollutants include 

organochloride pesticides, polychlorinated biphenyls, mercury and anticoagulant 

rodenticides. The programme’s rationale is that predatory bird species are more prone to 

poisoning due to bioaccumulation, as they are positioned at the top of food chains 

(Walker et al., 2001). The PBMS is however limited to studying only a few samples 

found by chance. For example in 2003 the total number of carcases submitted for 

analysis consisted of only 68 barn owls, 43 sparrow hawks and 39 kestrels (CEH, 

2003/04), which constituted only a very small fraction of the total UK raptor population. 

In this respect there is a clear need for a more wide ranging sampling technique, to 

enable the measurement of pollutant concentrations in a wider proportion of such bird 

populations. 

 

2.3. Sampling techniques for biomonitoring 

From the many sampling techniques employed to use avian species as biomonitors 

(Hollamby et al., 2006), the non-destructive methods hold the most promise (Fossi, 

1994). Destructive monitoring methods from culling and post-mortem sampling are 

finite and although unsavoury may be more acceptable to the public if very common or 

pest species are used (Hollamby et al., 2006). An example is the use of house sparrows 

(Passer domesticus) (Swaileh and Sansur, 2006) or feral pigeons (Columba livia) (Nam 

et al., 2004b; Loranger et al., 1994), to monitor urban metal pollution. However 

destructive methods in dwindling populations, especially for the purpose of enquiring 

why they are in decline, would clearly be questionable. Even when a sampling method 

is defined as non destructive such as blood collection, it may constitute invasive and 
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stressful interference to the animal (Kurien et al., 2004). This could for example scare a 

bird from its nesting site or cause other unforeseen consequences leading to its further 

decline. In this respect non invasive or non disturbing methods are preferable for 

endangered species (Fossi et al., 1999); having no measurable effect on the animal or on 

the parameters being studied such as stress hormones (Goymann et al., 2002). These 

non-disturbing methods sample materials remaining after the animal has vacated a site, 

and may include: excreta, hair, feathers or un-hatched eggs (Sutherland et al., 2004). 

Each of these methods has its limitations and one method may be more suited than 

another to measure the parameter being monitored. Excreta may be dispersed or 

contaminated after being passed; hair and feathers may only be shed seasonally as 

during a moult and eggs will only monitor female birds in the breeding season. The 

uptake, assimilation in tissues and excretion of environmental chemicals to which birds 

are exposed can vary respectively with bioavailability (Ruby, 2004), tissue type (Nam et 

al., 2005) and physiological status (Finley and Dieter, 1978). Of the non-disturbing 

sample materials collected the most widely used is excreta, more especially faeces.  

 

2.4. A brief overview of faecal and urine sampling techniques  

In human and veterinary medicine faeces and urine have a wide range of applications 

for clinical diagnostic tests, described respectively as coprological and urological 

sampling techniques (Doxey, 1983). Ingested poisons, disorders of the digestive system 

caused by bacterial, viral and parasitic infections and organ disorders such as pancreatic 

insufficiency and liver damage can all be detected by monitoring of faecal samples 

(Doxey, 1983). Urine, likewise, is used to detect disorders specific to the urinary system 

such as urolithiasis (stones), bladder infections, tumours and several types of kidney 

disease (Doxey, 1983). Urine analysis has a wider range of applications than  faecal 

analysis because it can reflect concentrations of many blood constituents, so measuring 

conditions throughout the whole body. Some examples are sex hormones for 

reproductive status (pregnancy tests); metabolites for metabolic disorders (ketosis and 

diabetes) and blood borne toxins or pharmaceuticals (Doxey, 1983). Added to this, 

urinary proteomics is emerging as a powerful non-invasive tool for the diagnosis and 

monitoring of many human diseases (Hanash, 2003), including coronary artery disease 

(Zimmerli et al., 2008).  

For human biomonitoring (HBM), blood and urine are by far the most approved 

matrices to measure human exposure to chemical substances (Angerer et al., 2007). 
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Consequently, I propose urine rather than faeces represents a better matrix for 

biomonitoring in birds.  

This is based on there being more diagnostic applications for using urine compared with 

faeces, combined with the complications of diet and digestive processes on faecal 

samples (Klasing, 2005)  and their complex extraction protocols (Palme, 2005).  

In the field of experiments on domestic and laboratory animals, metabolism cages are 

widely used to collect faecal and urine samples (Kurien et al., 2004; Wasser et al., 

2000). Typically the purpose is to measure food digestibility or excreted metabolites or 

chemicals such as hormones and drugs. However the complication of faeces and urine 

co-mingling commonly occurs in female test individuals unless catheterisation is 

employed (Kurien et al., 2004). Such a problem is analogous to birds that pass faeces 

and urine as a single entity called guano from their cloaca, which makes separate 

analysis difficult (Palme, 2005).  

  

2.5. Sampling of wild animal excreta  

In free living wild animals unlike under domestic or laboratory conditions (Kurien et al., 

2004), the collection of urine is impractical without capturing and usually 

catheterization of individual animals. For this reason urine sampling in such cases is 

rarely reported in the literature, with the exception of snow urine. Snow urine collection 

from wolves (Hausknecht et al., 2007; Valiere and Taberlet, 2000), elk (Pils et al., 1999; 

DelGiudice et al., 1991) and seals (Constable et al., 2006) is possible�when urine freezes 

after being passed in subzero temperatures and so preserved for later collection. Such a 

method clearly has limited applications for most wild animals.  

Faecal samples however are easily collected after an animal vacates a site, avoiding 

observer interference. An added advantage of faeces is that the gross morphology is 

often species-specific (Chame, 2003). The easy identification and ready availability of 

faeces may explain the many reported applications for faecal analysis in non-invasive 

sampling studies of wild animals, such as sex and stress hormone analysis (ANYAS, 

2005; Dehnhard et al., 2001; Foley et al., 2001), pollution derived liver damage in birds 

(Fossi et al., 1996) and heavy metal ingestion (Dauwe et al., 2000; Pokorny, 2004; 

Fitzner, 1995). 

However when quantitative measurements of faecal constituents are required such as 

the concentrations of excreted stress hormones (Mostl et al., 2005); faecal composition 

can have a marked effect on concentrations even within the same individual (Klasing, 

2005), giving inconsistent results (Goymann et al., 2006). This problem arises because 
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there is no single constant parameter in faeces, against which constituent concentrations 

can be measured.  In contrast, in urine samples, creatinine is used to compensate for 

fluctuations in composition i.e. dilution (Pils et al., 1999). Measuring faecal constituents 

against dry matter is reported to resolve this problem (Wasser et al., 2000). However 

this only removes the complication of faecal water content and does not compensate for 

variations in food digestibility, which can change with diet and transit time (Klasing, 

2005).  

Taking these factors into consideration it would be most advantageous if a method of 

non-invasive urine sampling could be devised for free-living animals, which does not 

require capture or direct interference. I hypothesise this requirement may be feasible in 

respect to free living birds. The grounds for this hypothesis stems from birds being 

uricotelic, excreting mainly uric acid as the end product of nitrogen metabolism.  

As uric acid is practically insoluble (McNabb and McNabb, 1980), vast amounts of 

body water would be wasted if it was to be passed as a solution in avian urine. To 

overcome this problem a mechanism of biomineralisation (Mann, 2001) packages the 

urinary excreted uric acid with protein as minute spheres (Janes and Braun, 1997), 

which birds pass as a white paste-like suspension (Tschopp et al., 2007).  As the solid 

component of avian urine, these avian urate spheres (AUS), can be collected 

noninvasively after a bird has vacated a site.  

 

 

2.6. Bird urine composition and physiology  

2.6.1. Urine composition 

Bird urine is typically white with a paste-like consistency (Tschopp et al., 2007); 

however most authors define avian urine as the liquid supernatant following centrifugal 

separation from the solid urate fraction (Styles and Phalen, 1998). This may be because 

the supernatant provides a urine sample which appears similar in nature to mammalian 

urine. Furthermore this liquid component can also be analysed in a comparable manner 

for specific gravity and chemical constituents (Styles and Phalen, 1998). However this 

fluid is only a small fraction of the true urine output of the avian kidney because the 

majority of urinary excreted solutes reside in the AUS (Casotti and Braun, 2004). AUS 

(Fig. 2.1A & B) are an example of biomineralised spherulitic structures (Taylor and 

Simkiss, 1989). The apparent fold in the centre of each sphere seen in the light 

microscope view (Fig. 2.1A) is a product of light interference (Folk, 1969; Canti, 1998) 
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and so not seen in the electron micrograph (Fig. 2.1B). Typically AUS are composed of 

65% uric acid combined with 5% serum proteins, with added inorganic ions mainly of 

potassium, sodium and calcium (Casotti and Braun, 2004). Although the process of 

urate sphere formation is common to all uricotelic organisms, which along with birds 

include reptiles, molluscs and insects, the exact biochemical mechanism of their 

synthesis is still unknown (Casotti and Braun, 2004).  

A  B  

Figure 2.1. A: Medium power light microscope view and B: Scanning 
electron micrograph of urate spheres from a domestic chicken (Gallus 
domesticus). 

 

2.6.2. Urine formation 

It is believed the purpose of urate sphere formation is an evolutionary solution to 

packaging the poorly soluble uric acid for excretion. Without this mechanism, uric acid 

would, under the normal process of crystallisation, precipitate as larger plate-like 

crystals and inevitably block the renal tubule (Janes and Braun, 1997). 
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Figure 2.2. A simplified diagram of the avian upper nephron showing 
the blood supply and site of urate sphere formation. A: Afferent arteriole 
B: Efferent arteriole C: Afferent portal vein D: Peritubular sinus E: 
Efferent portal vein F: Glomerular filtration G: Tubular reabsorption H: 
Tubular secretion I: Urate sphere formation in proximal tubule lumen. 

 

This process of solute precipitation in the form of urate spheres (Fig. 2.2.) significantly 

contributes to the avian proximal tubule achieving the reported 95% re-absorption of 

filtered water (Goldstein and Skadhauge, 2000). This is because the formation of urate 

spheres takes out of solution many osmotically active solutes such as uric acid, albumin 

and inorganic ions (Janes and Braun, 1997). The reduced osmotic potential of the 

filtrate makes it easier for water re-absorption, a process linked to active sodium uptake 

by the tubule cells (Brokl et al., 1994). After leaving the proximal tubule the liquid 

fraction of the filtrate may be further concentrated, in the case of mammalian-type 

nephrons, which have loops of Henle (Goldstein and Skadhauge, 2000). However no 

further modification to the urate spheres occurs following their formation in the lumen 

of the proximal tubule (Casotti and Braun, 2004).  
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Figure 2.3. Diagram of a histological section of a renal lobule from a 
domestic fowl showing the location and morphology of the two nephron 
types: medullary (mammalian) and cortical (reptilian). The black part of 
these nephrons (intermediate segment) only forms a loop of Henle in the 
medullary nephron (from King and McLelland, 1975). 

 

In birds arginine vasotocin (AVT) is equivalent to the anti-diuretic hormone (ADH) of 

mammals, which reduces an animal’s water loss by concentrating its urine. This is 

achieved by a combination of reducing the glomerular filtrate rate (GFR) through 

vasoconstriction, and increasing water reabsorption by enhancing tubular permeability 

(Goldstein, 2006). It is widely stated in the literature that compared to mammals, birds 

have a limited ability to concentrate urine above that of plasma (Braun, 2003). The 

explanation for this being that many birds have a high percentage of reptilian (cortical) 

nephrons (Fig. 2.3), which lack the loop of Henle present in mammalian (medullary) 

nephrons, essential for urine concentration by AVT (Dantzler, 2003).  

Hummingbirds,being an extreme example, have >99% of such reptilian type nephrons 

(Casotti et al., 1998), making them totally unable to produce urine  hyperosmotic to 

plasma (Lotz and Martínez del Rio, 2004). However this only relates to the residual 
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fluid fraction of avian urine leaving the nephron and ignores the enormous water-

preserving benefit of urate sphere formation (Goldstein and Skadhauge, 2000).  

2.6.3. Post renal modification of ureteral urine 

To compensate for possessing reptilian type nephrons, birds have a strategy to retrieve 

water (and sodium) from their urine by a process of post-renal modification (Laverty 

and Skadhauge, 2008). This involves the reflux of some ureteral urine into the avian 

lower bowel, constituting the coprodeum, colon and caecal sacs (Fig. 2.4.). For example 

in the emu (Dromaius novaehollandiae), which has almost exclusively reptilian type 

nephrons, water is reabsorbed from urine refluxed into the lower bowel. While in the 

opposite and unique case of the ostrich (Struthio camilus), with predominantly 

mammalian type nephrons, no post renal water reabsorption takes place (Laverty and 

Skadhauge, 2008). This is in part a consequence of the ostrich having a functional 

urinary bladder (Fig. 2.4B), which precludes any reflux of urine into the lower bowel 

(Duke et al., 1995).  

A  

B  

Figure 2.4. Sagittal sections through the lower bowel and cloaca of A: 
domestic fowl (Gallus domesticus) and B: ostrich (Struthio camilus), 
yellow signifies urine, showing respectively the reptilian and mammalian 
adaptations to post renal handling of urine in birds (after Laverty and 
Skadhauge, 2008). 
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As a result of urine reflux, some urine becomes intimately mixed with faecal excreta in 

birds prior to its evacuation as guano. In the case of Gambel’s quail (Callipepla 

gambelii), over 60% of the excreted urate spheres are degraded in the process of urine 

reflux (Braun, 2009 Fig. 2.5). The relevance of urine reflux to avian urine analysis is 

that a substantial quantity of urine in the form of urate spheres may not be available for 

analysis. Furthermore the faecal component of guano will represent a mixture of 

excreted metabolites originating from both the renal and digestive systems. To illustrate 

this point several studies measuring excreted hormone metabolites in bird guano 

describe them as exclusively faecal concentrations (ANYAS, 2005). However as birds 

have been shown to have similar excretion routes to mammals for such metabolites, 

guano concentrations include substantial amounts of urinary excreted hormones 

(Lepschy et al., 2008).   

  

 

Figure 2.5. Graph showing the modification of urine and faecal 
constituents in the lower digestive tract of Gambel’s quail (Callipepla 
gambelii) (from Braun, 2009). 

 

2.6.4. The avian renal portal system 

Anatomically a portal system (or circulation) exists when blood leaving an organ does 

not return directly to the heart but instead enters another organ first (Sisson and 
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Grossman, 1940). The most commonly cited example of this is the hepatic portal 

system, where blood leaving the intestine enters the liver first before proceeding to the 

heart. The purpose of the hepatic portal system is that intestinally absorbed substances, 

such as nutrients, go first to the liver for processing prior to distribution throughout the 

body via the general circulation. However a side effect of this is that some absorbed 

substances are bile excreted and then reabsorbed. This cyclic process is called 

enterohepatic recirculation (Roberts et al., 2002). The significance of enterohepatic 

recirculation is that it can prolong the period of time chemical substances remain in the 

body (Roberts et al., 2002).  

In birds a renal portal system exists which incorporates several blood vessels draining 

the hind end of the bird. These include the caudal mesenteric vein from the cloaca, 

colon and caecal sacs, also the ischiatic and external iliac veins from the hind limbs 

(King and McLelland, 1975). The significance of the caudal mesenteric vein flowing 

into the (caudal) renal portal vein is that it supplies the kidney with blood carrying 

substances absorbed from the lower bowel. This afferent portal vein blood joins that of 

the efferent glomerular arterioles (see Fig. 2.3.) to bathe the tubular structures of the 

nephron, where the tubular excretion phase of urine formation takes place (King and 

McLelland, 1975). A clinical consequence of the avian renal portal system, is that a 

drug given by injection into a bird’s leg, can result in its direct urinary excretion and so 

prevent its therapeutic action (Coles, 2007).  

The combination of birds having a renal portal system and the process of urine reflux 

into the lower bowel may result in substances being repeatedly recycled through the 

kidneys. This has important implications for avian urinary analysis, because it may 

prolong the presence of blood derived substances in sequentially collected urine 

samples.  

 

2.6.5. Uric acid excretion 

In birds, although circulating plasma urate is freely filtered at the glomerulus, the 

majority (about 73%) is secreted in the proximal tubule. This involves active organic 

anion transport (OAT) from the blood at the basolateral membrane, followed by a 

cytoplasm to lumen step down an electrochemical gradient (Dudas et al., 2005; 

Dantzler, 2005). This OAT mechanism has relevance to the dramatic population crash 

of South Asian vultures from diclofenac poisoning (Green et al., 2006; Swan et al., 

2006). Diclofenac is a non steroidal anti-inflammatory drug (NSAID), which in South 
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Asia was given routinely to debilitated farm animals. As vultures in this region 

commonly feed on fallen stock, which constitutes an efficient method of carcass 

disposal, these birds were consuming diclofenac from residues in the carcasses. In birds 

and other animals diclofenac inhibits the OAT mediated renal tubular transport of urate 

(Khamdang et al., 2002) and so this drug prevented uric acid being excreted by the 

vultures’ kidneys. As a result blood uric acid concentrations became critically high in 

the birds leading to fatal visceral gout (Swan et al., 2006). Added to the nephrotoxic 

effect of diclofenac, this drug is also subject to enterohepatic recirculation in animals 

(Peris-Ribera et al., 1991).  

Although urate secretion in the proximal tubule of the avian nephron is far from 

resolved, Dantzler, (2003) suggested it may involve vesicular cytoplasmic 

sequestration. Such a process may provide the initial nucleation step required for urate 

biomineralisation (Taylor and Simkiss, 1989). The hypothesis is that cytoplasmic 

vesicles, acting as condensing vacuoles (Mann, 2001), could provide a suitable confined 

reaction space for the formation of spherulitic urate. Such vesicles would then release 

their urate sphere contents into the lumen by exocytosis (Dantzler, 2003). Future 

research to answer the uncertainty over urate sphere formation would undoubtedly be 

useful in identifying their potential for avian urinalysis. 

 

2.7. Urate spheres, a form of biomineralisation  

 

2.7.1. Definition and example of biomineralisation 

The process of biomineralisation is defined as the formation of biogenic crystals 

incorporating macromolecules that minimize structural anisotropic weaknesses, under 

physiological conditions (Weiner et al., 2000). This process, naming only a few, enables 

the biofabrication of bones, teeth, mollusc shells and fish otoliths (Mann, 2001).  

Otoliths, the least complex of these examples, grow in the inner ear of teleosts (bony 

fish), nourished by the endolymph, a gelatinous soup of solutes and protein. The 

constituents of the endolymph are both incorporated in and control the otolith structure 

(Tomas et al., 2004). As a result, changes in the environment or physiology of the fish, 

which affect endolymph constituents, are reflected in otolith chemistry (Halden et al., 

2000; Thresher 1999). Otolith gromassh is characterised by alternating layers of protein 

and calcium carbonate, with the resulting temporal banding being used to age fish 

(Barker et al., 1997). The biomineralisation of otoliths depends on protein acid groups 
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creating localized sites of calcium ion super saturation (Strickland-Constable 1968). 

These sites induce nucleation (seeding) of vaterite spheres, which have a more charge 

dense crystal structure than calcite (vaterite: 6.7 Ca ions / nm2, calcite: 4.5 Ca ions / 

nm2). The same protein subsequently limits crystal gromassh of the spherulitic vaterite 

by surface encapsulation (Tong et al., 2004). A second protein creates the scaffold for 

these spherical building blocks to be laid down on, forming the gross structure of the 

otolith (Tomas et al., 2004). The otolith morphogenesis by virtue of these two proteins 

is consequently reported to be under genetic control (Sollner et al., 2003). Vaterite, a 

polymorph of calcite is an example of spherulite, which is defined as a form of 

abnormal crystal growth occurring under supersaturated conditions (Strickland-

Constable 1968). Vaterite can form in vitro under the influence of organic acids (Tong 

et al., 2004; Grassmann and Lobmann 2004) or surfactants (Wei et al., 2004), which 

provide sites of high charge density; mimicking conditions created in vivo by the 

specific protein.  

 

 

2.7.2. Avian urate spheres 

From this description of otolith biomineralisation, several comparisons with avian urate 

spheres can be drawn. The glomerular filtrate in the proximal tubule may be compared 

to the endolymph, containing solutes and proteins.  The proteins have a similar function 

in both instigating formation  and limiting growth of the spherulitic urate. Furthermore, 

variations in the concentrations of solutes in the filtrate could be reflected in quantities 

incorporated within the urate spheres. It is reported that numerous elements present 

within the urate spheres are incorporated during their formation in the proximal tubule 

(Casotti and Braun, 2004). In vaterite formation, low protein concentrations promote 

sphere nucleation while high protein concentrations suppress crystal growth by forming 

a surface coat (Nys et al., 2004). Similarly avian urate spheres (Fig. 2.9.) have a central 

nidus of protein and an encapsulating outer surface of protein (Casotti and Braun, 

2004).  
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.  

Figure 2.6. Section of urate sphere showing the laminated structure 
composed of a central protein nidus surrounded by 3–4 concentric narrow 
rings of protein the outer most forming the sphere surface (after Casotti 
and Braun 2004). 

 

The alternating layers of protein and urate (Fig. 2.9.) may reflect their changing tubule 

concentrations, induced by glomerular filtration and tubular water reabsorption. 

However as urate spheres never form in the blood, even under the hyper uric conditions 

of visceral gout (Guo et al., 2005), the serum proteins present in the spheres (Janes and 

Braun, 1997) are unlikely to be responsible for their nucleation. Future research into 

resolving urate sphere formation in birds may be directed towards identifying the 

specific nucleation protein in the proximal tubule. Furthermore the gene responsible for 

such a protein may be common to all urate sphere-forming organisms. 

Despite it being reported that biomineralisation requires specific physicochemical 

conditions for biogenic structures to form (Weiner et al., 2000), in vivo they commonly 

incorporate many contaminants. This is illustrated by chemical residues marking events 

in the formation of otoliths (Halden et al., 2000) and also avian bones taking up lead 

(Scheuhammer et al., 1999) or fluoride (Vikoren and Stuve 1995) from a bird’s 

exposure to these pollutants. Likewise AUS are reported to have variable amounts of 

different ions randomly spread throughout them (Casotti and Braun, 2004) without 

apparently altering their structure. 

 

2.7.3. Synthetic urate spheres 

A further similarity with vaterite is that urate spheres can be synthesised in vitro 

(McNabb and McNabb, 1980). A simple method to achieve this is by cooling a 

saturated solution of uric acid in 1M sodium hydroxide (Fig. 2.7.). This process 

presumably depends on a high sodium ion concentration to replicate the high density 
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cation conditions necessary for spherulitic polymorph formation (Mann, 2001).  Unlike 

the AUS which are restricted to <12µm in diameter (Braun, 2003), the in vitro spheres, 

produced in the absence of protein, typically reach 50µm in size (Fig.2.7.). While these 

artificial urate spheres are similar to AUS in being stable when re-suspended in absolute 

ethanol or after drying. 

 

A B  

Figure 2.7. Spherulitic uric acid under medium power light microscope. 
A: formation on the surface of flat plate-like crystals of normal uric acid 
B: stable uric acid spheres re-suspended in ethanol.  

 

2.8. Comparing the current avian urinalysis technique with using avian urate 

spheres to measure excreted metabolites.  

 

2.8.1. Liquid avian urinalysis 

Urine analysis (urinalysis) in avian species is becoming more widely used in a clinical 

context (Kurien et al., 2004; Tschopp et al., 2007), however only the liquid supernatant 

after centrifugal separation is analysed (Styles and Phalen, 1998). This centrifugation 

method disregards the potential value of analysing the solid urate spheres, which 

constitute the bulk of urinary excreted solutes (Casotti and Braun, 2004). Because this 

fluid portion may dry up or soak away, its application is limited (as in mammalian urine 

collection) to only captive or companion birds (Kurien et al., 2004). Such urinalysis is 

further restricted to samples of adequate volume, which may only occur in stressed 

birds or those with renal pathology (Harr, 2002). It is fortuitous that birds presented for 

veterinary examination typically pass wet polyuric droppings because of handling and 

transport stress (Styles and Phalen, 1998). However such diuresis would be expected to 
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have a marked diluting effect on urine parameters by reducing specific gravity and 

solute concentrations. As a result this could make quantitative interpretation of urine 

parameters problematic. Liquid urinalysis is reported in several bird species in the 

literature; including hummingbirds (Nicolson, 2005; Bakken and Sabat, 2006), starlings 

(Tsahar et al., 2005), pigeons (Halsema et al., 1988; Giladi et al., 1997), ostriches 

(Mushi et al., 2001), domestic chickens (Davis, 1927; Goldstein and Braun, 1989), 

companion birds (Styles and Phalen, 1998), and various falcons (Tschopp et al., 2007). 

Faecal contamination of urine samples is always a potential problem because of the 

shared cloacal outlet, which casts doubt on protein, glucose and blood concentrations in 

urine samples (Tschopp et al., 2007). To avoid such contamination renal catheterization, 

also called cloacal cannulation. has been employed in many experimental situations 

(Goldstein and Braun, 1989; Giladi et al., 1997). Such a procedure however is not 

favoured by clinicians, being highly stressful to the bird and requiring 10 to 30 min for 

collection (Styles and Phalen, 1998). For this reason the preferred method of urine 

collection is off a clean impervious surface of the bird’s cage using a needle and syringe 

or a plain glass micro-haematocrit tube (Harr, 2002). The exception to this is urine 

collection from farmed ostriches where contamination can be avoided because, unlike 

other avian species, urine collects separately from faeces in the coprodaeum, which 

functions like a urinary bladder (Laverty and Skadhauge, 2008; Duke, 1999). On the 

analysis of the liquid fraction of ostrich urine, having no faecal contamination, Mushi et 

al., (2001) found that little if any detectable proteins or enzymes were present. A similar 

finding in falcons (Tschopp et al., 2007) further supports the questionable use of this 

technique for clinical diagnostics, while ignoring the great potential of urate sphere 

analysis. Because of the unusual nature of avian urine, Long and Skadhauge, (1983) 

warned against drawing conclusions about the renal excretion of substances in birds, if 

avian urine was analysed in a similar way to liquid mammalian urine. Clearly bird urine 

and mammalian urine are very different, requiring a completely different approach to 

their analyses. 

 

2.8.2. Solid avian urinalysis 

Although the urate spheres vary in diameter from <0.5µ to 12µ, their elemental 

composition in samples from individual birds are independent of sphere size (Casotti 

and Braun, 2004), allowing for gross samples of mixed sphere sizes to be analysed. 

However chemical constituents other than uric acid (65% dry mass.) and protein content 
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(5% dry mass.) can vary considerably between birds (Casotti and Braun, 2004). This 

contrasts with the finding that supernatant analysis of urine from healthy birds showed 

no significant biochemical differences between sex, age, species or the fasted and 

postprandial states (Tschopp et al., 2007). 

Casotti and Braun, (2004) concluded that the chemical composition of urate spheres 

bore no relationship to the dietary preferences of different bird species. However their 

data showed a significantly higher calcium concentration in the urate spheres from 

domestic chickens compared to various wild birds. This difference may relate to 

commercial poultry diets being fortified with this element, typically having dry mass 

calcium concentrations of over 3.5% (Safaa et al., 2008). Although the avian kidney 

reabsorbs more than 98% of filtered calcium (Wideman, 1987), experimentally 

elevating plasma calcium concentrations increases renal calcium excretion in birds 

(Clark et al., 1976). In domestic fowl there is a dramatic change in urine composition 

when the egg is laid. Use of the technique of energy dispersive x-ray analysis (EDAX), 

similar to that reported in this thesis,  has demonstrated that in addition to turning 

alkaline, the urine also contains appreciably greater quantities of calcium (Sykes, 1971). 

Higher concentrations of calcium were detected in urate spheres from five out of six 

laying chickens fed a 4% calcium diet (Janes  and Braun, 1997) compared to 

concentrations detected in five (mixed sex) poults (Casotti and Braun, 2004). As egg 

laying birds typically have elevated plasma calcium compared to non-laying birds 

(Dacke, 2000) these findings suggest calcium concentrations in urate spheres may 

reflect blood concentrations.  

 

2.8.3. Proteins in avian urine 

Compared to normal human urine which typically has <0.05 mg/mL of protein, avian 

urine (the combined liquid and solid) contains 5mg/mL of protein (Braun, 2009). This 

plasma-derived protein (Janes and Braun, 1997) is almost entirely associated with the 

urate spheres (Harr, 2002), making them 5% protein by dry mass (Braun and Pacelli, 

1991).  

Although Janes and Braun, (1997) reported that the relative protein concentrations in 

the urate spheres differed slightly from plasma concentrations, this may have resulted 

from several factors. These include (a) variation in tubular re-absorption of different 

sized proteins, (b) the addition of glycoproteins (McNabb et al., 1973; Mirabella et al., 

1998) similar to mammalian Tamm-Horsfall proteins (Serafini-Cessi et al., 2003) or (c) 
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the effect of sampling stress in the birds (Styles and Phalen, 1998). The latter possibility 

arises because the plasma samples were taken at least 10-30 min after urine was 

collected by catheterization, a very stressful process for birds (Halsema et al., 1988). 

Stress induces diuresis (Styles and Phalen, 1998), so diluting the urine proteins and 

altering plasma protein concentrations (Grasman et al., 2000). Because of the inevitable 

time lag between urine formation and its passage (the time urine takes to pass from the 

glomerulus to the urodeum), it may have been more appropriate to collect plasma 

samples before catheterization for comparison. However despite such potential causes 

for variation there is a striking similarity between plasma and urate sphere proteins as 

reported by Janes and Braun, (1997).  

The molecular mass of proteins present in the spheres is reported to be restricted by the 

dimensions of the glomerular pores (Casotti and Braun, 1996), with the six most 

abundant proteins being between 30 and 149kDa (Janes and Braun, 1997). This would 

preclude the inclusion in urate spheres of larger plasma proteins, like gamma globulins 

(160kDa) and vitellogenin (200kDa), while allowing smaller binding proteins from 

plasma such as corticosteroid binding globulin (50-60kDa), prealbumin (6.1kDa) and 

metallothioneins (4-14kDa) to be included.  

As albumin, the most abundant protein in AUS, is derived from the  bloodstream (Janes 

and Braun 1997), AUS analysis should reflect concentrations of the wide range of 

substances bound to this protein in the blood, which includes hormones, metabolites and 

toxins (Peters, 1996). In addition, physicochemical alterations of the albumin molecule 

itself have been shown to be a valuable measure of systemic oxidative damage in man. 

These include ischaemic modified albumin (Roy et al., 2004) and reduced albumin 

cobalt binding (Bar-Or et al., 2001) in blood samples.  Analysis of another albumin 

type, egg white, has also shown great potential for ‘protein finger printing’ in ecological 

studies (Andersson and Ahlund, 2001). Other blood derived proteins found in the urine 

of man and other animals are markers of systemic disease (Zimmerli et al., 2008). For 

example the presence of metallothioneins in urine following cadmium exposure (Shaikh 

and Tohyama, 1984) and aminolevulinic acid associated with lead poisoning 

(Sithisarankul et al.,1999; Fukui, 2005; Buttery, 1995).  The small zona radiata protein 

(50kDa), a biomarker of endocrine disruption in birds (Jimenez et al., 2007), may also 

pass into the AUS from the blood stream.  

It must be noted that uric acid also has significant binding properties (Mikulski et al., 

1994; McNabb & McNabb, 1980), further adding to the host of substances which 

potentially may be incorporated into the urate spheres during formation. 
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2.8.4. Non-protein constituents of avian urine 

In common with mammalian urine many chemicals, including body metabolites, are 

excreted in avian urine (Casotti and Braun, 2004; Rettenbacher et al., 2004; Lepschy et 

al., 2008). However, unlike in mammals, most solutes are not in solution but reside 

bound in the urate spheres, having been incorporated during sphere formation in the 

proximal tubule (Casotti and Braun, 2004). The elemental composition of the AUS has 

been reported for several bird species by Casotti and Braun, (2004).  Nitrogen is the 

most prevalent element found in AUS, derived from the uric acid and protein content. 

Potassium is typically the next most prevalent element in the spheres over a wide range 

of bird species. Other elements present in smaller amounts, are calcium, sodium, 

potassium, sulphur and chlorine. Other than nitrogen these elements vary in proportion 

between species, while such concentrations are relatively independent of sphere size in 

any one sample. Furthermore, unlike the protein which is arranged in discrete concentric 

layers, the individual elements are randomly distributed throughout the sphere (Casotti 

and Braun, 2004). These reported variations in the non-protein content of AUS may 

suggest that such differences between birds could reflect dietary preferences.   

To date specific compounds such as hormones have not been identified within the AUS.  

 

2.8.5. Urate sphere physicochemical properties 

AUS are stable in dry conditions and may even be preserved in arid or covered 

archaeological sites (Canti, 1998). Normally, however, they disaggregate on wetting 

then re-crystallize as euhedral, bladed or lenticular crystals of uric acid dihydrate 

(Fig.2.8), with the consequent release of trapped electrolytes, especially potassium 

(Drees and Manu, 1996).  
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Figure 2.8. Re-crystallised domestic chicken urate spheres (after 15mins 
at room temperature in an acetate buffer pH 4.6), having a similar 
appearance to those described by Drees and Manu, (1996). 

 

 

Acid conditions can accelerate this process (Drees and Manu, 1996) while alkaline 

solutions, especially lithium carbonate, may fully dissolve the urate spheres without re-

crystallization (Adeola and Rogler, 1994). In addition to desiccation, freezing preserves 

the intact urate spheres (personal observation). Also suspension in ethanol or acetone 

(Drees and Manu, 1996) causes no visible morphological disruption. These methods of 

preservation would also prevent faecal uricolytic organisms degrading the urate spheres 

(Braun, 2009). Such organisms are abundant in the avian lower bowel where they play 

an important part in the nitrogen recycling of refluxed urine (Braun, 2003). 

 

2.9. Conclusions 

Birds have a valuable status as sentinels of environmental change (Peakall, 2000), 

which combined with their ability to produce collectable solid urine samples should 

make them ideal biomonitors (Fossi, 1994). However this chapter has highlighted some 

problems, which may need to be resolved before avian urate spheres (AUS) can be used 

for urinalysis in birds. These include the enterorenal recirculation of excreted 

metabolites, resulting from the combined effects of urine reflux and the renal portal 

system (Laverty and Skadhauge, 2008). Although this process may only relate to 

substances resistant to degradation in the lower bowel, their identification could be 

difficult and stability may not be consistent. Furthermore a high proportion of excreted 
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urine may be uncollectable because the refluxed urate spheres are broken down in the 

lower bowel (Braun, 2009). The amount of urine degraded in this manner varies 

between species and even within individuals depending on their state of hydration 

(Laverty and Skadhauge, 2008). As a result substances intermittently excreted in the 

urine may not be consistently detected in urate sphere samples.    

Despite these reservations the following chapters report on several studies to identify 

biologically relevant compounds excreted in the urate spheres of various bird species 

with the aim of showing the analysis of AUS is suitable as a non-invasive 

biomonitoring method for environmental pollution and stress.  
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Chapter 3. 

Using domestic chickens (Gallus gallus domesticus) to biomonitor a 
heavy metal contaminated soil 

 

3.1. Introduction 

Metals are natural substances, but their increased availability through mining and 

smelting, with subsequent release into the environment from numerous anthropogenic 

sources, makes them a serious threat as persistent toxic pollutants (Walker et al., 2001). 

Some metals (copper (Cu) and zinc (Zn)) are essential trace elements but are toxic at 

higher concentrations (Sileo et al., 2004), while others (e.g. lead (Pb) and cadmium 

(Cd)) have no biological function and can be toxic at low concentrations. High 

concentrations of Cu and Zn are commonly found with other metals in mine waste and 

their toxic impact on fauna, including wild birds, is illustrated by the 1998 mine waste 

spill in Spain’s Donana National Park (Gomez et al., 2004). Pb poisoning of free-

ranging birds following incidental uptake from spent fishing weights and gun shot is 

also well recognised (Scheuhammer and Norris, 1996). The widespread use of metals in 

the world makes it necessary to monitor their concentrations in the environment to 

safeguard biological systems. Typically metals accumulate in soil and sediment where 

they can exist in many states, which determine their bioavailability (Ruby, 2004). For 

this reason a measure of their biological uptake through biomonitoring techniques is 

more relevant than total environmental concentrations (Peakall and Burger, 2003).  

Birds are widely used for biomonitoring environmental heavy metals (Furness, 1993), 

with most tests involving invasive or destructive sampling techniques (Swaileh and 

Sansur, 2006). The advantages of using non-destructive strategies in biomonitoring 

programmes (Fossi, 1994) have led to the increasing use of eggs (Burger and Gochfeld, 

1993), feathers (Burger et al.,, 1992) and guano (Fitzner et al., 1995), to biomonitor 

avian exposure to environmental heavy metals. In order for such materials to be valid 

for metal biomonitoring they need to correlate with blood concentrations (Hollamby et 

al., 2006), representing the bird’s current bioavailable intake (Furness, 1993). Compared 

to the acquisition of eggs from wild birds being restricted to the laying season and 

feathers to the time of moult, whole guano has the advantage of continuous production 

and easy collection. 

Guano is a mixture of faecal and urinary excretions resulting from the digestive and 

urinary systems sharing a common outlet in birds called the cloaca. The faecal 
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component of guano contains a variable mixture of bile excreted (representing 

bioavailable) and unabsorbed heavy metals simply transiting the digestive system 

(Mohanna and Nys, 1998). The white, urine component is derived from the blood 

passing through the kidneys (Casotti and Braun, 2004). Consequently its heavy metal 

content should be linked to the bird’s current ‘bioavailable’ intake (Furness, 1993) i.e. 

the metal has been taken up into the blood stream from the environment.  

 

 

Figure 3.1. Scanning electron micrograph (SEM) of ethanol extracted 
avian urate spheres (AUS) from chickens on the contaminated allotment. 

 

 

Avian urine is a suspension of microscopic biomineralised (Taylor and Simkiss, 1989) 

uric acid particles (Fig.3.1) called urate spheres (Casotti and Braun, 2004). These avian 

urate spheres (AUS) have significant ion binding properties (McNabb & McNabb, 

1980), being composed of 5% protein by dry mass (Braun and Pacelli, 1991). The 

predominant protein in AUS is serum albumin (Casotti and Braun, 2004), which is 

recognised to bind heavy metals (Bal et al., 1998). The AUS is also 65% by dry mass 

uric acid, which binds several transition metals (Mikulski et al., 1994). Thus it is likely 

that, during formation in the avian kidney, the AUS will incorporate heavy metals 

filtered from the blood stream. In this way AUS make the urine component of guano 

useful for measuring heavy metal exposure in birds because they may bind and package 

metals for urinary excretion.  It can therefore be hypothesized that excess uptake (to the 

chickens’ requirements) of essential metals Cu and Zn will be reflected in their 

increased urinary excretion, as part of homeostatic regulation, while non-essential 
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metals such as Pb, will be excreted in direct proportion to blood concentrations. Further 

support for using AUS to monitor metal concentrations is that human urine is used for 

biomonitoring exposure to Pb, of which approximately 70% is excreted via the urine 

(C.D.C., 2005). Urinary excretion of heavy metals in mammals is dependant on 

metallothioneins, which avidly bind Zn, Cu, Cd, Pb and Hg, enabling their transport, 

detoxification and metabolism in the body (Nordberg, 1998). As metallothioneins also 

play a major role in metal excretion in birds (Nam et al., 2005), and their molecular size 

(6.5 kDa) would allow passage in glomerular filtrate (Janes and Braun, 1997), avian 

urine is highly likely to contain heavy metals.  

The overall aim of the work in this Chapter is to demonstrate that AUS contain 

measurable concentrations of heavy metals, which reflect a bird’s exposure to 

contaminated soil and thus can potentially be used as a sampling technique for 

biomonitoring environmental heavy metal contamination.  

 

 

 

3.2. Materials and methods 

 

3.2.1. Background 

To determine the potential of this avian urine-based technique for measuring metal 

bioavailability from a contaminated soil, in 2006 -2007, I was able to sample birds on a 

local Newcastle City allotment (Branxton) prior to and following its remediation. 

Laying chickens were kept on the allotment, which had a soil known to be contaminated 

with Pb, Cu and Zn (Pless-Mulloli et al., 2004). These chickens provided an ideal 

sentinel species (Peakall and Berger, 2003) for biomonitoring the soil heavy metal 

contamination, before and six months after site remediation by top soil replacement. As 

the chickens had access to the contaminated soil, and ingested soil may typically 

constitute 10% of their diet (Beyer et al., 1994), these birds were expected to have 

elevated body metal concentrations before soil remediation.  

As a control, metal concentrations in AUS from laying chickens on a similar Newcastle 

City allotment (Walker Road), where no soil exposure was allowed, were compared 

with concentrations in urine from birds on the contaminated allotment. The proposed 

urine based method was also compared with commonly used non-destructive sampling 



 
 

28

techniques (egg, feather and whole guano analysis) for heavy metal biomonitoring using 

birds. 

 

 

A  B  

C D  
 
 

Figure 3.2. Photographs of the chickens on the contaminated allotment 
A: before and B: after remediation. The only difference in the chicken 
pen being that the soil beneath the feeder had been replaced. In contrast, 
the difference outside the chicken pen between C: before and D: after 
remediation was more obvious. 

 

3.2.2. Sample collection 

Samples were collected from the contaminated allotment on 2nd November 2006, a few 

days prior to remediation, and subsequently six months later on 25th April 2007. The 

samples from the control allotment were collected on 10th November 2006.  

Site metal concentrations and soil sampling 

Soil samples were collected for metal analysis in order to confirm the contamination 

status of the allotment. It was previously reported as having geometric mean soil 

concentrations for Cu, Pb and Zn of 166, 674 and 823 mg kg-1 (dry mass) respectively 

(Hartley et al., 2004).  



 
 

29

Six surface horizon (0-10cm) soil samples were taken from a chicken pen on the 

contaminated allotment to determine total soil heavy metal concentrations available to 

the chickens. The soil samples were kept refrigerated (0-40C) in sealed plastic bags until 

processed (see 3.2.4). It was not necessary to take soil samples from the control 

allotment because the birds here were kept entirely on wood shavings with no access to 

soil. Six months after site remediation samples of the new soil were taken from the 

rebuilt chicken pen in which the birds previously exposed to contaminated soil were 

kept. 

 

Biomonitor sampling 

Background: Chicken housing and feeding regimen 

On the contaminated allotment, prior to remediation, the chickens were kept in a group 

of 20 birds confined to a caged enclosure (approximately 6m2) with a floor of exposed 

contaminated soil, where they were fed (Fig.3.2). The birds had an adjoining separate 

night roost consisting of a wooden floored shed with perches and nest boxes. The diet of 

these birds was a commercial brand fed ad libitum consisting of a mixture of pelleted 

feed and whole grains. Also varying amounts of kitchen scraps (vegetable peelings and 

stale bread) were fed. Fresh water was provided in drinkers replenished daily with tap 

water from the domestic supply.  

On the control allotment a single group of 35 chickens was housed in a purpose-built 

shed having a concrete floor covered with regularly replenished wood shavings. The 

birds were exclusively fed ad libitum on a pelleted commercial laying ration (different 

from that fed on the contaminated allotment) and water was provided from a domestic 

supply. Birds were not allowed access to any soil on this control allotment. 

Six representative samples of the rations as fed (excluding kitchen scraps) were 

collected from each allotment for metal analysis; the exact same ration was fed before 

and after remediation to the chickens on the contaminated allotment. 

Samples collected for biomonitoring   

From the night roost and nesting boxes on both the contaminated and control allotments 

several kilograms of freshly passed guano, a few freshly laid eggs (contaminated: n=3, 

control: n=6) taken to have been laid by different hens and numerous feathers were 

collected. Following remediation of the contaminated site only guano was collected for 

analysis. Eggs were not collected because of the low metal levels recorded. Feathers 
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were not collected either because they were expected to still reflect earlier exposure 

being shed only annually (King and McLelland, 1975). 

  

Sample preparation  

Eggs  

The eggs were thoroughly cleaned using warm tap water and a nylon brush, rinsed with 

18MΩ deionised water and then dried prior to being stored frozen (-200C). To prepare 

the eggs for metal analysis the shell was peeled from the frozen eggs and internally 

adherent albumin washed off with18MΩ deionised water. The albumin was discarded, 

this being facilitated by it thawing quicker than the yolk, which was retained for 

analysis. The albumin was not analysed because of its reported low affinity for Pb and 

Cu in chickens exposed to elevated intake concentrations (Flores et al., 1997; Skrivan et 

al., 2006). 

 

Feathers  

Clean, intact wing primary feathers were collected and grouped by their colour into four 

samples corresponding to the chicken breeds on the contaminated allotment (Rhode 

Island Red, Moran, White Leghorn and Black Rock). The feathers from the control 

allotment had only three different colours so provided just three sample groups for 

analysis. Although not guaranteeing feathers came from different individual birds 

different colours could be assumed to not be from the same one and so give some 

measure of biological variation. Feathers were first washed with warm tap water, then 

thoroughly rinsed with 18MΩ deionised water and dried before storage at room 

temperature in sealed plastic bags. This simple cleaning method was chosen because 

despite repeated acetone and water washes, favoured by many authors (Burger et al., 

1992), feathers still appear to retain the heavy metals accumulated from external 

contamination (Dauwe et al., 2003). 

 

 

Guano  

Only fresh, whole guano pellets were selected with any adherent feathers or bedding 

material removed prior to storing frozen (-200C) in sealed plastic bags. 
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3.2.3. Urate sphere extraction and uric acid analysis of AUS 

Background 

Avian urine is composed of a colloidal suspension of discrete spherical urates 

measuring 0.5 to 10µm (Casotti and Braun, 2004), these spheres are insoluble in ethanol 

or acetone but are disrupted in aqueous solutions (Drees and Manu, 1996). The 

extraction technique depended on the principle of differential sedimentation; the small 

size of the urate spheres allowing them to remain suspended in the ethanol for longer 

than larger or denser particulates including soil from the faecal component. 

 

 

Extraction 

To extract the urate spheres from whole guano, an approximately 200g representative 

sample of frozen guano was defrosted at room temperature with 300mL GPR absolute 

ethanol in a glass beaker. On breaking the guano up with a glass rod, the white urinary 

component readily formed a suspension, any gross floating faecal contaminants being 

removed at this time. To avoid the transfer of denser faecal material including soil 

particulates, only the upper portion of the supernatant was decanted into a 50mL glass 

test tube. The supernatant was allowed to settle for 5 min, after which the top 20-30mL 

portion (representing the extracted urate sphere sample) was decanted into a 50mL 

polypropylene centrifuge tube (Fisherbrand®). The residue from the glass test tube was 

returned to the beaker and the process repeated 4-5 times until no further white urate 

spheres could be extracted. The extracted urate sphere sample was centrifuged at 2000 x 

g for 2 min, the discoloured ethanol discarded and the solid AUS washed twice with 

approximately 40mL of fresh ethanol by vortexing and again centrifuging (2000 x g for 

2 min). 

  

Quantification of AUS contents 

Qualitative purity of the solid urate sphere extract was determined by examining a small 

representative fraction under a medium power light microscope, an adequately pure 

sample consisting almost entirely of characteristic urate spheres (Fig. 2.1A).  

To quantify the metal constituents in the AUS extracts it was necessary to determine 

their uric acid content. This was achieved by using a combination of two methods for 

uric acid analysis in avian guano  (Van Handel, 1975; Adeola and Rogler, 1994). In 

brief, an accurately weighed 30-40mg representative fraction of the dry extracted urate 
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spheres was digested in 10mL of 0.5% (w/v) LiCO3 solution in a boiling water bath for 

10min. The resulting solution was made up to 100mL with 18MΩ deionised water, from 

which a well-mixed representative 5mL sample was filtered using a 0.45µm pore size 

syringe filter (Whatman® PuradiscTM 25 AS). A 100µL aliquot of this filtrate was 

diluted to 1mL, added directly to a cuvette and mixed with an equal volume (1mL) of 

the freshly made up chromagen reagent (Van Handel, 1975). Although the original Van 

Handel (1975) method used a 5 minute end point, it was found 10 min was preferable, 

at which time the absorbance (450nm) of the yellow product was measured using a 

Biochrom Libra S12 UV/Visible spectrophotometer (Biochrom Ltd, Cambridge, UK). 

Calibration was achieved using water blanks and uric acid standard solutions made up 

in 0.5% (w/v) LiCO3. Specificity to uric acid was determined by overnight incubation at 

room temperature of sample duplicates with an equal volume of 0.5U/mL uricase 

(Sigma), which resulted in equivalent to blank readings. 

 

Using protein to quantify AUS contents 

After uric acid, protein is the next most prevalent constituent of the AUS, 

predominantly serum albumin (Casotti and Braun, 2004). As a consequence of this it 

was proposed that protein content may be used to quantify the urate sphere constituents. 

Because the acid conditions used to break open the AUS would hydrolyse proteins into 

their amino acid components, an alternative method to extract the protein content of 

AUS was explored. The method by Sharif and O’Hagan, (1995) using 5% w/v SDS in 

0.1 M sodium hydroxide successfully dissolved the AUS, liberating the protein into 

solution. Replicating work by Janes and Braun, (1997), the Bradford dye method 

(Bradford, 1976), using premixed reagents (Bio-Rad Protein Assay), was used to 

measure the AUS protein content. However it was found impractical to measure the 

released protein because it co-precipitated with the uric acid. This was because uric acid 

has a high affinity for proteins such as serum albumin (McNabb and McNabb, 1980). 

To date the chemical constituents of extracted urate spheres have only been quantified 

against uric acid content, although if a suitable method for protein analysis can be 

devised the protein content may be used as an alternative. 
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3.2.4. Sample preparation and analysis 

All soil, chicken feed, egg, feather, whole guano and extracted urate spheres were oven 

dried to constant mass at 650C, then ground and sieved to homogenise, prior to taking a 

representative sample for heavy metal analysis. Pb, Cu, and Zn concentrations for all 

samples other than chicken feed and those collected following remediation, were 

determined by a UKAS (United Kingdom Accreditation Service) accredited laboratory 

using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) after a 2 hour acid 

reflux pre-digestion. Concentrations of detection were poorer for some of the smaller 

samples but generally were between 2 and 8mg kg-1 for Cu and Pb while >0.8mg kg-1 

for Zn on a dry mass basis. Metal analysis of chicken feed (from both allotments), 

whole guano, extracted urate spheres and soil (from the remediated allotment) was 

performed using a Unicam 701 ICP-OES (Unicam Instruments, Cambridge, England) 

after acid reflux using a standard method (EPA, 1991). Calibration standards (Sigma) 

were freshly made up for each metal, having limits of detection in a complicated matrix 

solution of 0.1mg L-1 for Pb and 0.01 mg L-1 for Cu and Zn. The metal concentrations in 

the two acids were determined by digesting acid blanks in the same manner as the 

samples, this value being subtracted from the sample results before calculating metal 

values. The resulting limits of detection in dry samples for Pb, Cu and Zn were 5, 0.5 

and 0.5 mg kg-1 respectively. 

All metal concentrations are expressed as mg kg-1on a dry mass basis, with urate sphere 

concentrations as µg g-1 uric acid, allowing for sample comparison to compensate for 

variations in extraction purity. 

Representative samples of the dried, ground and sieved (2mm) soil were analysed for 

pH and soil organic matter (SOM) using a modified method (Clark et al., 2006) because 

these properties have a strong influence on the bioavailability of soil heavy metals 

(Ruby, 2004). The pHw was determined after reacting soil for 1 hour, 1:1 with 18MΩ 

deionised water (5g/5ml). The pHw of the supernatant was measured, after centrifuging 

(2000g for 2mins), using a pre-calibrated glass electrode (Denver Instruments). The 

SOM content was determined on accurately weighed 5g soil samples by mass reduction 

from overnight ignition in a 4500C furnace.  
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3.2.5. EDAX analysis of extracted urate spheres 

The opportunity arose to use the facilities of the environmental electron microscope in 

the Advanced Chemicals & Materials Analysis Service at Newcastle University. This 

unit can analyse small particulates similar to the urate spheres for their elemental 

constituents using energy dispersive x-ray micro-analysis (EDAX) (Vesk and Byrne, 

1999). Furthermore this method of analysis has previously been used to identify the 

elemental composition of urate spheres from birds, including domestic chickens (Casotti 

and Braun, 1997; Casotti and Braun, 2004).   

 

3.2.6. Data analysis 

Statistical analyses were not performed on the whole guano and AUS data because 

bulked samples had been used, giving effectively n=1, consequently sampling would 

reflect technical rather than biological variability. Data from the small number of 

individual egg and feather samples was analysed using the non-parametric Mann-

Whitney U-test. For these, sample results are reported as median and range values. 

However the larger number of soil and feed samples (being normally distributed) 

allowed parametric analysis using the Student’s t-test, with significant differences (p< 

0.05) set at a 95% confidence interval. Where samples were below the limit of detection 

(LOD), a value of half the LOD was used in data analysis (Nicholson et al., 1999; 

Dauwe et al., 2005).  

 

3.3. Results  

3.3.1. Soil analysis 

Soil samples from the chicken pen on the contaminated allotment prior to remediation 

had elevated concentrations of Pb, Cu and Zn (Table 3.1) when compared with 

background values reported in the literature (McGrath and Loveland, 1992). These 

elevated concentrations were comparable to previous results reported for this allotment 

(Hartley et al., 2004). The mean metal concentrations of the soil samples from the same 

pen after remediation were similar to reported background concentrations (McGrath and 

Loveland, 1992). However this fresh soil had significantly (p<0.05) lower 

concentrations of all three metals in comparison to the pre remediation pen soil. 
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Both the contaminated and replacement soils had neutral pH values (7.3+0.3 and 

7.31+0.03 respectively) confirming earlier reported values (Hartley et al., 2004). The 

higher SOM value of 33.5+10.2% in the contaminated soil compared to 7-13% for 

allotment soils reported in the literature (Clark et al., 2006), may be related to its dark 

colour and visible residues of chicken manure. The replacement soil was lighter 

coloured, with a more clay-like appearance and had a lower SOM value (12.3+0.5%) 

despite some visible feed and guano content. 

 

Table 3.1. Top soil pH, percentage soil organic matter (%SOM), lead 
(Pb), copper (Cu) and zinc (Zn) from the chicken pen on the 
contaminated allotment before and after remediation by soil replacement, 
compared with previous data for the allotment soil and mean background 
values for soils in England and Wales reported in the literature.  

 pHw %SOM Pb Cu Zn 

Chicken pen soil 
Preremediation 7.30+0.30 33.5+10.2 555+301 273+59 827+241 

Postremediation 7.31+0.03 12.3+0.5 58.5+10.8 15.1+1.1 57.7+2.3 

Soil concentrations prev. studya (n=12) 7.3+0.2 N/R 674+286 166+76 823+194 

Mean background soil concentrations   74 23 97 
Metal concentrations as geometric mean + sd mg kg-1 dm (n=6). 
aHartley et al., (2004). 
bMcGrath and Loveland (1992). 

 

3.3.2. Chicken feed analysis  

Lead concentrations in chicken feed samples from both allotments were not 

significantly different from each other (p>0.05, 95% CI) and comparable to the reported 

low concentrations in commercial poultry feeds (Table 3.2). Both Cu and Zn 

concentrations were significantly different (p< 0.01, 95% CI) between feed given on 

each allotments. The control chicken feed was at the low end of reported Cu and Zn 

concentrations in the literature, however in contrast the contaminated allotment feed 

concentrations were well below this (Table 3.2).   

On gross examination of the two feed samples it was clear the chickens on the 

contaminated allotment were fed on a ration containing a high proportion of whole 

grain, compared to the control chickens’ diet, which consisted entirely of pelleted feed.  
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Table 3.2. Lead (Pb), copper (Cu) and zinc (Zn) concentrations (mg kg-

1dm median and range) in chicken feed as fed on the contaminated (pre 
and post remediation) and control allotments, with for comparison the 
reported range of values in home mixed feed fed to laying chickens in 
England and Wales. 

Feed samples Pb *Cu *Zn 
Control allotment  1.03 (0.75-1.84) 10.04 (9.65-13.28) 57.05 (80.33-53.66) 
Contaminated allotment  1.50 (1.19-1.66) 5.83 (5.11-6.12) 18.72 (17.32-23.71) 
Reported range of valuesa  <1-1.12 10.7-56.1 94.1-311 
Metal concentrations as median and range mg kg-1 dry matter (n=6). 
Asterisks indicate significant difference p<0.01 at 95% CI (Mann-Whitney U-test) between feed from  
control and contaminated allotments.aNicholson et al., (1999). 
 

3.3.3. Metal concentrations in eggs (yolk and shell)  

Pb values in all egg samples (yolk and shell) from both allotments were below the level 

of detection (LOD) of 2mg kg-1 dry mass (Table 3.3). Zn concentrations in the egg 

yolks were not significantly different (p>0.5 at 95% CI) between the contaminated 

allotment and control site. However, concentrations of Cu in the yolks from the 

contaminated site were significantly (p<0.05 at 95% CI) higher than control samples.  

The Zn concentrations in shell samples from chickens on the contaminated site were 

significantly (p<0.05 at 95% CI) higher than control site egg shell values. Cu 

concentrations in egg shell samples were below the LOD of 2mg kg-1 dry mass in all 

control eggs and two of the three contaminated samples making comparison impossible.  

Table 3.3. Lead (Pb), copper (Cu) and zinc (Zn) concentrations in 
chicken egg samples (yolk and shell) from chickens on the contaminated 
(prior to remediation) and control allotments. 

Egg samples Yolk Shell 

Pb Cu Zn Pb Cu Zn 
Contaminated 
allotment 
(n=3) 

1 <2 3 68 <2 <2 <4 
2 <2 3 70 <2 <2 7 
3 <2 3 94 <2 2 <4 

Control allotment 
(n=6) 
  

1 <2 2.9 73 <2 <2 1.8 
2 <2 <2 52 <2 <2 0.9 
3 <2 <2 77 <2 <2 1.7 
4 <2 2 74 <2 <2 <0.8 
5 <2 2.2 78 <2 <2 1.2 
6 <2 <2 73 <2 <2 <0.8 

<2, <4 or <0.8 signifies value was below the relevant limit of detection of 2, 4 or 0.8mg kg-1 

Values as mg kg-1 dry mass.    
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3.3.4. Metal concentrations in feathers   

Chicken feathers from the contaminated allotment (Table 3.4) had significantly 

(p<0.05) greater Pb concentrations than the control birds assuming the control birds to 

have concentrations at half the LOD. However Zn concentrations in feathers from the 

contaminated allotment were not significantly increased over controls. Conversely there 

was significantly (p<0.05) more Cu in feathers from control birds compared to feathers 

collected from birds on the contaminated site.  

 

Table 3.4. Lead (Pb), copper (Cu) and zinc (Zn) concentrations mg kg-1 
as median (and range) in feathers from chickens on the contaminated and 
control allotment. 

Feather samples Pb Cu Zn 
Control site (n=3) <8 17 (16-23) 130 (100-130) 
Contaminated site (n=4) 14.8 (13-18) 9.5 (8-10)  140 (120-240) 
 

 

 

3.3.5. Metal concentrations in whole guano   

Whole guano from chickens on the contaminated allotment (Fig.3.5) before remediation 

had higher median Pb concentrations than the guano collected from the control site; 

median Cu and Zn concentrations however were not obviously different. All three metal 

concentrations in the guano from chickens on the contaminated allotment prior to 

remediation were higher than in the guano of the same birds 6 months after remediation. 

In comparison with control site metal concentrations, the guano from the remediated 

site appeared to have higher Pb but lower Cu and Zn. 
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Figure 3.3. Median (n=6) metal concentrations (mg kg-1 dry mass) in 
whole guano. Lead (Pb), copper (Cu) and zinc (Zn) concentrations in 
samples from exposed chickens before and after soil remediation 
compared to unexposed control chickens.  

 

 

3.3.6. AUS analysis 

Fewer samples were analysed because several were lost as a result of the high reactivity 

of the extracted AUS with acid during the pre-digestion stage of analysis. This resulted 

in there only being two analyses from exposed chickens and four each from control and 

post remediation chickens. 

 

3.3.6.1. Purity of AUS samples   

Representative samples of extracted AUS were examined by light microscopy and all 

appeared to be free of contamination from soil or faecal material.  

The chemical analysis of each sample of extracted AUS ranged from 54 to 60% uric 

acid by dry mass, representing a purity of 83 to 92% respectively.  



 
 

39

  

3.3.6.2. AUS metal concentrations  

The extracted AUS samples from the chickens on the contaminated allotment prior to 

remediation appeared to have elevated concentrations of all three metals compared to 

AUS samples from chickens on the control allotment (Table 3.5). Six months after 

remediation the median concentrations of Cu and Zn were 16 and 85 µg g-1 uric acid 

respectively being below both control site and pre-remediation values. The median Pb 

concentration of 147 µg g-1 uric acid post remediation was similar to the pre-

remediation concentrations while still higher than control concentrations. 

 

 

Table 3.5. Lead (Pb), copper (Cu) and zinc (Zn) concentrations µg g-1 
uric acid as median (and range) in extracted urate spheres from chickens 
on the contaminated (pre- and post-remediation) and control allotments. 

Sample source Pb Cu Zn 

Contaminated 
allotment 

Pre-remediation 
(n=2) 

208.5 (208-
209) 

65.8 (65.6-
66.1) 

526 (512-540) 

Post-remediation 
(n=4) 

147.0 (118-
413) 

16.0 (15-19) 84.5 (84-102) 

Control site (n=4) 
6.6 (4.7-7.5) 37.6 (17.7-

49.1) 
250.3 (135.5-
315.8) 
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Figure3.4. Bar chart of median Lead (Pb), copper (Cu) and zinc (Zn) 
concentrations (µg g-1 uric acid) in extracted urate sphere (urine) samples 
from exposed chickens before and after soil remediation compared to 
samples from unexposed control chickens. 

 

3.3.6. 3. EDAX analysis of extracted urate spheres 

The percentage dry mass content of Pb, Cu and Zn determined by ICP-OES even in the 

contaminated birds were all below the EDAX detection limit of 0.1% dry mass. As a 

result these metals were not expected to be detected in the EDAX analysis (Fig.3.5B). 

However Ca and K were detected by this method, a consequence of both ions being 

typically between 2 and 5% by dry mass of urate spheres using ICP-OES analysis 

(personal findings).  
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A 

  

B 

  

C 

 

Figure 3.5. (A): Electron micrographs and (B): Energy dispersive x-ray 
analysis (EDAX) of two individual alcohol extracted urate spheres from 
chickens on the metal contaminated allotment (collected August 2005). 
(C): EDAX of the carbon stub representing the non-sphere background 
analysis. 
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The background analysis of the carbon stub (Fig. 3.5C) had several contaminants 

especially sulphur (2.4KeV) from an adhesive material (M. Staines, personal 

communication). Although Cu appeared to be detected by EDAX in these spheres the 

concentration was no greater than the background analysis so this was discounted. If Pb 

or Zn had been detectable they would have appeared as peaks at 2.5 and 8.5KeV 

respectively on the EDAX analysis. 

 

3.4. Discussion 

 

3.4.1. Metal concentrations and properties of contaminated soil  

The lead concentration in the pre-remediation chicken pen soil (Table 3.1) was above 

the soil guideline values of 450mg Pb kg-1 dry mass, confirming this allotment’s 

contaminated land status (DEFRA, 2000). Also Cu and Zn exceeded the now withdrawn 

Inter-departmental Committee on the Redevelopment of Contaminated Land (ICRCL) 

intervention concentrations of 130 and 300mg kg-1 dry mass respectively. These 

elevated concentrations of  Pb, Cu and Zn in the soil samples, although characteristic of 

the incinerator bottom ash added to the site (reported as 760, 870 and 1100 mg kg-1 dry 

mass respectively, Pless-Mulloli et al., 2004), may also have originated from other 

sources. These include the use of agro-chemicals on the gardens (Rimmer et al., 2006) 

and burning rubbish especially plastics (Meharg and French, 1995). 

Chicken manure is likely to be responsible for the chicken pen SOM values being 

higher than the 7-13% reported for allotment garden soils (Clark et al., 2006). This was 

backed up by the later analysis of chicken guano using the same technique giving an 

organic matter content of 76%. Although the soil metal load may also be derived from 

chicken manure input, due to high Cu and Zn inclusion in commercial diets (Mohanna 

and Nys, 1998), I showed on analysis that the feed of these birds was low in these 

metals, discounting this as a major source of soil metal contamination. From my 

findings the combination of neutral pH and high SOM of these samples would be 

expected to reduce metal bioavailability in the contaminated chicken pen soil (Clark et 

al., 2006).  
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3.4.2. Metal concentrations in chicken feed 

Chickens on the control allotment were fed rations high in added Cu and Zn with 

concentrations being comparable to literature values (Nicholson et al., 1999). However 

birds on the contaminated site before and after remediation were fed a ration 

significantly lower in Cu and Zn. As the control birds had no access to soil, the feed was 

the major source of metal uptake, in contrast to the birds on the contaminated site in 

which soil was the major metal exposure route. The Pb concentrations in both rations 

were low and would not be expected to significantly contribute to the uptake of this 

metal by chickens. A consequence of the higher concentrations of Cu and Zn in the feed 

of control site chickens compared to the contaminated soil exposed birds prevented a 

meaningful comparison of these metals in biomonitor samples. However, post-

remediation when the soil contribution to uptake of these metals was drastically reduced 

in the birds on the contaminated site, the different feed concentrations (Table 3.2) were 

reflected in the guano samples (Fig.3.5).  

 

3.4.3. Biomonitor samples 

Metal concentrations in eggs  

In the current study (bearing in mind the LOD of 2mg kg-1) egg yolk and shell were 

unsuitable materials to biomonitor increased Pb exposure from the contaminated soil, 

confirming that lead has a low transfer to eggs (Walsh, 1990). However the sensitivity 

of the analysis method used here may have compromised my results and should not 

preclude eggs from being a valid material for biomonitoring. Pb concentrations in egg 

yolks and shells from Pb exposed chickens (from ingested Pb-based paint chips in their 

environment) were 0.4 and 0.45mg kg-1 respectively and significantly above 

concentrations in eggs from control birds (Trampel et al., 2003). In addition Mazliah et 

al., (1989) reported eggshells from Pb dosed hens had 6-12 times the Pb concentration 

of eggshells from controls; while the Pb content of the egg yolks from dosed hens was 

significantly higher than controls. In a study on environmental uptake of heavy metals 

by house sparrows (Passer domesticus) there was significant correlation between Pb, 

Cu and Zn in egg shell and egg content (Swaileh and Sansur, 2006), making the shell a 

valuable biomonitoring matrix for these metals. However Grand et al., (2002) cast doubt 

on the value of eggs for biomonitoring Pb exposure in birds, reporting no correlation 

between blood and egg Pb concentrations in two species of wild duck.  
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Skrivan et al.,(2006) raised the dietary Cu intake of laying chickens increasing Cu 

concentrations in egg yolk and shell from 3.5 to 5.0mg kg-1 and 2.0 to 2.5mg kg-1 (dry 

mass) respectively. However these small increases required more than a ten-fold 

elevation in dietary Cu intake, further emphasising that eggs are an insensitive monitor 

for this metal. In a study on concentrations of heavy metals in laying great tits (Parus 

major) and their eggs, Dauwe et al.,(2005) hypothesised that egg content or shell were 

unsuitable as a measure of exposure because Cu and Zn are under physiological control. 

These limitations on eggs as biomonitors for Cu and Zn exposure are reflected in egg 

yolks in this study but the egg shell values are too few to draw any conclusion. In the 

light of these findings no eggs were collected from the chickens after remediation for 

metal analysis.  

As the eggs from the contaminated allotment were used for human consumption an 

estimate of dietary  Pb exposure was calculated in a manner similar to Trampel et al., 

(2003). By assuming Pb concentration in the egg yolks, typically 8-9g dry mass, had 

reached the LOD (2 mg kg-1 dry mass), a 60kg person would require a daily intake of 

greater than 12 eggs, to exceed the provisional tolerable weekly intake (PTWI) of 

0.025mg kg-1 body mass (JFWEC 1999). 

  

Metal concentrations in feathers  

While feathers reflected the elevated Pb exposure on the contaminated allotment 

compared with the control site, Zn concentrations were no different and Cu 

concentrations were significantly lower in feathers collected from the contaminated site 

compared to those from the control. Again the results obtained in relation to essential 

metals Cu and Zn could be explained by their homeostatic regulation in birds (Dauwe et 

al., 2003) and it is known that the internal deposition of heavy metals in feathers is only 

a fraction of the total body burden, with the exception of mercury (Veerle et al., 2004) 

and organo-tin (Kannan and Falandysz, 1997). The surface affinity of feathers to bind 

heavy metals is shown by their use in wastewater clean up (Al-Asheh et al., 2003) and 

how cleaning techniques can add to their metal content (Hogstad et al., 2003). Pb is 

recognised as principally a surface contaminant in feathers (Nam et al., 2004), so the 

higher concentration of Pb we report here may be from contaminated soil or guano 

accumulation on their surface. However similar differences from surface contamination 

with soil derived Cu and Zn could be masked by feed or guano contamination from their 

typically high concentrations in commercial chicken feed (Mohanna and Nys, 1998). As 

the inter-moult period dictates how long the feathers have to accumulate surface metals 
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(Veerle et al., 2004) and this may not be the same on the two allotments, this factor 

could also adversely influence the results.   

The reported lack of correlation between Pb concentrations in different feather groups 

or between feather and blood Pb concentrations in blackbirds (Turdus merula) from Pb 

polluted urban areas (Scheifler et al., 2006), further confirms the limitations of this 

technique for measuring bioavailable Pb exposure.  

Feathers were not collected following remediation as it was considered likely that after 

just 6 months they may still reflect pre-remediation contamination concentrations. This 

was because typically adult domestic chickens moult only once a year in autumn (King 

and McLelland, 1975) and the soil remediation took place in early November 2006. As 

a result post-remediation feathers were likely to have been formed prior to remediation, 

so both internally and surface accumulated metals in the feather could be derived from 

contaminated soil exposure. 

  

Metal concentrations in whole guano   

Pb concentrations in whole guano from birds on the contaminated allotment were 

elevated over control samples (Fig.3.5.) and normal background concentrations reported 

in the literature (Nicholson et al., 1999). This indicates that oral uptake of contaminated 

soil was responsible for the high  Pb guano concentrations and suggests whole guano 

could be a suitable biomonitor for Pb exposure. By assuming the majority of ingested 

Pb was from the contaminated soil and dietary Pb is concentrated 3.25 times in chicken 

guano as reported for Cu (Kunkle et al., 1981), the calculated percentage soil uptake on 

a dry matter basis was 8%. This is in agreement with estimates of soil intake by 

chickens reported in the literature (Beyer et al., 1994). 

Following remediation of the contaminated allotment with clean soil (having a mean 

value of 59 mg Pb kg-1dry mass), the whole guano lead concentration dropped to a 

median of 31 mg Pb kg-1. But if the same soil intake value of 8% as determined above is 

assumed, on calculation this should have resulted in a guano concentration of 15.6 mg 

Pb kg-1, which is nearer to the value of 8.3+5.0 mg Pb kg-1obtained from the guano of 

chickens on the control allotment (Fig. 3.5.). This elevated concentration of Pb in guano 

after site remediation is likely to have resulted from the urine component of the guano 

(see 3.4.3.4. below). 

Cu and Zn concentrations in the guano of chickens on contaminated soil were not 

apparently different from guano metal concentrations sampled from the control site 

(Fig.3.5.), while guano samples post remediation appeared to have lower metal 
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concentrations than those found in guano from control and pre-remediation birds. This 

result shows how the typically high dietary inclusion rates of these metals (Mohanna 

and Nys, 1998) in the ration fed to the control site birds, masked the elevated uptake 

from the soil in birds on the contaminated allotment. The similar metal concentrations 

found in the guano samples would suggest birds from the control and contaminated sites 

are being equally exposed to Cu and Zn. This is not the case because the metals come 

from different sources (either food or contaminated soil) and so may be in different 

chemical forms, which can affect their relative bioavailability (Ruby, 2004). Cu and Zn 

in guano from the control allotment birds is entirely from the feed, and these metals are 

reported to be poorly absorbed in chickens with less than 6% being retained in the body 

from commercial diets (Mohanna and Nys 1998). As concentrations of Cu and Zn are 

low in the feed (5.7 and 20mg kg-1) but high in the soil (273 and 800mg kg-1) on the 

contaminated allotment, it can be calculated that most of the guano derived metal 

originates from the soil intake of these chickens. Assuming again a soil intake of 8% 

(dry mass basis), for each kg of dry diet consumed the  

Zn intake from soil would be 8% of 827 i.e. 66.2mg Zn, while from feed 92% of 20 

results in an intake of 18.4mg Zn; similarly the Cu intake from soil is 8% of 273 i.e. 

22mg Cu compared with the lower intake from the feed being 92% of 5.7 i.e. 5mg Cu. 

The calculated intake of Cu and Zn in the control chickens (being entirely from feed) of 

10.6mg Cu kg-1 and 60.5mg Zn kg-1 was lower than the intake of chickens on the 

contaminated allotment, 27mg Cu kg-1 and 84.6mg Zn kg-1 respectively. As this 

difference between contaminated and control chickens is not shown in the whole guano 

analysis (Fig. 3), it may suggest the soil derived metals are more readily absorbed from 

the digestive system as a consequence of being more bioavailable. In a separate study I 

determined the Cu and Zn bioavailability in the soil from the contaminated allotment 

using an in vitro method (Rieuwerts et al., 2000) and found them to be high (75-84%). 

This is consistent with these metals’ likely origin from added anthropogenic products of 

combustion (incinerator bottom ash) in contrast to geological sources found in 

background soils (Rieuwerts et al., 2000).  

This highlights a potential problem of using whole guano in metal exposure studies 

because it does not take into account variations in metal bioavailability (Ruby, 2004).   
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AUS 

Extraction  

Because the method of extraction depends on the formation of a persistent suspension of 

AUS, drying and grinding the guano samples prior to extraction was not carried out, as 

this would have increased the formation of similar fine particulates. Although small Pb-

rich particulates (<37µm) have been reported in urban soils (Clark et al., 2006) and such 

high density particulates are difficult to separate gravitationally (Mercier et al., 2001) no 

serious contamination problems were encountered. This was evidenced by microscopic 

examination of the AUS samples (Fig.2.1A). 

The post-remediation extracted AUS  (Fig.3.6.) appear to show urine to be a route for 

Pb excretion. Additionally the persistent high AUS concentration, despite low feed and 

soil values, confirms this metal’s presence in extracted urate spheres is not simply from 

faecal contamination.  

Metal concentrations 

In contrast to other methods (eggs, feathers or whole guano), AUS samples from 

chickens on the contaminated soil, when compared with controls, appeared to give a 

better representation of the birds’ elevated exposure to all three heavy metals (Fig.3.6.). 

This may be a consequence of the AUS content consisting of heavy metals entirely 

derived from the bloodstream following digestive absorption, hence representing the 

fraction of metals from environmental sources that are bioavailable to the birds. In 

comparison AUS samples from the chickens 6 months after site remediation, reflected 

the reduced Cu and Zn exposure from the clean replacement soil. Interestingly Pb 

concentrations in the AUS remained high after site remediation. This continued elevated 

excretion may be a consequence of bone mobilized for egg production (Dacke, 2000; 

King and McLelland, 1975), releasing chronically sequestered Pb deposits into the 

bloodstream. Bone Pb concentrations in birds account for approximately 90% of the 

body burden, with egg laying females accumulating more than males (Scheuhammer et 

al., 1999). It would be expected following remediation that urine Pb concentrations 

should decline as the bone Pb is excreted over time. In humans this decline may be quite 

prolonged (decades) and varies with bone type, metabolic state, and subject age (Hu et 

al., 1998). Similarly, whether or not a chicken was laying eggs, would be expected to 

affect the rate of bone mobilization and therefore Pb urinary excretion. Pain et al., 

(1997) reported that blood Pb concentrations remained elevated for longer (several 

months) following higher exposure from Pb shot ingestion in marsh harriers (Circus 

aeruginosus). Persistent excretion of this quantity of Pb 6 months after reducing the 
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birds’ Pb intake, may suggest substantial bone deposits of Pb from their previous 

prolonged exposure.  

Cu and Zn do not substantially accumulate in the body like Pb (Walsh, 1990), being 

essential metals under metabolic control. Therefore they did not show a prolonged 

excretion in the AUS following remediation. AUS concentrations of Cu and Zn are 

excess to the bird’s requirement excreted under homeostatic control, while Pb AUS 

concentrations reflect unregulated blood concentrations. In the light of blood 

concentrations of essential metals being kept within a normal range, AUS sampling may 

be a better measure of excessive exposure than blood, casting doubt on blood being the 

‘gold standard’ for monitoring purposes (Furness, 1993). For the nonessential metal, Pb, 

AUS concentrations could be expected to reflect blood concentrations. However the 

present study showed AUS concentrations may not directly relate to the birds’ current 

intake due to Pb accumulation in bone and its subsequent release due to bone 

remobilisation.  

 

EDAX analysis 

The EDAX analysis of AUS has been reported previously by Casotti and Braun, (1997 

and 2004), where they determined the ionic composition of individual urate spheres. 

Chicken urate spheres were reported to contain Mg using EDAX analysis (Casotti & 

Braun, 1997). However in a later paper the authors suspected it had been from 

background analysis of the stub (Casotti & Braun, 2004). 

In  the present study the EDAX analysis of individual AUS was unable to detect any of 

the three metal ions identified with the contaminated soil. This was because the 

sensitivity of the EDAX analysis is restricted to 0.1% (dry mass) of a sample, 

equivalent to 1g/kg and several times higher than the concentrations detected in the 

AUSby ICP-OES. 

The elemental analysis by EDAX of individual AUS (Fig.3.7B) showed K and Ca were 

the predominant cations, in agreement with Casotti & Braun, (2004). However the 

relative concentrations of K and Ca varied substantially between the two spheres. The 

theory that urate spheres from laying birds have elevated Ca concentrations (over K) 

may however still be correct because this analysis was from pooled guano samples and 

not all the birds were laying eggs at the time.  
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3.4.4. Health implications for chickens ingesting heavy metal contaminated soil  

The toxic and sub-lethal effects of ingested Pb, Cu and Zn on birds varies widely 

between species, age, sex and the chemical form of each metal (Eisler, 2000 and refs 

within). Experimental poisoning of captive birds with Pb showed wide species variation 

in susceptibility (Beyer et al., 1988), with a similar finding reported for Cu and Zn 

(Eisler, 2000 and refs within). Among avian species domestic chickens are 

comparatively resistant to Pb toxicosis, with a diet containing 1.85g Kg-1 as Pb acetate 

given over 4 weeks to domestic cockerels being non-lethal (Franson and Custer, 1982). 

Diets in domestic chickens with concentrations above 500 and 2000 mg Kg-1 (dry mass) 

Cu and Zn respectively are reported to be toxic (Eisler, 2000 and refs within). Such a 

relative insensitivity of the domestic chicken to metal toxicosis compared to other avian 

species (Eisler, 2000) combined with its habit of ingesting soil, makes it a suitable 

sentinel species to biomonitor heavy metal contaminated soils. 

By assuming 8% of the chicken diet on the contaminated allotment consisted of soil and 

that from analysis (3.3.1.) it had maximum Pb, Cu and Zn concentrations of 680, 210 

and 860 mg Kg-1 (dry mass) respectively, the soil contribution to metal intake can be 

calculated. The remaining 92% of the diet represents the feed given to the birds, which 

had maximum concentrations of Pb, Cu and Zn of 1.7, 6.6 and 23.7 mg Kg-1 (dry mass) 

respectively. From these values the maximum metal concentrations in the combined diet 

of soil and feed can be calculated (Table 3.6), being 55.6, 23.1 and 90.8 mg Kg-1 (dry 

mass) for Pb, Cu and Zn respectively. These estimates for metal intake are all well 

below the reported toxic concentrations for domestic chickens and would explain why 

no signs of metal toxicosis (Eisler, 2000) were reported in the birds on the contaminated 

allotment.  

 

Table. 3.6. Dietary intake of lead (Pb), copper (Cu) and zinc (Zn) from 
the combined soil and feed components, in chickens on the contaminated 
allotment.  All values in mg Kg-1 (dry mass). 

Metal 
Soil component Feed component Total dietary 

concentration 
this study 

Toxic 
concentration 

reported* 
Max value 8% Max value 92% 

Pb 680 54 1.7 1.6 55.6 >1,850 
Cu 210 17 6.6 6.1 23.1 >500 
Zn 860 69 23.7 21.8 90.8 >2,000 
* Eisler, (2000). 
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3.5. Conclusions  

In the context of heavy metal pollution, avian biomonitoring attempts to determine a 

bird’s internal exposure to bioavailable metals from the environment, classically 

represented by circulating blood concentrations (Furness, 1993). It is evident that 

current non-destructive biomonitoring methods using eggs, feathers or guano may not 

adequately reflect this. Egg and feather production draw upon both current intake and 

sequestered body reserves, so may not reflect current heavy metal body uptake from 

environmental exposure. Also, the homeostatic control of essential metals (e.g. Cu and 

Zn) in blood restricts their deposition in eggs and feathers to within a normal range 

(Walsh, 1990). Feathers may gain variable amounts of surface accumulated heavy 

metals, which on analysis are indistinguishable from bioavailable internal deposits 

(Scheifler et al., 2006). Analysis of guano is complicated by its being a mixture of 

faecal and urinary excretions. The faecal heavy metals may have varied bioavailability, 

with non- bioavailable metals simply transiting the digestive system.  

The present study has shown that metals can be measured in AUS but not that 

concentrations reflect biological availability because there was no assessment of 

availability or uptake. This could have been achieved by measuring metal residues in 

tissues and/or blood from the birds. The short comings of the study include the lack of a 

proper control group: the control birds in this study were at a different site, were not 

kept on uncontaminated soil, and their diet was different. Taking representative samples 

of bulked guano and AUS meant that statistical analysis was not possible for these 

samples, giving only a measure of technical rather than biological variation. Guano 

should have been collected and analysed from individual birds, and concurrently 

residues of metals determined in their blood a range of tissues, to assess uptake. 

Another problem with the study was that metal concentrations in pre- and post-

remediation samples were measured using different methods carried out at different 

laboratories. This seriously affects any comparison between the two measurements and 

ads to the problem of using bulked samples. 
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Chapter 4. 

An investigation into heavy metal concentrations in breeding seabirds  

 
4.1. Introduction 

An earlier unpublished study carried out at Newcastle University (R.M. Bevan and I. 

Singleton, personal communication), reported high metal concentrations in a species of 

marine fish collected in 2003 from the North Sea (Table 4.1). The fish was a small 

benthopelagic species called the lesser sandeel (Ammodytes marinus), hereafter sandeel, 

caught in the vicinity of the Farne Islands (55o38’N; 1o37’W) off the Northumberland 

coast in the UK.  

Table 4.1. Copper (Cu), lead (Pb), zinc (Zn) and cadmium (Cd) 
concentrations (mg kg-1 dry mass) recorded in pooled samples of whole 
lesser sandeels (Ammodytes marinus) caught in 2003 from one inshore 
(Ross Bank) and two offshore (Inner Farne and Longstone Banks) sites in 
the vicinity of the Farne Islands. For comparison published sandeel data 
and sea bed metal concentrations are included. 

Trawl site  Date caught Cu Pb Zn Cd 
Ross Bank  17/06/03 109.2 204.5 365.6 44.8 
Ross Bank  24/07/03 83.0 97.0 297.5 0.0 
Inner Farne Bank  17/06/03 162.4 179.1 738.8 15.7 
Inner Farne Bank  24/07/03 99.3 95.0 166.9 8.5 
Longstone Bank  17/06/03 103.0 135.1 159.7 29.4 
Longstone Bank  24/07/03 86.0 165.0 151.9 41.8 
Isle of May (CEH, 2003/04)* 2004 - - 152 - 
Fish meal (Moren et al.,2006)** 4 0.09 80 0.19 
Sediment from Ross Bank† <3.0 16.0 140.0 <0.6 
*Mean Zn concentration (n=17) in sandeels from a CEH study. 
** Typical analysis of fish meal from North Sea fish species 30% sandeels composition. 
†Analysis of sea bed sediment from the Ross Bank trawl site (R.M. Bevan and I. Singleton, personal 
communication). 
 
This finding would have major ramifications for the transfer of heavy metals in the 

marine environment of the Farne Islands. Not least from the pre-eminence of this fish in 

North Sea food chains as the major prey of 15 fish species and numerous seabirds and 

mammals in the region (Furness, 2002). There are also economic consequences from 

such a metal contamination because sandeels typically constitute the largest single 

species fishery in the region; illustrated by this species being 37% by mass of the total 

North Sea fish caught in 1995 (OSPAR, 2000). Additionally such elevated heavy metal 

concentrations may be relevant to recent reports of declining seabird populations and 

falling sandeel stocks in the region (Mitchell et al., 2004; Mavor et al., 2006). Seabirds 

are recognised sentinels of environmental change, which typically involves them being 
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impacted from altered food supplies (Croxall et al., 2002). For this reason a study was 

devised to investigate whether these high metal concentrations in the sandeels were 

impacting on the Farne Island seabirds. This was enabled by the fact that tissue 

concentrations of heavy metal contaminants from marine birds are widely used to 

biomonitor heavy metal environmental pollution (Burger and Gochfeld, 2000 and 

2003). This study was also an opportunity to further investigate the utility of extracted 

avian urate spheres (AUS) for biomonitoring. This was achieved by comparing heavy 

metal concentrations in AUS from the guano with tissue samples (liver, bone, feather, 

eggshell and whole chicks) from seabirds in the colony.  

The Farne Islands constitute a major summer breeding site for many seabirds. Three 

species which almost exclusively catch sandeels to feed their young are Atlantic puffins 

(Fratercula arctica), black legged kittiwakes (Rissa tridactyla) and Arctic terns (Sterna 

paradisaea), hereafter referred to as puffins, kittiwakes and terns respectively. For this 

reason samples were collected from colonies of these birds on Brownsman Island in the 

Farne Island archipelago off the Northumberland coast. Samples from terns 

predominated because their nests were more accessible, in contrast to the underground 

burrows of puffins and cliff ledge sites of kittiwake nests.  

Seabirds have been widely used to biomonitor marine pollution, including metals, using 

various destructive and non-destructive methods (Furness and Camphuysen, 1997; 

Gochfeld, 1997). Because many seabird chicks and fledglings die every year from 

natural causes, usually starvation, their collection provided tissue samples usually only 

available through destructive sampling. In addition non-destructive samples were 

collected, consisting of fresh guano and discarded egg shells from hatched chicks.  

As the initial results from both tissue and urine samples showed no significant heavy 

metal transfer to the birds, freezer-stored sandeels caught in the same region between 

2002 and 2006 were analysed to check the earlier findings. 

The overall aim of the work in this Chapter was to measure AUS metal concentrations 

to signify the seabirds’ exposure to elevated levels in their sandeel dietin combination 

with analysis of tissue samples to enable comparison with reported values for such an 

exposure.  The objective was to provide evidence that AUS could be used as a medium 

for biomonitoring environmental heavy metal contamination.  
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4.2. Materials and methods 

4.2.1 Background 

To measure the metal concentrations in  seabird diets, sandeels caught by trawler in the 

vicinity of the Farne Islands and uneaten fish from around the tern nest sites were 

analysed. The uneaten fish consisted of one species, the snake pipefish (Entelurus 

aequoreus), later referred to as pipefish. Since 2003 this fish species has increased 

dramatically in abundance off the Farne Islands and in other northern European sea 

areas (Harris et al., 2007). As a result, pipefish, along with sandeels, have become the 

two prey species predominantly fed to the seabird chicks (R.M. Bevan, personal 

communication).  

 

4.2.2 Sample collection and storage 

Samples from the Farne Islands were mostly collected by Newcastle University School 

of Biology undergraduate students, under the supervision of Dr R. Bevan, while taking 

part in project work.  The fresh guano samples were collected in absolute alcohol as no 

freezer was available on the island. Consequently whole guano was not analysed, only 

the extracted AUS following the procedure described in Chapter 3. It was assumed that 

guano samples from kittiwakes were a mixture of both adult and chick in origin, being 

collected from the rocks below each nest. The tern and puffin guano samples were 

collected off rocks and vegetation on the island. As the chicks of both species are nest-

bound, these represented samples from adult birds.  

Samples of pipefish, chicks, fledgling tissues, egg shells and guano were mostly 

collected in June and July 2006 from Brownsman Island. Of these the tern chicks and 

fledgling livers (removed on site) and the fresh guano samples were collected and stored 

immersed with GPR absolute ethanol in 50mL polypropylene centrifuge tubes 

(Fisherbrand®). The tern fledglings, used for bone and feather samples, having little 

remaining soft tissue (fly-eaten), were collected dry and frozen later for storage. 

Similarly, egg shell and pipefish samples being dry were frozen later for storage. The 

fewer samples collected from the same site in June and July 2004 consisted of two 

whole chicks and six fledglings (used for liver analysis), and were all stored frozen. The 

sandeel samples had been freezer-stored at -200C following trawls from three catch 

locations around the Farne Islands carried out by the Marine Biology Unit, these being 
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Ross Bank, Inner Farne Bank and Longstone Bank. Of these Ross Bank constituted an 

inshore trawl site within one nautical mile of the mainland while the other two were 

offshore sites.  

 

4.2.3 Sample preparation 

The various samples other than the sandeels were prepared as described below, then 

oven-dried to constant mass at 600C. No determination of % dry mass was carried out 

because most samples were in a semi-dehydrated state when collected, or saturated with 

alcohol. 

A mixture of breast and wing feathers were plucked from each of six fledgling tern 

carcases, washed in warm tap water and rinsed in 18MΩ deionised water to remove 

loosely adherent external contamination. 

Both left and right wing bones consisting of humerus, radius and ulna, were dissected 

from each fledgling tern carcase, with all soft tissue scraped off with a stainless steel 

knife.  

Egg shells, after stripping out the internal membranes along with any pre-hatch guano, 

were washed in warm tap water and rinsed with 18MΩ deionised water. 

Solid urine was extracted from each sample of adult and pre-hatch guano using GPR 

ethanol as described earlier in Chapter 3.  

The tern chicks and fledgling liver samples from 2006 were drained of excess ethanol, 

while the equivalent 2004 frozen samples were defrosted overnight prior to both sets 

being oven dried. 

Following oven drying, all the samples were individually homogenised by grinding then 

sealed in 50mL polypropylene centrifuge tubes (Fisherbrand®) and dispatched for metal 

analysis by a UKAS accredited laboratory. The measurement of metal concentrations in 

putatively whole homogenised chick samples was to determine the whole body burden 

of metals. This was similar to a method reported by Van den Steen et al., (2009) to 

measure the total body burden of organic halogenated pollutants in blue tits (Parus 

caeruleus). 

The sandeel samples were defrosted at room temperature prior to freeze-drying over a 

24-hour cycle in individual plastic weighing boats. The total dry mass of each fish was 

accurately recorded to 0.01grams using a four-point balance. In most cases the entire 
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fish was processed, while an accurately weighed 1 gram aliquot of a well-mixed 

homogenised ground sample was used of fish weighing more than 1.5g.  

Digestion of each dry sandeel sample was carried out in Kjeldahl tubes using freshly 

prepared aqua regia (a 1:3 mixture of concentrated nitric and hydrochloric acids) heated 

at 95OC in a Gerhardt heat block for 30 min. After being left to cool to room 

temperature, each digested sample was transferred to a 25mL volumetric flask  made up 

to volume with double distilled 18MΩ water and thoroughly mixed. From each sample 

a 5mL aliquot was filtered (Puradisc® 25AS 0.45µ syringe filter Whatman) into 

individual polypropylene centrifuge tubes (Fisherbrand®) prior to analysis by 

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). 

 

4.2.4 Sample analysis  

Cd, Pb, Cu, Zn, Hg and Sn concentrations for all samples other than the sandeels, were 

determined by a UKAS (United Kingdom Accreditation Service) accredited laboratory 

(www.aes-labs.co.uk). The in-house method of this laboratory used Inductively Coupled 

Plasma Mass Spectrometry (ICP-MS) after a 2 hour acid reflux pre-digestion. Levels of 

detection (mg kg-1 dry mass) were poorer for some of the smaller samples (<0.5g) but 

were generally >0.06 for Hg, >0.3 for Cd and Sn, >2 for Cu and Pb and >4 for Zn. 

Although Hg and Sn were not included in the earlier metal analysis of the 2003 

sandeels, they were included as both Hg (Walsh, 1990; Monteiro and Furness 1995) and 

organic Sn compounds (Walsh, 1990; Kannan and Falandysz, 1997; Tanabe et al., 

1998) are implicated in adverse ecotoxicological effects in marine biota. 

Metal analysis of the filtered acid digested sandeel samples was performed using a 

Unicam 701 ICP-OES (Unicam Instruments, Cambridge, England). Calibration 

standards (Sigma) were freshly made up for each metal, having limits of detection in a 

complicated matrix solution of 0.1mg L-1 for Pb and 0.01 mg L-1 for Cd, Cu and Zn. 

The contribution of metal concentrations in the two acids used for digestion was 

determined by running acid blanks without samples, this value being subtracted from 

the sample results before calculating metal values. The resulting limits of detection in 

dry fish samples were Pb 2.5 mg kg-1 and 0.25 mg kg-1 for Cd, Cu and Zn. All metal 

concentrations in this report refer to dry mass samples only. 
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4.2.6 Data analysis 

The Minitab® (version 15) programme was used for statistical analyses and graphical 

output. Statistical analysis of the AUS samples could not be carried out because they 

were derived from pooled guano samples so would only reflect technical variability. The 

small number of tissue samples, combined with numerous metal values below the 

detection concentration, meant that the data were analysed using non-parametric 

statistics. These data were presented as median and range of metal concentrations in mg 

kg-1 on a dry mass basis with the Mann-Whitney U test used to determine significant 

differences between data sets at a 95% confidence interval. The larger number of 

sandeel samples allowed for parametric analysis of their metal concentrations after 

confirming normality using the Shapiro-Wilk W goodness of fit test and equal variance 

using Levene’s test. Regression analysis was used to determine correlations between fish 

dry mass and metal concentrations. The parametric two-sample t-test was also carried 

out on the sandeel data to determine significant differences in metal concentrations 

between two trawl sites and two fish sizes. Furthermore ANOVA followed by post-hoc 

analysis was used to  analyse the influence of year on sandeel metal concentrations . P 

values less than 0.05 at a 95% confidence interval were taken to show a statistically 

significant difference. 

 

 

4.3. Results 

As none of the samples had detectable concentrations of Sn this metal was excluded 

from the results.  

 

4.3.1 Fish samples 

The pipefish (n=5) had below detection concentrations of all metals except Cu and Zn 

for which the median (and range) values were 2 (1-3) mg kg-1 and 50 (40-86) mg kg-1 

respectively. 

Although 60 individual samples of sandeels were processed and analysed as described, 

over half were lost from a combination of a faulty thermostat on the heat block used for 

sample digestion and contaminated Kjeldahl digestion tubes. As a result only 22 sandeel 

samples out of the original 60 are reported on in this study. 
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The three variables; total dry mass, year of collection and trawl site were considered to 

be relevant in terms of the sandeel metal concentrations. As only 2 fish were analysed 

from the Longstone Bank trawl, a comparison between trawl sites was only carried out 

between the other two sites. 

To determine if a relationship existed between total dry mass and metal concentrations, 

simple scatter plots were produced, which in Cd, Pb and Zn suggested a curvilinear 

relationship. For this reason logarithmic transformed total dry mass values were used to 

show graphically how the age of the sandeels, as measured by their total dry mass, 

influenced metal concentrations (Fig.4.1.). Significant negative correlation was shown 

between the log dry mass of the fish and three of the metals. Specifically Cd: R2= 

77.6%, P< 0.001, Pb: R2= 39.1%, P= 0.002 and Zn: R2= 39.8%, P= 0.002. However no 

such correlation was shown for Cu concentrations, having values of R2= 1.5% and P= 

0.582. 

 
 

Figure 4.1. Scatter plots showing how cadmium (Cd), copper (Cu), lead 
(Pb) and zinc (Zn) metal concentrations vary with the log transformed 
total dry mass of whole sandeels (Ammodytes marinus) caught in the 
Farne Island sea area. 

 
 
As Harris et al. (2008) reported significant differences in oil concentrations between 

size 0 (<0.15g dry mass) and older sandeels, the fish mass were divided into similar size 

groups of <0.15g and >0.15g. Size 0 fish had significantly higher Cd and Pb 

concentrations than older fish (Student t-tests:   Cd: t = 7.62, df = 20, p<0.001; Pb: t = 

2.82, df = 20, p = 0.011), but there was no significant difference for Cu and Zn 
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concentrations between the two size categories (Student t-tests: Cu: t = 0.56, df = 20, p= 

0.585; Zn: t = 0.37, df = 20, p= 0.717).  

Figure 4.2 compares metal concentrations in sandeels between the Ross Bank and Inner 

Farne Bank trawl sites. Fish from the coastal trawl site of Ross Bank, had significantly 

higher concentrations of Cd and Zn than fish from the more off shore Inner Farne Bank 

trawl site (Student t-tests: Cd: t= 3.28, df = 19, p= 0.004; Zn: t= 3.45, df = 19, p= 

0.003), while Cu and Pb concentrations were not significantly different (Student t-tests: 

Cu: t = 0.72, df = 19, p= 0.479; Pb: t= 1.54, df= 19, p= 0.140). 

 

Figure 4.2. Box plots comparing cadmium (Cd), copper (Cu), lead (Pb) 
and zinc (Zn) metal concentrations in sandeels (Ammodytes marinus) 
between the Ross Bank (inshore) and Inner Farne Bank (offshore) trawl 
sites. Each box represents the interquartile range of metal concentrations 
around the median value, whiskers denote maximum and minimum 
values and an asterisk any outlier. The crossed circle signifies the mean 
values for each trawl site. 

 

When comparing metal concentrations between trawl sites (Fig.4.2.) it is important to 

take into account that the Inner Farne fish were significantly larger (Fig. 4.3.) than the 

Ross fish (Student t-test:  t= 4.61, df = 19, p<0.001) and because smaller fish had higher 

Cd, Pb and Zn metal concentrations (Fig.4.1.), their size, rather than location, may be 
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influencing these metal concentrations. To rule this out, similar-sized fish from each site 

should be compared. However, too few samples were available to undertake this 

analysis.  
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Figure 4.3. Box plots comparing total dry mass of sandeels (Ammodytes 
marinus) between the Ross Bank (inshore) and Inner Farne Bank 
(offshore) trawl sites. Each box represents the interquartile range of total 
dry mass around the median value; whiskers denote maximum and 
minimum values. The crossed circle signifies the mean values for each 
trawl site. 

 
 

A one-way ANOVA of metal concentrations between fish caught in different years 

showed Cd concentrations differed significantly (F(4,17) = 3.981, p = 0.019). However 

Cu, Pb and Zn concentrations were not significantly different between fish caught in 

different years.  Tukey post-hoc comparisons of the five years indicate that the 2003 

caught fish (M = 0.56, 95% CI [0.40, 0.72]) had significantly higher Cd concentrations 

than the 2004 caught fish (M = 0.32, 95% CI [0.20, 0.43]), p = .033. Paired comparisons 

between the 2003 caught fish and the other years were not significantly different. A 

graphical representation comparing metal concentrations in fish caught in 2003 with 

others years is shown as box plots in Fig. 4.4. 

 

 



 
 

60

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Cd
20

15

10

5

0

Cu

10

9

8

7

6

5

4

3

2

1

Pb
140

130

120

110

100

90

80

70

60

Zn

2003 (n=8)

Year caught

Other years (n=14) Other years (n=14) 2003 (n=8)M
e

ta
l 
c
o

n
c
e

n
tr

a
ti

o
n

 m
g

 k
g

-1
 d

ry
 m

a
s
s

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 4.4. Comparison between cadmium (Cd), copper (Cu), lead (Pb) 
and zinc (Zn) metal concentrations in sandeels (Ammodytes marinus) 
caught in 2003 and those caught in other years combined, shown as box 
plots. Each box represents the interquartile range of metal concentrations 
around the median value, whiskers denote maximum and minimum 
values. The crossed circle signifies the mean values for each time period 
when the sandeels were caught. 

 
 
Although a comparison of the total dry mass of sandeels caught in 2003 with those from 

other years (Fig. 4.5.) showed the 2003 fish were significantly heavier (Student t-test: 

  t= 2.52, df = 20, p= 0.020). ANOVA did not show a significant difference between 

years (F(4,17) = 2.48, p = 0.083). As a result, the higher Cd concentrations in 2003 

sandeels compared to those caught in 2004 may be a consequence of the year caught 

rather than their smaller size. 
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Figure 4.5. Box plot comparing the whole fish dry mass of sandeels 
(Ammodytes marinus) caught in 2003 with those from other years. Each 
box represents the interquartile range of metal concentrations around the 
median value, whiskers denote maximum and minimum values and an 
asterisk any outlier. The crossed circle signifies the mean values for each 
year caught group. 

  

Table 4.2 compares the median metal concentrations from the earlier 2003 study with 

samples analysed in this study from the same year and trawl sites, clearly showing 

higher concentrations of all metals in the earlier sandeel analysis.  

Table 4.2. Comparison between median cadmium (Cd), copper (Cu), lead 
(Pb) and zinc (Zn) metal concentrations in sandeels (Ammodytes marinus) 
reported by the earlier 2003 study and those from the same year and sites 
analysed in this study. Metal concentrations in snake pipefish (Entelurus 
aequoreus) from this study and in sprats (Sprattus sprattus) from a less 
polluted fishery study by Amiard et al., (1987), are included for 
comparison. 

Metal Trawl site 
Metal analysis mg kg-1 dry mass (median) 

Earlier study Current study Pipefish Sprats 

Cd 
Ross Bank 22.4 0.7 

< 0.25 0.14 
Inner Farne Bank 12.1 0.4 

Cu 
Ross Bank 96.1 4.2 

2.0 3.5 
Inner Farne Bank 130.9 13.6 

Pb 
Ross Bank 150.8 7.7 

< 2.5 0.24 
Inner Farne Bank 137.1 3.6 

Zn 
Ross Bank 331.6 110.5 

50.0 120 
Inner Farne Bank 452.9 93.4 
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4.3.2 Fledgling feather and bone samples  

In the feathers (n=6), Cd concentrations were at or below the detection concentration of 

0.2 mg kg-1. Cu, Pb, Hg and Zn were all detectable having median (and range) mg kg-1 

values of 10 (9-12), 4.5 (2-8), 0.46 (0.35-0.52) and 170 (130-240) respectively. 

Wing bone samples (n=6) from the same birds only had detectable concentrations of Cu 

and Zn, the median (and range) values being 2 (1-4) and 220 (160-240) mg kg-1 

respectively. No significant correlation was shown (R2 < 0.1%, p>0.5) between these 

metal concentrations in bone and feather samples from each bird. 

 

4.3.3. Fledgling liver samples 

Only four of the six liver samples from fledgling terns collected in 2004 were analysed 

as one was from an adult bird while another had unusually high concentrations of Cu 

(270 mg kg-1) and Zn (1300 mg kg-1). All livers from both years were below the 

detection limit for Pb (8mg kg-1), while Cd was not detected in 2004 samples and only 

detected in 3 of the 2006 samples with a median of 1.1 mg kg-1. Concentrations of Hg in 

the 2004 samples were significantly lower than 2006 samples (p<0.05) with median 

values of 0.06 and 1.20 mg kg-1 respectively. Both Cu and Zn concentrations were not 

significantly different (p>0.05) between the two collection years, with median values 

for 2004 and 2006 of 28 and 36 mg Cu kg-1 and 175 and 200 mg Zn kg-1 respectively. A 

single fledgling puffin liver analysed from 2006 had no detectable Cd or Pb, Hg was at 

the detection limit (0.06mg kg-1) and Cu and Zn concentrations were 18 and 130 mg kg1 

respectively.   

 

 

4.3.4. Whole chick samples 

After oven drying it became clear that only the 2004 samples could be classed as whole 

chicks as despite all the chicks being of a similar age (< 1 week old), the two 2004 

chicks had significantly greater dry mass (6.73 and 5.15g) compared to the six 2006 

samples (1.99g average mass.), which appeared little more than bones and feathers. 

Whole tern chicks (n=2) from 2004 had below detection concentrations of Cd and Pb, 

with median Cu, Hg and Zn concentrations of 7, 0.22 and 120 mg kg-1 respectively. The 

tern chicks (n=6) collected in 2006 had below detection concentrations of Cd in all but 
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one sample, with median (and range) Cu, Pb, Hg and Zn concentrations of 16 (10-47), 8 

(4-23), 1.15 (0.96-1.6), 155 (140-170) mg kg-1 respectively. 

 

4.3.5. Egg shell samples 

Egg shells from terns (n=3) and kittiwakes (n=6) had no detectable concentrations of 

Cd, Pb or Hg. Only one sample from each bird species had detectable concentrations of 

Zn these being 9 and 14 mg kg-1 respectively. Concentrations of Cu in the egg shells 

between bird species did not appear to differ, both being in the range 2-4 mg kg-1.  

 

4.3.6. AUS samples 

The AUS samples extracted from the ethanol-preserved guano of kittiwakes, terns and 

puffins provided 4, 1 and 5 samples respectively (Table 4.3).  

 

 

Table 4.3. Cadmium (Cd), copper (Cu), lead (Pb), mercury (Hg) and zinc 
(Zn) metal concentrations in extracted urate sphere samples (mg kg-1 dry 
mass) from guano of adult seabirds* and pre-hatch seabird chicks† 
collected on the Farne Islands in 2006. 

Bird Dry mass g. Cd Cu Pb Hg Zn 
 

Kittiwake (Rissa 
tridactyla) * 

(adult and chick) 

0.23 1.5 < 0.8 < 8 < 0.06 260 

0.28 2 8 < 4 < 0.06 460 

0.36 0.9 6 < 4 < 0.06 230 

0.43 0.8 7 < 4 < 0.06 180 

Tern (Sterna 
paradisaea)* 

0.50 < 0.8 14 9 < 0.06 390 

 
 
Puffin 
(Fratercula 
arctica)* 

0.56 1.5 10 10 0.07 350 

0.33 1.5 10 < 4 < 0.06 310 

0.33 1.5 10 9 < 0.06 340 

0.35 1 11 < 4 < 0.06 300 

0.55 1 7 < 3 < 0.06 310 
Kittiwake (Rissa 
tridactyla)† 

0.85 <0.2 <2 <2 <.06 7 

Tern (Sterna 
paradisaea)† 

0.23 <0.2 7 <2 <.06 <4 
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Only one sample each of kittiwake and tern extracted pre-hatch urine was analysed, 

being derived from pooled residues from within 10 and 3 egg shells respectively. 

Because the size of most extracted urine samples was <0.5g, only microscopic 

examination was used to determine their purity, with all samples appearing to consist 

entirely of urate spheres. For this reason the urine metal concentrations are reported as 

mg kg-1 dry mass extracted urate spheres rather than mg kg-1 uric acid. By assuming 

these urate sphere samples were approximately 65% uric acid (Casotti and Braun, 2004) 

a comparison with metal concentrations per mass of uric acid in urate sphere samples 

from allotment chickens (Chapter 3) is possible (Table 4.4). 

 

 

Table 4.4. A comparison between copper (Cu), lead (Pb) and zinc (Zn) 
metal concentrations in extracted urate sphere samples from guano of 
Farne Island seabirds and allotment chickens. Median values reported as 
mg kg-1 uric acid. 

Metal 
Farne Island  

seabird samples* 

Chicken samples† 
Walker Road 

uncontaminated 
Branxton 

contaminated 
Branxton 

post remediation 

Cu 13.8 37.6 65.8 16.0 
Pb 0.3 6.6 208.5 147.0 
Zn 476.9 250.3 526.0 84.5 
*Values derived from assuming urate sphere samples were 65% uric acid 
†Data reported in Chapter 3 on metal concentrations in urate sphere samples from domestic chickens. 

 

Cd was detected in all extracted AUS samples except  that from tern guano, with 

concentrations in kittiwake and puffin AUS being similar, with median (and range) 

concentrations of 1.2 (0.8-2.0) and 1.5 (1.0-1.5) mg kg-1 respectively. 

Cu was below the detection concentration of 0.8 mg kg-1 in one kittiwake urate sphere 

sample and so estimated as 0.4 mg kg-1. Overall the median (and range) concentration of 

Cu in kittiwake AUS was 6.5 (0.4-8.0) mg kg-1, this appeared different from puffin 

AUS which had a median (and range) Cu concentration of 10 (7-11) mg kg-1. The tern 

sample was higher at 14 mg Cu kg-1. 

Pb was neither detected in any kittiwake urate sphere samples nor in 3 out of the 5 

puffin samples. The remaining two samples had concentrations of 9 and 10 mg Pb kg-1, 

and were similar to the tern AUS value of 9 mg Pb kg-1. 

Out of all AUS samples only one puffin sample had detectable Hg content, this being 

just above the limit of detection at 0.07 mg kg-1. 
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Znwas well represented in extracted AUS from all birds tested, having a value of 390 

mg Zn kg-1 in the tern urine. Kittiwake, and puffin AUS samples had similar Zn 

concentrations, with median (and range) values of 245 (180-460) and 310 (300-350) mg 

Zn kg-1 respectively.  

In contrast to the AUS samples from the adult birds, only sparing amounts of Cu and Zn 

were detected in the pre-hatch AUS (Table 4.3). 

 

4.4. Discussion 

4.4.1. Fish metal concentrations 

Contrary to the reported age accumulation of the non-essential metals (Walsh, 1990), 

Cd and Pb concentrations declined with body mass increase in sandeels (Fig. 4.1). This 

could be a result of the reported increase in oil concentrations with size (Harris et al., 

2008), masking metal accumulation in their internal organs.  

Interpreting the significance of trawl site or year caught on metal concentrations in the 

sandeels was made difficult because differences in fish size existed between the site and 

year caught (see Figs. 4.2. and 4.5.). However because the Cu concentrations did not 

vary significantly with fish size (Fig 4.1.), the lack of variation in Cu between trawl 

sites or year caught (2003 or other), suggests fish size is the driving factor for any metal 

concentration variations. 

An explanation for this association is that as fish get older and so increase in dry mass, 

they store more oil (Harris et al., 2008), which should be matched by a reduction in 

metal concentrations as metals are not stored in fat deposits (Yamazaki et al.,1996). The 

original data on sandeel metal concentrations was from trawls carried out in 2003 so it 

was important to determine if the high concentrations were an anomaly of that year 

alone. The findings from the present study show little difference between years and 

concentrations measured were far below those reported in the earlier study. 

Furthermore, little difference in fish metal concentrations between trawl sites was 

shown in the present study, although it has been reported that inshore waters are 

typically more polluted than those further offshore (Walsh, 1990).  

As Cu and Zn are essential metals that are under metabolic control, they generally show 

little tissue variation, even over a wide range of environmental concentrations or 

different periods of exposure (Walsh, 1990). This is in contrast to the non-essential 

metals Cd, Pb, Hg and Sn which, being un-regulated, typically show age-related 

accumulation in tissues (Walsh, 1990; Amiard et al., 1987). Metal concentrations in fish 
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reported in the literature commonly only refer to muscle values, as these are relevant to 

human consumption (Burger and Gochfeld, 2005). Whole fish metal values, however, 

are higher than those found in muscle alone because the liver and other internal organs 

are sites of metal deposition (Yamazaki et al.,1996; Carpene et al.,1994; Alam et 

al.,2002). The metal values reported in the present study compare favourably with those 

reported by Amiard et al., (1987) in whole sprats (Sprattus sprattus) from a less 

polluted region, having mean Cd, Cu, Pb and Zn metal concentrations of 0.14, 3.5, 0.24 

and 120 mg kg -1 (dry mass) respectively. Furthermore comparable concentrations are 

reported for fish meal from North Sea whole fish (composed of 38% blue whiting, 30% 

sandeel, 20% Norway pout and 12% herring), with Cd, Cu, Pb and Zn concentrations of 

0.19, 4, 0.09 and 80 mg kg-1 (dry mass) respectively (Moren et al.,2006). 

In contrast, contrary to the concept of Cu and Zn concentrations being modulated 

(Walsh, 1990), Unlu and Gumgum, (1993) reported dramatically high mean (n=10) wet 

mass concentrations of Cu and Zn in samples of liver (829 & 336mg kg-1) and muscle 

(108 & 59 mg kg-1) respectively, from fish (Capoeta capoeta umbla) in a polluted 

stretch of the Tigris River in Turkey. Although liver concentrations of Cu and Zn in fish 

(and other biota) are not static, being stored in this organ when in excess (Carpene et al., 

1994), the validity of such high concentrations must be called into doubt.    

Comparing retested 2003 sandeel samples in the present study with the much higher 

earlier reported values (Table 4.2.), it may be surmised that sample contamination was 

responsible, as was experienced to a lesser degree in one batch of fish samples in the 

present study. The pipefish and sandeel samples in the present study had comparable 

concentrations of Cu and Zn to those reported in the literature for marine fish. 

Furthermore the non-essential metals (Cd and Pb) were below detection concentrations 

in the pipefish and relatively low in the sandeels, which equates with generally less 

polluted fisheries (Walsh, 1990; Amiard et al., 1987).  

 

4.4.2. Bird urine and diet 

As stated earlier, statistical analysis could not be done on the metals in AUS data 

because sampling reflected technical rather than biological variability. This could have 

been resolved by directly sampling individual chicks. Furthermore, this would have 

removed the possible complication of adult and chick diets being different (see below). 

A further weakness was the relatively small number of samples collected.  



 
 

67

In Chapter 3 it was reported that dietary metal variations were reflected in AUS of 

domestic chickens, relating to the higher Cu concentrations of the commercial ration fed 

to the Walker Road allotment chickens compared to the predominantly whole grain diet 

fed to the Branxton chickens (see Table 4.4). As the diet of adult birds and the food they 

provide for their chicks commonly differs (Barrett et al., 2007), metal exposure and so 

AUS concentrations may differ between the adult seabirds and their young. The 

extracted urine samples from terns and puffins were assumed to be from adult birds, so 

the excreted metals could originate from a different food to that fed to the nestlings. In 

contrast, the kittiwake AUS samples were a mixture derived from guano of both 

nestlings and adults. Kittiwakes have a large range (80km) while foraging from the 

Farne Islands (R.M. Bevan, personal communication). This would allow them to 

scavenge fishing boat discard and offal (OSPAR, 2000), from boats typically working 

some distance away, while not necessarily feeding such food to their young (Barrett et 

al., 2007). This is significant because fish offal has higher metal concentrations than 

whole fish (Yamazaki et al., 1996) and so ingesting it may result in elevated adult AUS 

concentrations. The urine metal concentrations reported here may also reflect the 

persistent excretion of previously accumulated metals in tissues of the adult birds 

acquired from sites remote from the Farne Islands. Such a persistent excretion was 

shown in Chapter 3, where six months after the allotment chickens stopped ingesting Pb 

contaminated soil, they still excreted Pb in their AUS from body deposits (see Table 

4.4).  

Although the Zn concentrations in the snake pipefish samples and the diet of the control 

chickens reported in Chapter 3 are similar, with median values of 50 and 57 mg kg-1 dry 

mass respectively, the calculated median AUS Zn concentration in the seabirds of 

477mg kg-1 uric acid is much higher than the 250 mg kg-1 uric acid reported for control 

chicken AUS (Table 4.4). If it is assumed chickens and seabirds process dietary Zn in a 

similar manner, this would suggest the adult seabirds are consuming a diet with twice 

the Zn concentration of the pipefish. This would agree with their eating sandeels, which 

have a median Zn concentration of 100mg kg-1 dry mass. The large quantity of 

discarded pipefish at the nest sites would confirm the seabirds’ preference for sandeels. 

Although Daunt et al. (2008) reported the sandeel component of nestling seabird diets 

varied between species, with kittiwakes, puffins and terns, being 87%, 81% and 34% 

respectively, the nestling terns on the Farne Islands typically have a diet composed of 

over 90% sandeels (R.M. Bevan , personal communication). This would suggest the 
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adults and nestlings are mainly feeding on sandeels and the collected urine should 

reflect the current intake of metals from these fish. 

The wide variation in metal concentrations reported in the literature for whole guano 

from marine birds (Table 4.5.) reflects the diversity of their diet. The high guano metal 

concentrations reported by Otero Perez (1998) were attributed to the gulls in his study 

feeding on municipal rubbish tips. Other dietary factors such as eating offal, or older 

fish and fish at higher trophic levels, would also be expected to increase a bird’s metal 

intake. However it is important to stress again that whole guano levels cannot be taken 

to represent actual uptake by the bird. This will depend upon the bioavailability of the 

metal in the diet (Ruby, 2004).  

It is widely reported that physiological differences from age, sex and reproductive status 

can affect the flux of metals within adult birds (Scheuhammer, 1996; Heinz and 

Hoffman, 2004). As a result many factors in conjunction with their current dietary 

intake may influence metal concentrations in the seabirds’ urine.  

 

Table 4.5. Mean cadmium (Cd), copper (Cu), lead (Pb), mercury (Hg) 
and zinc (Zn) metal concentrations (mg kg-1 dry mass) in seabird whole 
guano reported in the literature. 

Bird  Cd Cu Pb Hg Zn 

Glaucous gull (Larus hyperboreus)a (n=1) - 6.25 30.0 - 76 

Kittiwake (Rissa tridactyla)a (n=2) - 51.2 21.6 - 176 

Yellow legged gull (Larus michahellis)b (n=13) 5.8 60.1 39.9 - 305.1 

Red-footed booby (Sula sula)c (n=12) 6.34 21.1 1.6 107.8 419.4 
a Headley, (1996); b Otero Perez, (1998); cLiu et al., (2006) 

 

The prolonged excretion of Pb in AUS after site remediation reported in Chapter 3 (see 

Table 4.4), would imply that making comparisons between current diet concentrations 

and whole guano or AUS for non-essential metals (Cd, Pb, Hg and Sn), which 

accumulate with age (Walsh, 1990), may not be valid. However from the chicken data 

(Chapter 3), essential metals (Cu and Zn) in AUS appeared to represent current intake 

values, so differences could reflect dietary intake, although further studies are needed.  

The metal concentrations in AUS from this study (Table 4.3) cannot be directly 

compared to the whole guano concentrations (Table 4.5) as was shown in Chapter 3. 

This is because urine concentrations are entirely composed of excreted metals while the 

guano is a variable mixture of unabsorbed and excreted metals. Furthermore the 
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digestive absorption of each metal depends on its bioavailability (Ruby, 2004) also the 

prevailing body requirements and food concentrations (Mohanna and Nys 1998).  

Of relevance to metals passed in the seabird guano is its potential for adding to the soil 

metal concentrations on the Farne Islands (Headley, 1996; Otero Perez, 1998; Blais et 

al., 2005; Liu et al., 2006). In many seabird roost sites, where soil is sparse or even 

absent, such guano deposits may constitute the bulk of the soil, being called 

ornithogenic soils (Liu et al., 2006). In this study the seabird AUS concentrations of Pb 

are comparable to those in control chickens fed an uncontaminated diet (Table 4.4), so 

not significantly contributing to soil concentrations. However the high Zn 

concentrations (median of 477mg kg-1 uric acid) in the seabird AUS may have an 

impact on local flora as this metal is recognised to be phytotoxic (Gascho and Hubbard, 

2006). Furthermore the liberal deposition of guano over the nesting site (R. M. Bevan, 

personal communication) may contribute, by surface contamination, to the metal 

concentrations detected in the various samples collected for this study.  

The absence of Hg from the adult urine may suggest either the detection concentration 

was set too high or the majority of Hg in the tissue samples was derived from egg 

transfer, rather than a current food source (Wenzel et al., 1996). With the exception of 

the tern sample, Cd is well represented in the seabird AUS and may reflect its 

association with kidney tissue (Wenzel et al., 1996) and age accumulation in adult birds. 

Although the tern urine was below the Cd detection concentration of 0.8mg kg-1, this 

does not preclude it from having significant Cd content. Trace amounts of Cd in some 

of the tern feather samples may be from surface contamination with guano, while this 

metal’s presence in some fledgling liver samples is probably from the diet. Pipefish had 

below detection concentrations of Cd (<0.2mg.kg-1) while sandeels all had detectable 

concentrations above this although below 1mg kg-1. The Cd in urine from puffins and 

kittiwakes may suggest excretion of age accumulated deposits in the adult birds or 

reflect a current intake. In either case, the urine concentrations appear to be a valuable 

biomarker of exposure to cadmium.  

Although the seabird Pb concentrations cannot be fully assessed from liver samples 

because of the poor detection concentrations (see 4.4.6 below), its lack of detection in 

the fledgling tern bones, the tissue of predominant deposition (Elliott and 

Scheuhammer, 1997), suggests a low Pb exposure. This finding is in agreement with the 

seabird urine having comparable Pb concentrations to unexposed control domestic 

chickens reported in Chapter 3 (Table 4.4). In this respect because Pb is detectable in 
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urine samples under apparently low exposure concentrations, urine sampling represents 

a good method for assessing lead exposure in the seabirds.  

 Pre-hatch urine 

In contrast to adult AUS, Cu and more especially Zn in the extracted pre-hatch AUS are 

dramatically lower. This may be a conservation strategy as the finite Cu and Zn deposits 

in the egg are progressively utilised by the developing embryo. This is reflected in the 

reported fact that liver reserves of both metals become depleted prior to hatching. Also, 

Cu deposits in the shell are reabsorbed by the avian embryo (Richards, 1997). The 

reported rapid rise after hatching of liver Cu and Zn concentrations in kittiwake 

nestlings (Wenzel et al., 1996) may further indicate that chicks hatch with suboptimal 

concentrations of these essential metals. The possibility of underdeveloped kidneys 

being responsible for these low metal concentrations is not borne out by research 

because embryo chicks are reported to have glomerular filtration and tubular 

reabsorption capabilities equivalent to adult birds from day 5 of incubation (Zemanova 

et al., 2002). Also, metallothioneins are actively involved in metal transport throughout 

embryo development (Richards, 1997). The lack of detectable Pb in the pre-hatch AUS 

would suggest concentrations of this metal detected in the whole chicks were from 

surface contamination (adult guano). Hg which is excreted in bird guano (Kenow et al., 

2007) was not detected in pre-hatch AUS, but this may be a result of up to 93% of egg 

transferred Hg is sequestered in the down feathers of the chick (Wenzel et al., 1996). 

How embryo chicks apparently avoid passing metals in their urine, while their kidneys 

still perform the function of metabolic waste excretion, is an interesting question for 

future research. 

 

4.4.3. Bird tissue metal concentrations 

Although the essential metals Cu and Zn in this study can accumulate in tissues such as 

liver, they are under homeostatic control and so concentrations have a limited value in 

determining a bird’s exposure (Walsh, 1990). Concentrations of non essential metals 

(Cd, Pb and Hg) in the bird samples have to be interpreted in terms of both the metal 

and the tissue being analysed. The reason for this is because metals have tissue specific 

affinity, for example Hg (Furness et al., 1986) and Sn (Guruge et al., 1996) for feathers 

and Pb for bones (Elliott and Scheuhammer, 1997). Similarly Hg is passed in eggs 

(Walsh, 1990) but Cd is not (Burger and Gotchfeld, 1993), and Pb is predominantly a 

surface contaminant in feathers (Nam et al., 2004). As Cd is not passed in the egg, it 
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age-accumulates with the growth of the chick at a rate dependant on diet concentrations, 

Hg in contrast declines over time after hatching if dietary concentrations are low 

(Wenzel et al.,1996). 

Whole chick samples 

Meaningful comparison between metal concentrations in the whole chicks from 2004 

and 2006 are limited because they were dramatically different in terms of their tissue 

content (Table 4.5.). As all the chicks were close to newly hatched (<1 w.o.) they would 

not have accumulated significant amounts of metals from their diet, compared to the 

fledgling birds. In this regard the whole chick metal concentrations should approximate 

to egg content (Wenzel et al., 1996). Also the whole chick samples would principally 

represent a combination of current diet and age accumulated non-essential metals 

passed from adult birds into the egg (Wenzel et al., 1996). In contrast liver and bone 

samples from fledglings, in which the residues from egg transfer are considered 

negligible (Wenzel et al., 1996), only reflect uptake of metals from the current diet.  

The Pb concentrations of the 2006 tern chicks (Table 4.5.) are well above 0.4mg kg-1 the 

value reported in eggs from Pb exposed birds (Trampel et al., 2003) and the median 

value of 0.57 mg kg-1 in eggs from raptors, seabirds and other fish eating birds (Burger, 

2002). From Pb having such a low transfer to eggs (Walsh, 1990), the elevated Pb 

concentrations in the 2006 tern chicks, is most likely to be from surface contamination 

similar to feathers (Nam et al., 2004). Although UK soils typically have a mean 

background value of 75 mg Pb kg-1 (McGrath and Loveland, 1992), the nearest 

sediment samples taken from the Ross bank area were determined to have only 16 mg 

Pb kg-1(Table 4.1). Another source of this apparent Pb contamination could be adult tern 

guano, which is liberally deposited at the nest sites. Although the tern chicks from both 

years were a similar age (<1wo), the 2006 samples were more decomposed and so 

exposed to a longer period of surface contamination prior to collection. This would 

explain why in contrast the 2004 tern chicks had undetectable concentrations of Pb 

(Table 4.5). 

The low concentration of Hg in the adult urine samples (<0.06 mg kg-1) would suggest 

its detection in the whole chicks is not a result of surface guano contamination. Because 

Hg in freshly hatched chicks is predominantly from the egg content (Wenzel et al.,1996; 

Becker et al.,1993), whole chicks having a median (and range) value of 1.19 (0.96-1.6) 

mg kg-1 in 2006, and 0.22 (0.20-0.24) mg kg-1 in 2004, confirms the presence of Hg in 

breeding female terns on the Farne Islands. The 2006 concentrations are close to the 

reported whole egg range of 1.5-6.0 mg Hg kg-1 (dry mass equivalent) that reduces egg 
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viability also embryo and chick survival (Thompson, 1996). However the significantly 

higher Hg concentrations in 2006 chicks may be explained from having proportionately 

more feathers, which preferentially sequester Hg (Furness et al., 1986), compared to the 

less decomposed 2004 chicks.  

The lack of detectable Cd in whole chicks (for both years) agrees with this metal’s low 

transfer in eggs, despite Cd being detected in sandeels (see 4.3.1) the likely diet of 

fledglings leading to detectable concentrations in their livers (see 4.3.3). The low Cd 

concentrations in whole chicks may also reflect the low concentration in tern urine 

(<0.8mg Cd kg-1) reducing the potential for surface contamination being a source of Cd 

in the chick samples. 

Fledgling liver samples 

Cu and Zn, as essential trace metals under homeostatic control, are reported to stay 

within a narrow range of concentrations in seabird liver samples (Elliott and 

Scheuhammer, 1997; Savinov et al., 2003). This was confirmed by concentrations of 

these metals not being significantly different (P>0.05) between years collected or 

between the single puffin sample and the rest from terns. Zn concentrations in fledgling 

tern livers from 2006 and 2004 had median (and range) values of 200 (170-230) and 

175 (150-200) mg kg-1 dry mass respectively. These were similar to concentrations 

reported in seabirds, typically in the range 100 and 200 mg kg-1 dry mass. (Elliott and 

Scheuhammer,1997; Walsh, 1990). Cu concentrations in the fledgling tern livers were 

36 (30-47) and 28 (19-38) mg kg-1 dry mass respectively for 2006 and 2004, being 

similar to reported values of 20 to 30mg kg-1 (Elliott and Scheuhammer, 1997; Walsh, 

1990). However liver metal concentrations (both essential and non-essential), can be 

artificially elevated by even short periods of starvation (hours), because of hepatic fat 

depletion (Evans and Moon, 1981). Periods of starvation are typically associated with 

inclement weather on the Farne islands (R.M. Bevan personal communication). 

Hg concentrations in the fledgling liver samples are well below the maximum normal 

value of 20 mg kg-1 for seabird livers (Walsh, 1990). It however is noteworthy that the 

Hg concentrations are significantly (p<0.05) higher in 2006 liver samples compared to 

2004; similarly liver Cd values appear higher, which may indicate increasing dietary 

exposure to these two metals. Alternatively the body condition of the birds could have 

varied causing this difference (Evans and Moon, 1981). 

Pain et al., (1995) report that avian liver Pb concentrations (dry mass basis) greater than 

6mg kg-1 are reported to imply some exposure, frank poisoning equating to 

concentrations above 20mg kg-1 and unexposed birds having concentrations around 1 
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mg kg-1. Consequently, interpreting the results from this study are made difficult with 

the Pb detection concentration being >8 mg kg-1, although frank poisoning can be ruled 

out. This finding is corroborated with the fact that no characteristic behavioural signs of 

Pb poisoning (Eilser, 2000) have been reported in the seabirds. 

 Fledgling feather samples 

Surface contamination from tern guano could explain the presence of Pb in the 2006 

fledgling feathers, despite no detectable Pb in their bones or livers.  

From adverse effect concentrations (AEL) reported for Hg, Pb and Cd in feathers of 

marine birds (Burger and Gochfeld, 2000), the median Hg concentration in fledgling 

feathers reported here of 0.44 mg kg-1, is well below the AEL of 5 mg kg-1. The median 

Pb concentration of 5.0mg kg-1 is above the AEL of 4 mg kg-1, but may relate to the less 

severe cleaning method adopted in this study because washing can reduce Pb 

concentrations in feathers by up to 60% (Scheifler et al., 2006). The Cd concentrations 

of 0.2 mg kg-1 or less in these feathers are well below the AEL of 2 mg kg-1. A 

weakness of using feathers to monitor metal exposure, even for Hg or Sn 

concentrations, is that the values only reflects systemic concentrations at the time of 

feather formation and exposure out with this period will not be shown (Nam et al., 

2005). However in this study the feathers are from fledgling birds, in which the feathers 

were entirely formed while on the Farne islands and so represent a valuable measure of 

local exposure to Hg and Sn.  

Fledgling bone samples 

Cu and Zn concentrations were similar to those reported in the literature, with Zn 

typically 50-100 times that of Cu (Walsh, 1990). Hg and Cd not being associated with 

bone tissue are predictably below detection concentrations in these samples. Circulating 

Pb is avidly taken up by avian bone, where it accumulates more than in liver tissue 

(Elliott and Scheuhammer, 1997), although in acute poisoning, the concentrations may 

be similar in bone and liver (Paine et al., 2007). Mean Pb concentrations in seabird bone 

and liver samples were reported as 6.2 and <0.5mg kg-1 respectively, without frank 

poisoning being apparent (Elliott and Scheuhammer, 1997). Bone concentrations of 

between 20 and 100 mg kg-1 are considered to be associated with excessive exposure in 

a range of bird species (Paine et al., 2007; Ethier et al., 2007). For the measurement of 

Pb absorption in birds, feathers are of less value than bones (Paine et al.,2007) because 

of the high degree of surface contamination in feathers (Nam et al., 2004). Consequently 

the <2 mg Pb kg-1 in bones of fledgling terns does not reflect a significant Pb exposure.  
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Egg shell samples 

Egg shell concentrations of Cu and Zn, although near the limit of detection, are similar 

to values reported for curlews (Numenius arquata), in non-polluted sites (Currie and 

Valkama, 1998). Egg shell Pb concentrations from eggs laid by birds in Pb 

contaminated sites were <0.5mg Pb kg-1 (Flores and Martins, 1997) and even highly 

dosed experimental birds only reached egg shell concentrations of 2mg Pb kg-1 (Jeng et 

al., 1997). As a result the detection concentration (>2mg Pb kg-1) is set too high in this 

study for egg shells to be of any value in monitoring seabird Pb exposure. Little or no 

Cd is reportedly deposited in egg shell (Flores and Martins, 1997) similar to its low 

transfer in the rest of the egg (Scheuhammer, 1987c). Mercury, having little affinity for 

Ca rich tissues like bone (Nam et al., 2005), is not associated with egg shell, which is in 

contrast to its high affinity for egg albumin (Heinz and Hoffman, 2004). In conclusion 

the egg shell metal analysis in this study is of little value for assessing the seabirds’ 

metal exposure. 

 

4.4.4. Analysis for tin in samples 

The organic form of tin, tributyl tin oxide (TBTO) has been recorded in a wide range of 

marine organisms (Kannan and Falandysz, 1997). The source of TBTO in the marine 

environment is predominantly from anti-fouling paints used on boats (Walker et al., 

2001). This pollutant’s toxicity is illustrated by its endocrine disruptive effect inducing 

imposex in the Atlantic dog whelk (Nucella lapillus) (Walsh, 1990), with tissue 

concentrations of 0.2-0.4mg Sn kg-1 (dry mass.) as TBTO associated with sterility 

(Gibbs et al., 1987).  

Fish concentrations 

Eisler, (2000) reported Sn concentrations in whole marine fish can range from 0.3 to 9.0 

mg kg-1 (wet mass.). In this study whole pipefish were all below 0.3 mg Sn kg-1 (dry 

mass.) suggesting the lack of butyltin pollution around the Farne Islands.  

Bird tissue concentrations 

Japanese quail (Coturnix japonica) experimentally dosed with TBTO showed reduced 

enzyme and hormone activity (Coenon et al., 1992), while exposure of egg laying 

female birds caused embryotoxic effects, reducing hatchability and fertility (Schlatterer 

et al., 1993). Kannan and Falandysz, (1997) reported elevated butyltin concentrations of 

0.35 to 0.87 mg Sn kg-1 (wet mass.) in the livers of fish-eating water birds from the 
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Southern Baltic Sea resulting from TBTO pollution. Livers from cormorants 

(Phalacrocorax carbo) living on Biwa Lake in Japan (noted for its TBTO pollution), 

were reported to have elevated butyltin concentrations ranging from 0.14 to 1.01 mg Sn 

kg-1 (wet mass.) (Guruge et al., 1996). As all the fledgling tern liver samples in the 

present study had concentrations below 0.075 mg Sn kg-1 (wet mass.) calculated by 

assuming 80% moisture in the livers (Kannan et al., 1998), this would suggest TBTO is 

not a significant pollutant in the Farne Island sea area.  

Butyltin exposed cormorants from Lake Biwa, Japan showed elevated feather 

concentrations (median 0.30 range 0.15-0.82 mg Sn kg-1 wet mass.), which correlated 

with high concentrations in the whole body, suggesting feathers can be used as a non-

destructive biomonitor of avian butyltin exposure (Guruge et al., 1996). Cormorants 

accumulated 20-30% of their butyltin body burden in feathers, suggesting the moult aids 

detoxification in these birds (Guruge et al., 1996). The preferential deposition of 

butyltin in feathers was also reported by Senthilkumar et al., (1999b), recording butyltin 

concentrations in feathers from birds in Southern India of  <0.3mg Sn kg-1 (wet mass.). 

They commented that these birds were less contaminated than birds from other parts of 

the world. The finding of the present study that tern feathers had less than 0.3mg Sn kg-1 

(dry mass) would also suggest butyltin is not a significant pollutant in the Farne Island 

sea area.  

Urine concentrations 

The analysis of urine is used to monitor organotin exposure in humans (CDC, 2005). 

For this reason AUS may be of value to determine avian exposure levels; the results of 

the present study may indicate that low exposure equates to AUS concentrations below 

0.3mg Sn kg -1 dry mass. 

 

4.5 Conclusions 

This study clearly showed the earlier reported metal concentrations in sandeels caught 

in 2003 from around the Farne Islands (Table 4.1.) were erroneously high. Compared to 

the earlier data, the fish results from the present study better resemble values reported 

for fish metal concentrations in the literature (Furness, 1993; Amiard et al., 1987). In 

the light of this, the seabirds of the Farne Islands are not being exposed to elevated 

concentrations of metals from the sandeels in their diet.  

A factor which should have caused suspicion over the accuracy of the earlier results was 

the high values for the essential metals Cu and Zn, which are usually metabolically 
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controlled to within narrow physiological concentrations across diverse species (Walsh, 

1990).   

The low metal exposure to the seabirds was also confirmed by concentrations in the 

various tissues analysed in this study being similar to unexposed birds reported in the 

literature. 

Without having control seabirds to compare AUS metal values with, validation of using 

the AUS as a sampling method to measure the seabirds’ exposure to metals is not 

possible. However if guano samples had been collected from individual nestlings along 

with crop sampling (Sutherland et al., 2004) this could have been a useful study into 

using AUS to monitor metal intake. From the point of view of the potential use of AUS 

for biomonitoring metal pollution, it is encouraging that metals could be detected in 

AUS (despite high minimum detection concentrations), even when no pollution is 

suspectedbecause higher AUS metal concentrations would be expected under conditions 

of frank exposure. 
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Chapter 5.  

Measuring corticosterone in avian urine 
 

5.1. Introduction 

5.1.1. Measuring hormones in bird guano 

Over the past two decades the non-invasive measurement of excreted hormone 

metabolites in animal faeces, including bird guano, has gained popularity (Palme, 

2005). Guano steroid monitoring offers a powerful alternative to blood sampling and the 

associated handling which can trigger a stress reaction detrimental to the bird. The 

potential value of this technique for avian physiology studies is shown by its capacity to 

determine a bird’s endocrine status. The guano concentrations of excreted sex hormones 

such as oestrogen, progesterone and testosterone, have been correlated with avian 

breeding cycles (Bishop and Hall, 1991; Kofuji et al., 1993; Tell, 1997; Sorato and 

Kotrschal, 2006). Furthermore, guano concentrations of corticosterone (the avian stress 

hormone), have been shown to reflect changes in the hypothalamus pituitary adrenal 

(HPA) axis in birds (Goymann et al., 2002; Baltic et al., 2005). However, interpreting 

the results of such bird studies can be problematic because of the varied composition of 

guano, which is a mixture of faeces and urine (Klasing, 2005). It is reported that 

ambient temperature, food composition and other factors that lead to differences in 

faeces production may affect the concentration of excreted hormones in guano 

(Goymann et al., 2006). As a result, although guano hormone concentrations are 

commonly expressed by dry mass (Wasser et al., 2000), it is now thought the total 

quantity of excreted hormone over time in guano is a more accurate measure of a bird’s 

hormone status (Goymann et al., 2006; Carlsson et al., 2009). This finding seriously 

restricts guano hormone studies in free ranging birds, because it is impractical to collect 

their total guano output over a defined time period (Goymann et al., 2006).  

A further complication of measuring the faecal excreted hormones in guano is that they 

constitute a mixture of several metabolites, with little or no parent hormone 

(Hirschenhauser et al., 2005). These metabolites are shown to differ between male and 

female birds of the same species (Rettenbacher et al., 2004) also with diet (Goymann et 

al., 2006). As a consequence, measuring the complex mixture of hormone metabolites 



 
 

78

in guano and relating these values to circulating hormone concentrations is problematic 

(Goymann, 2005).  

To overcome the above issues, measuring excreted hormones in the urine fraction of 

bird guano may avoid the disadvantages inherent in using the faecal component. Such a 

method would be comparable to the analysis of mammalian urine samples, which are 

successfully used for assessing an animal’s endocrine activity (Touma and Palme, 

2005).  

 

5.1.2. Avian urine as a source for excreted hormones 

Avian urine has been shown to contain excreted hormones (Hiebert et al., 2000; 

Rettenbacher et al., 2004; Wasser and Hunt, 2005). Avian urine is composed of a 

suspension of urate spheres, which contain concentric layers of serum albumin derived 

from the bird’s bloodstream (Janes and Braun, 1997). This major blood protein 

transports many substances including hormones (Peters, 1996). As a result the albumin 

would be expected to transfer bound hormones from the blood into the avian urate 

spheres (AUS). The liquid fraction of avian urine, described as cloacal fluid (CF), has 

been used to identify excreted corticosterone in hummingbirds (Hiebert et al., 2000). 

This technique presents several disadvantages being restricted to birds like 

hummingbirds on predominantly fluid diets which pass more liquid urine compared to 

other species. The liquid CF can also soak away and dry, making collection 

problematic. In contrast, the solid fraction of urine composed of AUS is more stable and 

suitable for collection in the wild. Furthermore, CF has the disadvantage of being 

contaminated by faecal material as was shown by Hiebert et al., (2000) when oral 

steroid was given. Similarly, faecal contamination often causes blood, glucose and 

protein to be detected in CF samples used in clinical diagnostics (Tschopp et al., 2007). 

In contrast to faecal hormones, which are predominantly conjugated metabolites 

(Hirschenhauser et al., 2005), AUS hormones are likely to be in the parent form, 

making specific analysis easier. Furthermore, unlike faecal excreted hormones, which 

are highly modified by digestive processes (Klasing, 2005), urine excreted hormones 

may be protected within the AUS and remain unchanged between their renal formation 

and being passed in guano (Janes and Braun, 1997). A possible reason why urinary 

excreted parent hormones have not been detected in whole guano is because the 
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hormone metabolites are extracted using alcohol (Palme, 2005), in which the AUS will 

remain intact (Drees and Manu, 1996). 

In the literature two radio-labelling infusion studies show avian urine contains excreted 

steroids (Wasser and Hunt, 2005; Rettenbacher et al., 2004). However Wasser and Hunt 

(2005) reported the solid urates were devoid of steroid metabolites while Rettenbacher 

et al., (2004) detected no parent steroid molecules. These finding contradict the general 

hypothesis of this thesis which predicts parent hormone should be detected in extracts of 

the AUS. 

Wasser and Hunt (2005) reported that the solid urates after separation from the liquid 

part of the urine in two owl species had negligible radio-labelled steroid metabolites 

following infusion experiments. However these solid urates were not examined for 

morphology and could have been composed of hydrolysed AUS following contact with 

the water that Wasser and Hunt (2005) used to separate the urine from the faeces. The 

addition of water to AUS is reported to cause spontaneous re-crystallization with the 

subsequent release of incorporated solutes (Drees and Manu, 1996). Consequently the 

radio-labelled steroid metabolites in the AUS could have been released into the 

separately-analysed liquid phase of the urine where they were detected in significant 

amounts (Wasser and Hunt, 2005). Furthermore Wasser and Hunt (2005) did not 

determine the metabolite profile in the liquid urine fraction only the faecal fraction, 

where similar to other authors (Hirschenhauser et al., 2005), they detected no parent 

steroid molecules.  

In a similar infusion experiment in domestic chickens (Rettenbacher et al., 2004), using 

radio-labelled corticosterone, the urine fraction (solid and liquid combined) was also 

shown to have substantial quantities of radio-labelled metabolites, although it was not 

analysed for which specific metabolites. This was carried out on whole-guano samples 

using an alcohol extraction method (methanol 60% v/v) that preserves the AUS 

structure (Drees and Manu, 1996) and so prevented steroid analysis of the AUS. 

Furthermore the total recovery rate of radioactivity in this study ranged from 52 to 97% 

which also supports the hypothesis that some (possibly parent hormone) was undetected 

because intact AUS were discarded prior to the analysis. 
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5.1.3. Validation of hormone measurements on AUS extracts 

As blood hormone concentrations are considered a true measure of hormone status in an 

animal (Touma and Palme, 2005) it was necessary to correlate AUS concentrations with 

circulating blood concentrations of corticosterone. However the interpretation of blood 

hormone concentrations is complicated in two ways:  

Firstly, hormones in blood are composed of bound and unbound fractions, with the 

latter, rather than total amount, being thought responsible for hormone activity (Romero 

et al., 2006). Consequently hormone analysis of blood samples should include a 

measure of hormone binding proteins in addition to total hormone concentrations 

(Breuner et al., 2006).  

Secondly, some hormones are released in a pulsatile manner (ultradian rhythms); this is 

shown as repeating peaks and troughs in sequentially taken blood samples (Young et al., 

2004). As a result the hormone concentration in a single blood sample will depend upon 

the point at which the pulse is sampled.  

These complications make correlating excreta hormone concentrations with blood 

concentrations problematic. As a result, biological or physiological techniques, as 

defined by Goymann (2005), are preferable when validating the measurement of  

hormones in excreta (Goymann, 2005).  ‘Biological’ validation depends upon measured 

hormone changes reflecting normal biological processes, such as the circadian or daily 

corticosterone changes (Breuner et al., 1999). ‘Physiological’ validation is based upon 

showing hormone changes in response to pharmacological agents, such as the 

suppression of corticosterone concentrations by dexamethasone administration 

(Westerhof, 1998). 

To validate measuring corticosterone concentrations in AUS, one biological and three 

physiological techniques were explored in this study. The biological method was to 

show the diurnal rhythm of corticosterone concentrations (Breuner et al., 1999). The 

physiological methods involved altering circulating corticosterone concentrations by (i) 

ACTH stimulation (Goymann et al., 2002), (ii) dexamethasone suppression (Westerhof, 

1998) and (iii) the oral administration of exogenous corticosterone (Breuner et al., 

1998).  

To facilitate this, a series of experiments on wild-caught great tits (Parus major) 

maintained in laboratory conditions was devised. In these experiments, blood and AUS 
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corticosterone concentrations were measured concurrently in individual great tits. 

Furthermore, to compare this proposed AUS analysis technique with a currently used 

whole guano protocol, guano samples were concurrently analysed for corticosterone 

using the method reported by Goymann et al., (2002). 

 

5.1.4. Summary and specific aims 

In summary the non-invasive measurement of bird hormones is a powerful tool for 

avian physiological studies.  However the current techniques which measure excreted 

hormones in whole guano have serious drawbacks. It is hypothesised that measurement 

of hormone concentrations in AUS may be a viable alternative but first a suitable 

extraction and hormone analysis method must be developed to enable subsequent 

validation.  

Consequently the specific aims of this chapter were to: 

1.   Develop a method to extract and analyse corticosterone from AUS. 

2.   Validate the proposed avian urine analysis method. 

 

 

 

 

5.2. Materials and methods 

 

5.2.1. Great tit subjects and housing 

Eight great tits (four male and four females), were captured from the wild on 19th March 

2007, under Home Office Project License number 60/3608. They were kept in a 

windowless room, approximately 3 metres square, on a fixed photoperiod of 06:15 to 

20:15 BST. Ambient temperature was thermostatically controlled at 18+20C. The great 

tits were housed individually in wire mesh cages of height 45cm and floor area 45cm x 
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72cm set on wall mounted shelves around the room. The diet of the birds was kept the 

same throughout their captivity (Table 5.1.). 

Table 5.1. Ration fed to the captive great tits (Parus major) in this study. 

Bogena® Universal Food 1 x 5mL scoop 
Peanuts 5 
Mealworms 6 
Wax moth larvae 2 
Sunflower seeds Pinch 
Apple or pear 1/8th cut segment 
Water with added Vit A* 200mL + 2 drops vitamin supplement  
* Blue tits, in particular are susceptible to vitamin A deficiency (Hawkins et al., 2001). 

 
Each cage had two perches running front to back. Awater dispenser and a food bowl 

were attached to the front wall of the cage. When guano samples were not being 

collected, pieces of apple, some foliage and a water bath were provided to enrich the 

bird’s environment.  

 

5.2.2. Guano sampling techniques 

 

Because initial capture can alter stress physiology (Dickens et al., 2009) no guano 

collection was carried out on the great tits in the two months after capture. This allowed 

the birds to acclimatize to the daily cleaning and feeding routine which took place at 

09:00 hrs each morning.   

Cellophane sheets were placed in the bottom of each cage to collect guano from each 

bird at timed intervals of 2 hours. It was found 2 hours provided adequate guano to 

extract enough urine (approximately 50mg dry mass.) for hormone analysis. However 

this time period was increased when guano production decreased such as during 

weighing, blood sampling or drug administration. If the whole guano was to be stored it 

was folded up in the cellophane collection sheet and frozen (-800C). For immediate AUS 

hormone extraction the guano was scraped from each sheet, using a disposable plastic 

knife, into individual glass sample pots containing 5mL of GPR absolute ethanol. Any 

AUS adhering to the sheet were suspended in a few drops of ethanol and transferred 

using a glass pipette. 
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5.2.3. Blood sampling procedure 

Blood sampling was performed under a Home Office Personal Licence (PIL 60/11083). 

Methods for blood sampling birds are described in the literature (Phillips, 1999; 

Hawkins et al., 2001). Although these authors suggest the right jugular vein is a suitable 

site in smaller birds such as great tits, it was found the cutaneous ulnar (wing) vein was 

preferable. This was concluded after one female great tit suffered a fatal haemorrhage 

during jugular blood sampling, resulting in seven birds remaining for this study. 

 Furthermore, sterile water was used to part the feathers rather than alcohol (Hawkins et 

al., 2001) because the resulting vasoconstriction made the wing vein impossible to see. It 

is recommended by Hawkins et al., (2001) that for a one-off blood sample 0.5mL of 

blood can be safely taken for every 100g body mass of bird. While Phillips, (1999) 

reports twice this amount (1% of body mass) can safely be withdrawn without ill effects. 

As these birds were between 15 and 20 g, to err on the side of caution the blood volume 

collected was restricted to 50µL taken once in any two week period. This was also 

within the acceptable limit for sample volume defined in the Project Licence as 1% of 

body mass in any 28 day period. The birds were caught by turning the aviary lights off, 

and using minimal light such as a chink in the door or a small torch. The bird was 

immediately taken to a separate room out of sight or hearing of the others, for bleeding. 

Blood was taken by puncturing the wing vein with a fine hypodermic needle (26-gauge) 

with the drop that welled up being collected in a heparinised micro-haematocrit tube 

(Fisher Scientific, UK). The time between entering the aviary to catch the bird and blood 

collection was kept to less than 3 min, to ensure that plasma corticosterone 

concentrations were not elevated due to capture stress (Wingfield et al., 1982). The tube 

was plugged with Cristaseal® and kept upright on ice until centrifuged at 15,000g for 15 

min. The tube was then snapped to separate the plasma that was then expelled into a 

0.5mL Eppendorf tube and stored frozen (-200C) for later analysis.  

Haemostasis was achieved immediately after blood sampling by holding cotton wool to 

the puncture site for 1 minute. After this, if no further bleeding was visible, the bird was 

returned to its cage.  
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5.2.4. AUS sample preparation and hormone extraction 

 

AUS extraction from whole guano  

The guano samples collected in GPR absolute ethanol were homogenised using a glass 

rod, vortexed briefly and the suspended AUS pipetted off into 2mL Eppendorf tubes 

leaving the faecal sediment behind. These Eppendorf tubes were then centrifuged at 

2,500 x g for two min, after which the ethanol supernatant was discarded. The residue 

was then washed twice using fresh ethanol by briefly vortexing then centrifuging (2,500 

x g for 2min) and discarding the supernatant each time. The final residue was air dried to 

constant mass and represented the AUS sample from a single bird over one collection 

period. 

Guano samples that had been stored frozen were defrosted at room temperature on the 

cellophane collection sheets. If only the AUS fraction was to be analysed the same 

procedure of washing with GPR ethanol as described above was followed. If however 

the whole guano sample was to be analysed for both faecal and AUS corticosterone, the 

guano was scraped (using a disposable plastic knife) onto an aluminium foil sheet (10cm 

x 10cm) on top of a heat block set at low heat (800C) and thoroughly mixed while being 

dried to constant mass. The dry mass of each whole guano sample was recorded (see 

Fig.5.6). This dried guano sample was suitable for faecal corticosterone analysis using 

the method of Goymann et al., (2002). As the residue from this faecal analysis contained 

intact AUS, it was used to measure the corticosterone concentration in the AUS from the 

same guano sample.  

Hormone extraction from AUS samples 

Between 30-50mg of air dried AUS was accurately weighed in a 2mL Eppendorf tube 

using a Sartorius LE225D (Epsom, UK) balance, to this was added 2mL 0.5M HCl, 

mixed thoroughly by vortexing (10 sec) and then placed in a sonication bath 

(Ultrasonics Ltd, Hove, UK) for 10mins. The hydrolysed contents were then transferred 

to a ground glass stoppered test tube and shaken with 5mL ether for 15 min. The mixture 

was centrifuged for 2 min at 2000x g in a refrigerated centrifuge (40C) to aid phase 
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separation, then snap frozen in a dry ice/ethanol bath. To neutralise residual acid in the 

ether layer it was decanted into a fresh tube containing an equal volume of 1% Na2CO3 

vortexed to mix thoroughly, then rested or centrifuged to allow phase separation prior to 

again snap freezing (dry ice/ethanol bath). The ether layer was decanted into an open 

glass test tube and the solvent fully evaporated in a fume cupboard using an air 

manifold. The residue was re-suspended in 200µL of buffer and 50µL of ‘Caldil’ from 

the corticosterone ELISA kit. This solvent represented the zero standard of the ELISA 

kit and the small final volumes constituted a concentration step in the extraction. Re-

suspension was aided by placing the glass test tubes in a sonication bath for 5mins. The 

contents were then transferred to 0.5mL Eppendorf tubes and fridge stored (0-40C) prior 

to hormone analysis for corticosterone, using the ELISA test kit.  

 

Uric acid analysis of AUS samples  

The uric acid content of individual AUS samples was determined using a combination of 

an extraction protocol adapted from Adeola and Rogler, (1994) and the 

spectrophotometric method of Van Handel (1975). In brief, the remaining aqueous and 

solid residue from ether extraction was allowed to thaw, then neutralised by adding solid 

sodium bicarbonate until effervescence (from liberated CO2) stopped. To this 10mL of 

0.5% Li2CO3 was added, vortexed to mix thoroughly and then incubated in a boiling 

water-bath for 10 min. After allowing it to cool, the entire solution was transferred to a 

100mL volumetric flask and made up to volume with 18MΩ water. After thorough 

mixing approximately 5mL was syringe-filtered (Whatman Puradisc, UK) and analysed 

for uric acid using the spectrophotometric method of Van Handel (1975).  The uric acid 

content of each urine sample (dry mass) was determined using a uric acid standard 

calibration curve and calculation of the dilution factors. 

 

5.2.5. Hormone analysis of samples 

 

ELISA method 

Whole guano, AUS extracts and plasma samples were analysed for corticosterone 

content using the OCTEA HS ELISA kit (IDS ltd, Boldon, UK). The kit was used in 
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accordance with the manufacturer’s protocol. The ELISA multi-well plates were read 

using a Spectra Max-Plus 384 micro-plate reader with Soft Max-Pro software 

(Molecular Devices, Sunnyvale, CA, USA). Absorbance data was analysed using the 

programme Fig-P for Windows version 2.7 (Biosoft Ltd. Cambridge, UK). For each 

analysis a calibration curve was constructed from the kit standards and two control 

samples (high and low) were used to determine intra- and inter-assay accuracy. 

Specificity of the analysis for corticosterone in the urate sphere extracts was tested by 

showing parallelism between the displacement curves of serial diluted extracts and the 

corticosterone standard (Goymann et al., 2002). The ELISA kit detection limits were 

calculated for each analysis from the concentration corresponding to the mean 

absorbance of the zero standards minus two standard deviations. Samples were assayed 

in duplicate and concentrations were expressed as nanograms per gram uric acid. The 

ELISA antibody cross reactivity (at 50% binding of zero calibrator) provided by the 

manufacturer stated the following cross-reactivity values:  11-Desoxycorticosterone 

18.5%, 11-Dehydrocorticosterone 2.0%, Aldosterone 0.26%, Dexamethasone 0.11%, 

Cortisol and Progesterone 0.09%, with other analytes at or below 0.01%. Values were 

not given for the common glucuronate or sulphate corticosterone metabolites and so 

were assumed to be very cross reactive. The significance of the low cross-reactivity to 

dexamethasone is important in regard to its use in the suppression experiment (see 

5.3.6.). 

 

 

Other analytical methods used for corticosterone analysis 

To compare analytical techniques, ether extracts derived from several great tit urine 

samples were reconstituted in mobile phase for RP-HPLC detection using the method 

adapted from Wong et al., (1994). Initial analysis showed such samples were highly 

contaminated, making detection impractical. In an attempt to resolve this problem the 

ether extracts were cleaned up using a method adapted from Hunt et al. (2006) prior to 

RP-HPLC analysis.  

A further technique to clean up the urine samples was to collect standard derived, timed 

samples eluting from the RP-HPLC column (‘heart cut’). These samples were analysed 

by ELISA also LC-MS/MS using a method similar to Samtani and Jusko, (2007) for 

parent corticosterone detection. 
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5.2.6. Experimental procedures on great tits. 

Sex difference in AUS corticosterone concentrations 

At the outset of this study, four birds of each sex were selected. However this design 

became unbalanced following one female dying.  In the light of sex influencing the 

profile of excreted corticosterone metabolites (Rettenbacher et al., 2004; Goymann et al., 

2002) it was necessary to determine if sex had a significant effect on AUS corticosterone 

concentrations and so determine if sex needed to be considered in any comparative 

treatment study. 

Diurnal changes of corticosterone concentrations 

In this experiment guano samples were collected at 3-hour intervals because overnight 

guano production was expected to decline from the birds not feeding in the dark. The 

first sample was collected between 15:00hr and 18:00hr on day 1 and the last between 

12:00hr and 15:00hr on day 2., These were immediately frozen (-800C) for later 

analysis. The collection of guano in the dark period at 21:00hr, 24:00hr and 03:00hr was 

facilitated by a low intensity head torch with a cyan coloured filter (Romero and Rich, 

2007), during which the birds remained immobile and silent. All the guano samples 

collected in this experiment were later defrosted, dried and weighed, which provided a 

measure of guano production by each bird over the 24hr period. Only the first guano 

samples after lights-on (06:00-09:00hrs) and the late afternoon samples (15:00-

18:00hrs) were analysed for corticosterone because they were expected to contain the 

extreme high and low concentrations respectively of basal corticosterone over the 

diurnal cycle (Breuner et al., 1999). These samples were analysed concurrently for both 

faecal and urine excreted corticosterone, using the method for whole guano reported by 

Goymann et al., (2002) and the one described here for AUS respectively. 

ACTH stimulation of corticosterone concentrations 

The administration of exogenous adrenocorticotropic hormone (ACTH) has been widely 

used in birds to stimulate the increased release of corticosterone from the adrenal cortex 

and so elevate circulating blood concentrations (Astheimer et al., 1994; Wada et al., 

2007). The ACTH analogues used in this study were 1-24 segment ACTH (Sigma) or 
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Synacthen (Alliance). For both, a 1µg dose was given via intramuscular (IM) injection 

in the pectoral muscle. From the reported use of ACTH in birds (Spelman et al.,1995; 

Goymann et al.,2002; Rettenbacher et al.,2004; Mostle et al.,2005) a blood peak of 

corticosterone 30-60 min following ACTH injection was expected, with a urine peak 

followed by a faecal peak over the next hour. Control birds not given ACTH received a 

similar volume of sterile normal saline IM. 

Guano was collected prior to ACTH or saline administration at 11:00h and blood 

samples were taken at 2 or 4 hours following the injections. To determine if blood 

sampling following ACTH injection would prolong the release of corticosterone 

(Noirault et al., 1999), some birds were not bled following ACTH administration. 

Guano was collected up to 17:00hr (see Table 5.2. for scheme). 

 

Table 5.2. Scheme for ACTH stimulation and sample collection in great tits 
(Parus major). 
 

Time Week 1 Bird 1 Bird 2 Bird 3 Bird 4 Bird 5 Bird 6 Bird 7 
09:00  Load cellophane               
11:00  Remove sheet 1 Inj ACTH Inj  ACTH Inj  ACTH Inj saline Inj saline Inj ACTH Inj ACTH 
13:00  Remove sheet 2 Bleed             
15:00  Remove sheet 3   Bleed Bleed Bleed Bleed     
17:00  Remove sheet 4               

 
Time Week 2 Bird 1 Bird 2 Bird 3 Bird 4 Bird 5 Bird 6 Bird 7 
09:00  Load cellophane               
11:00  Remove sheet 1 Inj ACTH Inj saline Inj saline Inj ACTH Inj ACTH Inj ACTH Inj ACTH 
13:00  Remove sheet 2  Bleed Bleed     Bleed Bleed 
15:00  Remove sheet 3  Bleed         
17:00  Remove sheet 4               

Because the initial results from this experiment were inconclusive from possibly 

endogenous stress responses causing ‘noise’ in the measured hormone concentrations 

(Wilson and Holberton, 2001), the method was modified. This involved the oral 

administration of dexamethasone (see below) prior to ACTH stimulation, to prevent 

such endogenous stress responses masking the effect of ACTH on AUS corticosterone 

concentrations. 

Dexamethasone suppression of corticosterone levels 

In an adaption of the method described by Wilson and Holberton (2001), a 5mg/kg BW 

oral dose of dexamethasone was thought suitable and safe to be given to the great tits. 
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This was administered as a single oral dose of 100µg per 20g bird, using 20µL of 

5mg/mL dexamethasone in DMSO inoculated into a wax moth (Galleria mellonella) 

larva fed to each bird. The dexamethasone was administered at least two hours prior to 

suppression being required (Vanmontford et al., 1997) or even the day before as the 

effect is reported to persist for several days (Westerhof, 1998). To avoid prolonged or 

additive suppression, which can be fatal in birds (Astheimer et al., 1994), 

dexamethasone was not given more than once a week to the great tits. 

Oral administration of corticosterone 

In this protocol, an oral dose of 20µg corticosterone was given to four of the great tits, 

by feeding a mealworm (Tenebrio molitor) injected with 20µL of 1mg/mL 

corticosterone in DMSO as previously described (Breuner, et al., 1998; Saldanha et al., 

2000). The remaining three birds were given mealworms injected with 20µL DMSO as 

a control treatment. From the study by Breuner, et al., (1998) it was expected that the 

birds would show a rapid increase in blood corticosterone (within 7 min), returning to a 

resting concentration after one hour. Consequently the time interval between feeding the 

spiked food and taking a blood sample was critical to detecting the blood corticosterone 

peak and was kept between 20 and 30 min. Guano samples were collected at two-hourly 

intervals from each bird comprising two collections before, and three after, the time of 

treatment. 

 

 

5.2.7. Data analysis  

Minitab (version 15) and Sigma plot (version 11) programmes were used for statistical 

analyses and graphical output. Parametric analysis using the paired T test was carried 

out on data from individual birds and the two sample T test on birds as a group, after 

confirming the data were normally distributed (Kolmogorov-Smirnov Test) and had 

equal variance (Levene’s Test).  For data not normally distributed, the Mann-Whitney U 

test was used to determine significant differences between data sets. ANOVA was 

performed on the 24hr guano data to compare urine and whole guano production for 

each 3hr sampling period. P values less than 0.05 were taken to show a statistically 

significant difference. 
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5.3. Results 

5.3.1. Specificity of the ELISA analysis for corticosterone  

The test for parallelism, used to show specificity of the ELISA test for corticosterone 

(Goymann, 2005), between serial dilutions of AUS extracts and a corticosterone 

standard showed a close approximation to each other. However whole guano extracts 

produced using the faecal extraction method by Goymann et al., (2002) did not show 

parallelism (Fig.5.1.). 

 

Figure 5.1. Graph showing test for parallelism of trend lines between 
serial dilutions of a corticosterone standard (circle, solid line) and extracts 
from either urate spheres (triangle, dotted line), using the reported method 
here or whole guano (square, dashed line), using the method by Goymann 
et al., (2002). 
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5.3.2. Sex difference between corticosterone concentrations in AUS samples 

The corticosterone concentrations in male and female AUS samples (15 of each) were 

collected over a single day and compared (Fig.5.2.). On this occasion the AUS from 

male great tits had significantly higher corticosterone concentrations than AUS from the 

female birds (t = 2.40, df =28, p = 0.023).  However in a later analysis with a smaller 

sample size (8 male and 6 female samples), both faecal and AUS corticosterone 

concentrations failed to show this relationship (Fig.5.3.). The Mann-Whitney U test 

showed no significant difference in steroid concentrations in faeces (p= 0.282) or AUS 

(p= 0.852) between sexes.  

 

Figure 5.2. Corticosterone concentrations (ng/g uric acid), measured by 
ELISA, in 15 extracted urate sphere samples from four male and four 
female great tits (Parus major) collected over a single day. Mean values 
with standard error bar. 
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Figure 5.3. Corticosterone concentrations measured by ELISA, in faeces 
(dark grey) using the method by Goymann et al., (2002) and in avian 
urate spheres (light grey), from male (8 samples) and female (6 samples) 
great tits (Parus major). Mean values with standard error bar. 

 

5.3.3. Diurnal changes in excreted corticosterone concentrations 

Corticosterone concentrations were measured concurrently in faeces and AUS from the 

great tit guano samples collected in the morning and late afternoon (Fig.5.4.). There was 

a significantly higher corticosterone concentration in the morning faecal samples than 

the late afternoon samples (t= 2.82, df = 12, p = 0.015). Although a similar trend was 

apparent in the urate sphere samples it was not statistically significant (t= 2.01, df = 12, 

p = 0.068). 
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Figure 5.4. Corticosterone concentrations measured by ELISA in faeces 
(dark grey) using the Goymann et al., (2002) method and in avian urate 
spheres (light grey) from great tit (Parus major) guano, collected in the 
morning and late afternoon. Mean values with standard error bar. 
 

Using the total guano mass and uric acid mass passed by each bird in each time period 

and the concentration of corticosterone in each sample (ng g-1 guano or uric acid), the 

total amount of corticosterone passed in the guano or AUS for each time period was 

calculated. There was no significant difference in guano total corticosterone (ng/3hrs) 

between the morning and late afternoon time periods (p= 0.40). The total amount of 

corticosterone excreted in the urine (ng/3hrs) during the morning and late afternoon was 

also not significantly difference (p= 0.11). 
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5.3.4. Diurnal changes in guano production 

From drying and weighing the guano produced at three-hourly intervals by each 

individual great tit, the 24hr guano production of each bird was determined. 

Furthermore the uric acid content of each sample was determined as a measure of urine 

production, the dry mass of whole guano and uric acid are compared below (Fig 5.5). 

 

Figure 5.5. Total dry mass of guano (dark gey) and uric acid (light grey) 
passed by seven great tits (Parus major) in each 3 hour interval over the 
24hr collection period. Mean values with standard error bar. 
 

A one-way ANOVA of guano samples collected at different times in the light period 

showed whole guano dry mass differed significantly (F(4,30) = 11.35, p <0.001). Tukey 

post-hoc pair wise comparison showed both the 9am and 9pm samples had significantly 

less mass than the 12am, 3pm and 6pm samples (p < 0.05). While there was no 

significant difference between the 9am and 9pm samples (p = 0.176) or between the 

12am, 3pm and 6pm samples (p = 0.927, 0.170 and 0.427). A one-way ANOVA of urine 

production at different times in the light period showed uric acid content differed 

significantly (F(4,24) = 12.99, p < 0.001). Tukey post-hoc comparisons of the five light 
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period sample times indicate that the 9am, 12am, 3pm and 6pm samples (M = 14.99, 

95% CI [12.69, 17.29], 14.97, 95% CI [11.52, 18.42], 14.59, 95% CI [11.10, 18.11] and 

15.01, 95% CI [12.69, 17.29] respectively) all had significantly higher uric acid content 

than the 9pm samples (M = 10.67, 95% CI [5.78, 15.57]), p < 0.05. One-way ANOVA 

excluding the 6-9pm samples showed no significant difference in uric acid content 

between these light period sampling times (F(3,18) = 0.30, p = 0.828). However there 

was a significant difference between birds, in the amount of uric acid they each 

produced in these sampling times (F(3,18 = 6.19, p = 0.001). 

These results show the lag in faeces production at the start of the light period from 

transit time (Clench and Mathias, 1992). In contrast urine production is not delayed in 

this way. However it appears that both faeces and urine production practically stop in 

the dark period. 

 

5.3.5. Urine corticosterone concentrations following ACTH stimulation 

The initial results from ACTH injections given to the great tits did not show the 

expected increase of corticosterone concentrations in AUS or blood samples. This was 

assumed to be a result of endogenous stress responses from handling and sampling, 

masking the effect of the ACTH (Wilson and Holberton, 2001). Consequently 

dexamethasone was given to the birds the day prior to ACTH injection in an attempt to 

resolve this problem. Plasma concentrations of corticosterone 40 min after an ACTH 

injection (Fig.5.6.) were significantly elevated over saline injected control birds (t= 6.36, 

df= 5, p= 0.001). The AUS corticosterone concentrations appeared to increase in both 

the saline and ACTH injected birds although neither were statistically significant (p= 

0.144 and p= 0.232 respectively). Furthermore no significant difference was shown 

between treatments (Fig.5.7.).    
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Figure 5.6. Plasma corticosterone concentrations in great tits (Parus 
major), measured by ELISA at 40 min after an IM injection of saline 
(control) or 1µg ACTH (Synacthen, Alliance), while under 
dexamethasone suppression. The limit of detection was determined to be 
1.25ng mL-1 consequently all the saline treated birds had undetectable 
concentrations of plasma corticosterone. 
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Figure 5.7. Great tit (Parus major) AUS corticosterone concentrations 
measured by ELISA before and after 1µg ACTH (Synacthen, Alliance) 
or saline (control) injections (given IM), while concurrently under the 
suppressive influence of dexamethasone. Mean values with standard 
error bar. 

        

                                                                                                                                                                  

5.3.6. Dexamethasone suppression of corticosterone concentrations 

The suppressive effect of dexamethasone on blood plasma corticosterone concentrations 

(mean 0.25ng/mL) was shown in four control (saline injected) great tits (Fig.5.6.), 

following an oral dose of 100µg of dexamethasone given the day before. Figure 5.8. 

shows corticosterone concentrations in AUS from all seven great tits were significantly 

reduced the day after receiving the same 100µg oral dexamethasone dose (t= 4.58, df= 

12, p= 0.001). The low cross reactivity of dexamethasone with the ELISA antibody 

prevented its administration significantly elevating the measured corticosterone values. 
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Figure 5.8. Great tit (Parus major) AUS corticosterone concentrations 
measured by ELISA before and the day after oral dexamethasone 
(100µg). Mean values with standard error bar. 

 

5.3.6. Oral administration of corticosterone 

Blood plasma corticosterone concentrations (Fig.5.9.) appeared elevated in the four 

birds given the 20µg oral corticosterone dose compared to the three placebo-dosed 

birds, however this was not statistically significant (t = 1.90, df = 5, p = 0.116). 

Although AUS corticosterone concentrations showed an apparent increase following the 

oral dose of 20µg corticosterone (Fig.5.10.), this was not statistically significant (t = 

2.19, df = 6, p = 0.071).   
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Figure 5.9. Comparison of great tit (Parus major) plasma corticosterone 
concentrations 20-30 min after the oral administration of placebo 20µL 
DMSO only (n=3) or 20µg of corticosterone in 20µL DMSO (n=4). Mean 
values with standard error bar. 
 

 

Figure 5.10. Great tit (Parus major) AUS corticosterone concentrations, 
measured by ELISA, before and after the oral administration to each bird 
of a placebo (solid column) or 20µg corticosterone (hatched column). 
Mean values with standard error bar. 
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5.3.7. RP-HPLC and LC-MS/MS detection of corticosterone in great tit AUS samples 

Despite using solid phase extraction (SPE) to clean up the AUS extracts, no clear peaks 

attributable to parent corticosterone could be reliably identified using RP-HPLC. 

However heart cut samples eluting from the column between 10 and11 min (a time 

equivalent to the parent steroid) did contain parent corticosterone when analysed by LC-

MS/MS (Table 5.3.). Furthermore analysis of the same heart cut samples by ELISA, 

detected the presence of a similar magnitude of corticosterone.  

 

 

Table 5.3. LC-MS/MS and ELISA analysis for corticosterone of 1 minute 
heart cut samples from RP-HPLC separated great tit (Parus major) urate 
sphere samples (from guano collected following oral corticosterone 
administration) and a 200ng/mL corticosterone standard. The RP-HPLC 
data shows the variation of run time (min) of the nearest peak to parent 
corticosterone detected for each sample tested. 

 
 RP-HPLC LC-MS/MS ELISA 

Bird  RT (min) Area ng/mL ng/mL 
4 10.42 704 40 54 
5 10.52 1192 50 50 
6 10.34 1141 72 70 
7 10.57 4288 2638 800 
Standard  10.31 957 146 200 

  
 
 
The heart cut analysis of the corticosterone standard (200ng/mL) using the ELISA 

method gave a recovery of 100% (Table 5.3.). However with the bird 7 result this should 

be treated as an estimate because the steroid concentration in the ELISA wells in both 

cases were above 15ng/mL, the reported upper limit of accuracy (IDS, 2007). The LC-

MS/MS analysis represented a recovery rate of 73%.  
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5.4. Discussion 

5.4.1. AUS extraction from guano 

AUS were successfully separated from great tit guano using the alcohol suspension 

technique described. Furthermore it was shown that the residue from a currently used 

method of guano hormone analysis (Goymann et al., 2002) included intact urate spheres 

which on LC-MS/MS analysis contained parent corticosterone (Table 5.3.). This 

provides evidence that current techniques of guano steroid analysis (Goymann, 2005) 

discard some urine excreted parent corticosterone. However it is proposed that future 

work using a radio-labelled infusion study (Rettenbacher et al., 2004) should be carried 

out to resolve this issue.  

 

5.4.2. Specificity of ELISA technique for measuring corticosterone in great tit AUS  

Corticosterone concentrations in serial dilutions of AUS extracts from great tits showed 

approximate parallelism with the corticosterone standards suggesting specificity of the 

technique for measuring corticosterone in AUS. However faecal extracts using the 

method by Goymann et al., (2002), showed poor parallelism to standard corticosterone 

(Fig.5.1.), which may indicate interference from a matrix effect or metabolite cross 

reactivity (Goymann, 2005). In the light of this the results of faecal steroid analysis 

reported here may be questionable. An unusual feature of both plasma and AUS 

corticosterone concentrations in oral corticosterone protocol (see 5.3.6.) was their 

higher values compared with those reported in the literature and in the other analyses in 

this study.  This may have been a consequence of the ELISA kit being defective, such 

higher values would equate with deterioration of the antibody possibly from improper 

storage. 

5.4.3. The effect of gender on excreted corticosterone concentrations in great tits 

In one experiment (Fig. 5.2.) AUS corticosterone concentrations appeared to confirm 

the reported finding that corticosterone excretion profiles from male and female birds 

are different (Rettenbacher et al., 2004; Goymann et al., 2002). However this difference 

was not shown in another experiment (Fig. 5.3.) where faecal and AUS corticosterone 

concentrations were measured concurrently. Despite this, as the birds throughout this 
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study were the same individuals (4 males and 3 females), different treatments to the 

whole group could be compared. In addition when the response of individual birds to a 

treatment was assessed (using before and after corticosterone concentrations), it was not 

necessary to take into account the sex difference.   

5.4.4. Diurnal changes of corticosterone in great tit AUS extracts 

The AUS corticosterone concentrations appeared to show a trend that confirmed a 

diurnal peak in the morning samples but it was not statistically significant (Fig. 5.4.). If 

a shorter time period for guano collection had been selected (e.g. 06:00 to 08:00hrs), it 

may have had a greater proportion of early morning urine and so may have shown the 

corticosterone peak, because of its reported rapid decline at dawn (Breuner et al., 1999). 

Although the total amount of corticosterone passed in guano over time is reported to be 

a better measure of a bird’s hormone status than guano concentration (Goymann et al., 

2006), no diurnal difference was shown using this method.  

5.4.5. Diurnal changes in guano production 

The quantity of guano produced by the great tits (Fig. 5.5.) in the first morning sample 

was less than later samples collected over the day, because of the transit time delay 

(Clench and Mathias, 1992) following the night fast. In contrast, the urine component of 

the guano, as measured by uric acid content, remains relatively constant over the day; 

suggesting a possible advantage of measuring steroid levels in AUS rather than in 

faeces. The constant urine production is understandable because it does not have the 

transit time delay inherent in faecal production. However it was noted the quantity of 

urine passed in the guano declined in the last collection period of the day which 

included a 45 minute period of darkness. Subsequent samples collected in total darkness 

produced dramatically less urine and faeces with many birds passing no guano at all. In 

all cases if guano was passed it did however contain some urine as evidenced by uric 

acid content.  Although some authors have deduced urine formation is shut down at 

night as a consequence of a torpor state (Hartman-Bakken et al., 2004), a more likely 

explanation is that the majority if not all of the urine is refluxed into the lower bowel for 

re-assimilation (Laverty and Skadhauge, 2008).  
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5.4.6. Corticosterone response to ACTH administration  

The significantly higher plasma concentrations of corticosterone following ACTH 

compared to saline injections in the great tits (Fig. 5.7.) confirm the birds were 

stimulated by the ACTH. The similarity in response to ACTH and saline injections as 

measured by AUS corticosterone concentrations (Fig. 5.8.) would suggest 

dexamethasone suppression of the HPA system was incomplete in these birds. 

Consequently endogenous stress responses were still able to contribute to the AUS 

corticosterone concentrations in the saline injected birds. However comparison between 

saline and ACTH treated birds is not valid in this experiment because of the possible 

gender variations in excretion profiles (see 5.4.3.).  

 

5.4.7. Corticosterone response to oral dexamethasone 

The low plasma corticosterone concentrations (mean 0.25ng/mL although below the 

detection limit of 1.25 ng/mL) following oral dexamethasone (Fig. 5.6.) was 

dramatically less than blood concentrations (mean 53ng/mL) in untreated great tits 

(Fig.5.10.) and below the basal concentration of 5.3 +/- 1.3ng/mL reported for great tits 

in the literature (Cockrem and Silverin, 2002). The significant reduction in AUS 

corticosterone concentrations following oral dexamethasone (Fig 5.8.) constitutes a 

physiological validation (Goymann, 2005) of this proposed technique to measure 

hormones in avian urine.   

 

5.4.8. Corticosterone response to oral corticosterone 

Both plasma (Fig. 5.10.) and AUS (Fig. 5.11.) samples showed an apparent but not 

statistically significant increase in corticosterone concentrations following oral 

corticosterone administration.  The statistical power of this result was low because of 

the small sample size consequently more samples may have given a conclusive result. A 

further modification of this experiment would have been to pre-dose the birds with 

dexamethasone to reduce the endogenous stress response (Wilson and Holberton, 2001), 

which in this case may have obscured the effect of the oral corticosterone.    
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5.4.9. Comparing different analytical techniques for corticosterone detection  

Hormone analysis of urine samples using liquid chromatography is recognised to be 

problematic because of the need for substantial pre-column clean up steps (M. Dunn, 

personal communication). Although the RP-HPLC method used could reliably identify 

parent corticosterone (standards), the additional constituents in AUS extracts obscured 

this steroid in sample analysis. This was in contrast to the clear traces achieved by other 

authors in the field, which suggests that future analysis should attempt to replicate their 

methods more precisely. One improvement to the method would be to use an internal 

standard such as dexamethasone which should resolve problems of peak identification 

and calibration (Wong et al., (1994). It was shown in this study the technique of taking 

heart cut samples constituted a further clean up step and allowed clear identification of 

the parent corticosterone by LC-MS/MS. The concurrent ELISA analysis of the timed 

heart cut samples detecting comparable concentrations of corticosterone was evidence 

the RP-HPLC column had separated the parent hormone. It was noted that earlier 

eluting heart cut samples (5-6 min) from AUS extracts also showed ELISA immuno-

reactivity to corticosterone. This activity may equate to the more polar corticosterone 

metabolites which such ELISA techniques typically cross-react with (Goymann, 2005).  

Although the presence of parent corticosterone was confirmed in AUS extracts by LC-

MS/MS, validation was not possible due to the small number of samples analysed. 

Despite this, it is envisaged that future work will investigate the potential of replacing 

ELISA with LC-MS/MS analysis of the urate spheres. The reason being that ELISA 

methods are recognised to be inferior due to non-specific cross-reactivity, interference 

and matrix effects (Goymann, 2005). Furthermore LC-MS/MS is becoming the 

preferred alternative to immunoassays (ELISA and RIA) to quantify steroids in the 

clinical context (Carvalho et al., 2008; Soldin and Soldin, 2009). An  added advantage 

is that LC-MS/MS analysis of a single sample can measure several steroids 

simultaneously (Hauser et al., 2008).  

5.4.10. The utility of AUS corticosterone concentrations to assess avian stress 

Comparing plasma and AUS corticosterone concentrations in great tits 

These results showed that plasma and excreted corticosterone in AUS can be measured 

in great tits. The proposed technique using AUS to measure corticosterone status in 
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great tits was physiologically validated (Goymann, 2005) using oral dexamethasone. 

However the use of this drug can induce prolonged low corticosterone concentrations 

which are un-physiological, making it an unrealistic representation of normal steroid 

fluctuations in great tits.  

Relatively short (< 1hour) increases in plasma corticosterone concentrations such as in 

response to ACTH or a single dose of exogenous corticosterone may have been hidden 

in the AUS by endogenous stress responses of the bird. In this respect detecting short or 

acute stress responses using AUS analysis would be problematic.  

Sampling frequency and urine reflux 

Great tits being small birds produce only small quantities of AUS, so the time required 

to collect adequate amounts of AUS for analysis is protracted. This reduces the 

resolution of measuring short lived changes in AUS corticosterone concentrations. The 

prolonged collection times (2-3hours) necessary in this study, may have contributed to 

the inability to detect brief changes in corticosterone concentrations. This sampling 

deficiency may be resolved using larger birds, facilitating more frequent AUS sampling. 

However the value of measuring short term stress responses may be questionable 

because long term stressors are more typically associated with the degradation of a 

bird’s environment (Mormède et al., 2007).  

A further restriction on AUS analysis is the process of urine reflux (Klasing, 2005), in 

which a proportion of the AUS are refluxed into the lower bowel and digested (Braun, 

2009). Consequently the collectable AUS passed in guano only contain a partial and 

intermittent fraction of the total urine excreted corticosterone, so further hampering the 

detection of short lived changes. 

Acute stress and coping styles 

Research on chronic stress commonly contradicts the assumptions made from acute 

stress protocols that plasma concentrations of corticosterone equate to the severity of 

stress (Harvey et al., 1984). This is shown by chronically stressed birds having 

decreased basal concentrations of corticosterone (Cyr and Romero, 2007) and reduced 

HPA responsiveness (Rich and Romero, 2005). For this reason Mormède et al., (2007) 

warns against making firm conclusions on stress and hence assessment of welfare, from 

simply the measurement of circulating corticosterone concentrations.  
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A further complication when measuring acute stress responses is the effect of avian 

personalities or coping styles (Carere et al., 2003; Cockrem, 2005; Korte et al., 2005; 

Koolhaas, 2008). Coping styles are individually repeatable and can be bred for in birds 

(Carere et al., 2003). The significance of coping style is that it makes interpreting acute 

stress related corticosterone changes in free ranging birds (consequently with unknown 

coping styles) problematic. 

 

Chronic stress causing diurnal flattening and dexamethasone resistance 

 Two reported biomarkers of chronic stress in diverse animal species are diurnal 

flattening and dexamethasone resistance (Touma et al., 2009). The former is shown by 

an elevation of the diurnal trough of basal plasma corticosterone concentrations. The 

latter is a relative unresponsiveness to the usually suppressive effect of dexamethasone 

on the HPA system (shown in this study). Although Carere et al., (2003) were unable to 

detect changes to diurnal concentrations of corticosterone in chronically stressed great 

tits this may have been because the stress was not severe enough. The degree of diurnal 

flattening depends on the severity and duration of the stress (Touma et al., 2009). Carere 

et al., (2003) also reported that two genetic lines of great tits with opposite coping styles 

showed similar diurnal activity. This may suggest that unlike acute stress responses 

which can vary with genetic coping style (Cockrem, 2005; Korte et al., 2005), chronic 

stress which causes functional changes to the HPA system, like diurnal flattening and 

dexamethasone resistance (Touma et al., 2009), could be more robust markers.  

As the dynamic testing of the HPA system using dexamethasone, is advocated for 

animal welfare monitoring (Mormède et al., 2007) and chronic (persistent acting) stress 

is more relevant to environmental quality assessment (Mormède et al., 2007). The 

finding in this study that reduced corticosterone concentrations from oral 

dexamethasone are measurable in AUS, may suggest dexamethasone resistance could 

be detectable in chronically stressed birds using the same technique. Consequently the 

measurement of corticosterone concentrations in AUS following orally administered 

dexamethasone, although restricted to captive birds, could be a potential biomonitor for 

avian welfare and environmental quality assessment. 
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Catecholamines as future avian stress biomarkers 

An alternative to measuring corticosterone concentrations to assess environmental stress 

in birds may be to measure catecholamine concentrations in their AUS. Catecholamines, 

principally dopamine, adrenaline and noradrenalin, are very important mediators of the 

stress response. Furthermore the activation of the sympatho-adrenomedullary (SAM) 

system is among the earliest responses to stress (Sapolsky, 2002). Advantages of 

assessing the SAM over the HPA system include catecholamine activity precedes 

corticosteroid activity and it does not appear to be as modulated (Spasojevic et al., 

2009). As 15% of circulating catecholamines are strongly protein bound (mainly to 

albumin) in plasma (El-Bahr et al., 2006), this affinity may also occur with the albumin 

in AUS (Janes and Braun, 1997). In addition a recent study in chickens has shown that 

the urinary excretion of catecholamines is the main route of their elimination (Lepschy 

et al., 2008). Consequently it is expected that catecholamines could be measured in 

extracts of AUS by a similar LC-MS/MS method used to detect catecholamines in 

human urine samples (Whiting, 2009).  

 

 

5.5. Conclusions 

This study showed that the hormone corticosterone was detectable in extracts from AUS 

separated from avian guano.  This met the first aim of the study to develop a method to 

extract and analyse this hormone from AUS.  Furthermore this represents urinary 

excreted corticosterone discarded by current techniques which analyse this hormone in 

guano (Goymann, 2005). The second aim of the present study, to validate the AUS 

method, was accomplished to some extent by detecting the suppressive effect of 

dexamethasone on corticosterone levels, measured by ELISA, in AUS extracts. 

However other findings left many questions unanswered in the search for a non-

invasive method to monitor stress in birds, which may in part be a consequence of our 

limited knowledge of the avian urinary system. 

 

 

 



 
 

108

Chapter 6. 

General discussion 

 

6.1. Separating AUS from the faeces in avian guano samples 

In birds, urine is passed with faeces, with a variable amount of the urine being 

incorporated in faeces from urine refluxed into the lower bowel (Braun, 2009). Urine 

reflux is a post renal modification conservation strategy with the proportion of urine 

refluxed depending upon the bird’s state of hydration and diet (Laverty and Skadhauge, 

2008). When urine is refluxed the constituent AUS are disrupted and the liberated uric 

acid is broken down by microbial uricase enzymes (Braun, 2009). The intact AUS in 

guano represent a fresh non-digested component of avian urine, which can be extracted 

as a stable suspension in alcohol (Drees and Manu, 1996). After drying, these alcohol 

extracted AUS constitute a stable powder suitable for storage and chemical analysis. 

Only by stressful catheterisation (Styles and Phalen, 1998) can all the excreted urine be 

collected, the proportion of excreted urine collected non-invasively from guano deposits 

will depend upon how much is refluxed (Laverty and Skadhauge, 2008). If a large 

proportion of urine is refluxed into the lower bowel, urinalysis from guano deposits may 

not detect short lived changes in analyte concentrations (see ACTH response Chapter 

5). However prolonged changes as suggested in heavy metal exposure (see Chapter 3) 

and persistent hormone concentrations (see dexamethasone suppression in Chapter 5) 

are detectable. 

 

6.2. Quantification of AUS constituents using uric acid analysis 

Because the AUS of diverse species are consistently 65% uric acid by dry mass (Casotti 

and Braun, 2004), contaminants present in AUS can be quantified against uric acid 

concentrations. The accuracy of uric acid analysis is sensitive to the quantity of sample 

being analysed because uric acid is poorly soluble even in caustic solutions. For this 

reason high sample mass may give reduced extraction efficiencies and so falsely low 

uric acid concentrations. It appears that uricase is highly active in the guano of birds as 

the faecal component of guano has little uric acid content despite the addition of 

refluxed urine (Braun, 2009). This fact is not surprising as many bacteria and fungi 



 
 

109

possess uricase activity (Yazdi et al., 2006) and such organisms are abundant in the 

avian digestive system (Klassing, 2005). A benefit of using alcohol for urine extraction 

is that it kills such organisms and possibly denatures the uricase enzyme, preventing 

uric acid destruction. 

 

6.3. Heavy metals in AUS 

In Chapter 3 chickens with access to heavy metal contaminated soil showed elevated 

concentrations of Pb, Cu and Zn in their AUS compared to the AUS from control birds 

and the same birds following soil remediation. The prolonged excretion of Pb, assumed 

to be from sequestered bone deposits (Scheuhammer, 1996), after site remediation gave 

proof that this metal was being detected in the urine rather than simply resulting from 

faecal contamination of the AUS samples. However this study was seriously limited in 

its design as it lacked a suitable control and had an inadequate number of independent 

samples, which precluded statistical analysis. 

In Chapter 4 the low metal concentrations detected in seabird AUS agreed with the lack 

of metal contamination reflected in concurrently collected tissue samples and in the re-

analysed fish which constitute the diet of these seabirds. As metal concentrations were 

detectable in the AUS under these conditions, it suggests any increase in the seabirds’ 

exposure to bioavailable environmental metals, should readily be detected using this 

method of urinalysis. The findings of this study were also limited by its design. If direct 

sampling of the nest-bound chicks had been used this would have provided more robust 

evidence for the use of AUS to monitor the seabirds’ metal exposure. 

 

6.4. Hormones in AUS 

The stress hormone corticosterone was detected by ELISA in AUS extracts. Parent 

corticosterone was identified in extracts of AUS using LC-MS/MS, although this 

method of analysis did not provide evidence of hormone changes in the birds. Short 

changes in plasma corticosterone concentrations were not consistently detected in AUS 

using ELISA, possibly on account of endogenous stress responses (Wilson and 

Holberton, 2001) and also urine reflux (Laverty and Skadhauge, 2008) preventing the 

analysis of some of the excreted urine. However the more prolonged change in plasma 
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corticosterone from dexamethasone suppression was reflected by ELISA detected 

corticosterone concentrations in AUS samples, constituting a physiological validation of 

this method (Goymann, 2005). It is concluded that infusion experiments using radio-

labelled corticosterone should be performed to resolve the clear discrepancy between 

this hypothesis and current literature, which implies that it is very unlikely that parent 

hormone is present in urine (Rettenbacher et al., 2004) or furthermore AUS (Wasser and 

Hunt, 2005). 

 

6.5. Concluding remarks and future research 

Despite the many short comings in experimental design, the present study has shown 

that potentially relevant concentrations of metals and corticosterone can be measured in 

AUS.  

AUS have been shown to exhibit robust physical properties making them suitable for 

collection, storage and analysis from guano of both wild and domestic birds.  

From this initial investigation future research into the use of AUS for urinalysis and as a 

non-invasive biomonitoring method is envisaged to follow three paths. 

1. To determine the precise mechanism of AUS formation in birds including its genetic 

control. This would allow a deeper understanding of how and why biologically relevant 

substances may be incorporated within AUS. 

2. To use more precise and sensitive analytical methods such as the LC-MS/MS 

analysis of AUS extracts to specifically identify biomarkers of a bird’s physiological 

state and environmental exposure. 

3. To develop methods for analysing the protein constituents of AUS. This could 

include the identification of carrier proteins such as metallothioneins and CBG, disease 

specific protein abnormalities, and proteins to allow individual finger printing. 
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