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Abstract Avida is a software platform for experiments with
self-replicating and evolving computer programs. It provides
detailed control over experimental settings and protocols, a
large array of measurement tools, and sophisticated methods
to analyze and post-process experimental data. We explain
the general principles on which Avida is built, as well as its
main components and their interactions. We also explain
how experiments are set up, carried out, and analyzed.

1 Introduction

When studying evolution, we have to overcome a large obstacle: Evolution happens
extremely slowly. Traditionally, evolution has therefore been a field dominated by
observation and theory, though the domestication of plants and animals is often re-
garded as an early, unwitting evolution experiment [6]. Realistically, we can carry out
controlled evolution experiments only with organisms that have very short generation
times, so that populations can undergo hundreds of generations within a time frame
of months to a few years. With the advances in microbiology, such experiments in
evolution have become feasible with bacteria and viruses [18, 10].

However, even with microorganisms, evolution experiments still take a lot of time
to complete, and are often cumbersome. In particular, certain data can be difficult or
impossible to obtain, and it is often impractical to carry out enough replicas for high
statistical accuracy. According to Daniel Dennett, “...evolution will occur whenever and
wherever three conditions are met: replication, variation (mutation), and differential
fitness (competition)” [7]. It seems to be an obvious idea to set up these conditions
in a computer, and to study evolution in silico rather than in vitro. In a computer,
it is easy to measure any quantity of interest with arbitrary precision, and the time it
takes to propagate organisms for several hundred generations is only limited by the
processing power available. In fact, population geneticists have long been carrying out
computer simulations of evolving loci, in order to test or augment their mathematical
theories (see [15, 13, 11] for some recent examples). However, the assumptions put into
these simulations typically mirror exactly the assumptions of the analytical calculations.
Therefore, the simulations can be used only to test whether the analytic calculations are
error-free, or whether stochastic effects cause a system to deviate from its deterministic
description; they cannot test the model assumptions on a more basic level.

An approach to studying evolution that lies somewhere between evolution experi-
ments with biochemical organisms and standard Monte Carlo simulations is the study
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of self-replicating and evolving computer programs (digital organisms). Digital organ-
isms can be quite complex, and can interact in a multitude of different ways with
their environment or each other, so that their study is not a simulation of a particular
evolutionary theory but becomes an experimental study in its own right. In recent
years, research with digital organisms has grown substantially ([2, 21–23, 12, 9]; see [20]
for a recent review), and it is being increasingly accepted by evolutionary biologists
[14]. (However, as Barton and Zuidema [3] note, general acceptance will ultimately
hinge on whether artificial life researchers embrace or ignore the large body of pop-
ulation genetics literature.) Avida is arguably the most advanced software platform to
study digital organisms to date, and is certainly the one that has had the biggest im-
pact in the biological literature so far. Having reached version 2.0, it now supports
detailed control over experimental settings; a sophisticated system to design and exe-
cute experimental protocols; a multitude of possibilities for organisms to interact with
their environment, including depletable resources and conversion from one resource
into another; and a module to post-process data from evolution experiments, includ-
ing tools to find the line of descent from final organisms to their ultimate ancestor,
to carry out knockout studies with organisms, and to align and compare organisms’
genomes.

1.1 History of Digital Life
The best-known intersection of evolutionary biology with computer science is the ge-
netic algorithm with its many variants (genetic programming, evolutionary strategies,
and so on). All these variants boil down to the same basic recipe: (1) create random
potential solutions, (2) evaluate each solution, assigning it a fitness value to represent
its quality, (3) select a subset of solutions, using fitness as a key criterion, (4) vary these
solutions by making random changes or recombining portions of them, (5) repeat from
step (2) until a solution is found that is sufficiently good.

This technique turns out to be an excellent method for solving problems, but it
ignores many aspects of natural living systems. Most notably, natural organisms must
replicate themselves, as there is no external force to do so; therefore their ability to
pass their genetic information on to the next generation is the final arbiter of their
fitness. Furthermore, organisms in a natural system have the ability to interact with
their environment and with each other in ways that are excluded from most algorithmic
applications of evolution.

Work on more naturally evolving computational systems began in 1990, when Steen
Rasmussen was inspired by the computer game core war [8]. In this game, programs
are written in a simplified assembly language and made to compete in the simulated
core memory of a computer. The winning program is the one that manages to shut
down all processes associated with its competitors. Rasmussen observed that the most
successful of these programs were the ones that replicated themselves, so that if one
copy were destroyed, others would still persist. In the original core war game, the
diversity of organisms could not increase, and hence no evolution was possible. Ras-
mussen then designed a system similar to core war in which the command that copied
instructions was flawed and would sometimes write a random instruction instead on the
one intended [16]. This flawed copy command introduced mutations into the system,
and thus the potential for evolution. Rasmussen dubbed his new program the core
world, created a simple self-replicating ancestor, and let it run.

Unfortunately, this first experiment failed. Though the programs seemed to evolve
initially, they soon started to copy code into each other, to the point where no proper
self-replicators survived—the system collapsed into a nonliving state. Nevertheless, the
dynamics of this system turned out to be intriguing, displaying the partial replication
of fragments of code, and repeated occurrences of simple patterns.
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The first successful experiment with evolving populations of self-replicating com-
puter programs was performed the following year. Thomas Ray at the University of
Delaware designed a program of his own with significant, biologically inspired modifi-
cations. The result was the Tierra system [17]. In Tierra, digital organisms must allocate
memory before they have permission to write to it, which prevents stray copy com-
mands from killing other organisms. Death occurs only when memory fills up, at which
point the oldest programs are removed to make room for new ones to be born.

The first Tierra experiment was initialized with an ancestral program that was 80 lines
long. The program filled up the available memory with copies of itself, many of which
had mutations that caused a loss of functionality. Yet other mutations were actually
neutral and did not affect the organism’s ability to replicate—and a few were even ben-
eficial. In this initial experiment, the only selective pressure on the population was for
the organisms to increase their rate of replication. Indeed, Ray witnessed that the organ-
isms were slowly shrinking the length of their genomes, since a shorter genome meant
that there was less genetic material to copy, and thus it could be copied more rapidly.

This result was interesting enough on its own. However, other forms of adaptation,
some quite surprising, occurred as well. For example, some organisms were able
to shrink further by removing critical portions of their genome, and then use those
same portions from more complete competitors, in a technique that Ray noted was a
form of parasitism. Arms races transpired where hosts evolved methods of eluding the
parasites, and they, in turn, evolved to get around these new defenses. Some would-be
hosts, known as hyper-parasites, even evolved mechanisms for tricking the parasites
into aiding them in the copying of their own genomes. Evolution continued in all
sorts of interesting manners, making Tierra seem like a choice system for experimental
evolution work.

In 1992, Chris Adami began research on evolutionary adaptation with Ray’s Tierra
system. His intent was to get these digital organisms to evolve solutions to specific
mathematical problems, without forcing them use a predefined approach. His core
idea was the following: If he wanted a population of organisms to evolve, for example,
the ability to add two numbers together, he would monitor organisms’ input and output
numbers. If an output ever was the sum of two inputs, the successful organisms would
receive extra CPU cycles as a bonus. As long as the number of extra cycles was greater
than the time it took the organism to perform the computation, the left-over cycles could
be applied toward the replication process, providing a competitive advantage to the or-
ganism. Sure enough, Adami was able to get the organisms to evolve some simple tasks,
but he faced many limitations in trying to use Tierra to study the evolutionary process.

In the summer of 1993, Charles Ofria and C. Titus Brown joined Adami to develop
a new digital life software platform, the Avida system. Avida was designed to have de-
tailed and versatile configuration capabilities, along with high precision measurements
to record all aspects of a population. Furthermore, whereas organisms are executed
sequentially in Tierra, the Avida system simulates a parallel computer, wherein all or-
ganisms are executed effectively simultaneously. Since its inception, Avida has had
many new features added to it, including a sophisticated environment with localized
resources, an events system to schedule actions to occur over the course of an ex-
periment, multiple types of CPUs to form the bodies of the digital organisms, and a
sophisticated analysis mode to post-process data from an Avida experiment. Avida is
still under active development both at Michigan State University, led by Charles Ofria,
and at the California Institute of Technology, led by Claus Wilke.

1.2 Overview of Avida
The Avida software is composed of three main modules. The first is the Avida core,
which maintains a population of digital organisms (each with its own genome, virtual
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hardware, etc.), an environment that maintains the reactions and resources with which
the organisms interact, a scheduler to allocate CPU cycles to the organisms, and various
data collection objects. The second module is the graphical user interface (GUI),
which the researcher can use to interact with the rest of the Avida software. The final
component is a collection of analysis and statistics tools, including a test environment to
study organisms outside the population, data manipulation tools to rebuild phylogenies
and examine lines of descent, mutation and local fitness analysis tools, and many others,
all bound together in a simple scripting language. A fourth module, an interactive help
and documentation system, is currently under development.

In the following sections, we will discuss the two modules of Avida that are relevant
for experiments with digital organisms, that is, the Avida core and the analysis and
statistics tools. The graphical user interface is not treated in this article.

2 Avida Organisms

In Avida, each digital organism is a self-contained computing automaton that has the
ability to construct new automata. The organism is responsible for building the genome
(computer program) that will control its offspring automaton, and handing that genome
to the Avida world. Avida will then construct virtual hardware for the genome to be
run on, and determine how the new organism should be placed in the population.
The specifics of this process are controlled by the user, as described in detail in the
next section. In a typical Avida experiment, a successful organism attempts to make
an identical copy of its own genome, and Avida randomly places that copy in the
population, killing the previous occupant at that position.

In principle, the only assumption made about these self-replicating automata in the
core Avida software is that their initial state can be described by a string of symbols
(their genome) and that they autonomously produce offspring organisms. However, in
practice our work has focused on automata with a simple von Neumann architecture that
operate on an assembly-like language inspired by the Tierra system. Future research
projects will likely have us implement additional organism instantiations to allow us to
explore additional biological questions.

In the following subsections, we describe the default hardware of our virtual com-
puters, and explain the principles of the language these machines work on.

2.1 Virtual Hardware
The structure of a virtual machine in Avida is depicted in Figure 1. The core of the
machine is the central processing unit (CPU), which processes each instruction in the
genome and modifies the states of its components appropriately. Mathematical opera-
tions, comparisons, and so on can be done on three registers, AX, BX, and CX. These
registers each store and manipulate data in in the form of a single 32-bit number. The
registers behave identically, but different instructions may act on different registers by
default (see Section 2.2). The CPU also has the ability to store data in two stacks. Only
one of the two stacks is active at a time, but it is possible to switch the active stack, so
both stacks are accessible.

The program memory is initialized with the genome of the organism. Execution
begins with the first instruction in memory and proceeds sequentially: Instructions are
executed one after the other, unless an instruction (such as a jump) explicitly interrupts
sequential execution. Technically, the memory space is organized in a circular fashion,
such that after the CPU executes the last instruction in memory, it will loop back
and continue execution with the first instruction again. However, at the same time
the memory has a well-defined starting point, important for the creation of offspring
organisms.
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nop−A

h−divide

nop−A

nop−C

if−label

h−copy

h−search

pop

dec

mov−head

nop−B

CPU

Registers Stacks

Heads

Memory

I/O

CX: 0000000...0001

Output Register

Input Register

Read Head

Write Head

Flow Control Head

Instruction Head

AX: 0011000...0100

BX: 0110101...0001

Figure 1. The standard virtual hardware in Avida: CPU, registers, stacks, heads, memory, and I/O functionality.

Somewhat out of the ordinary in comparison with standard von Neumann archi-
tectures are the four CPU components called heads. Heads are essentially pointers to
locations in the memory. They remove the need of absolute addressing of memory
positions, which makes the evolution of programs more robust to size changes that
would otherwise alter these absolute positions. Among the four heads, only the in-
struction pointer exists in standard computer architectures. It identifies the instruction
currently being executed by the CPU. The instruction pointer moves one instruction
forward when the execution of the previous instruction has been completed, unless
that instruction has specifically moved the instruction pointer elsewhere.

The other three heads—read head, write head, and flow control head—are unique
to the Avida virtual hardware. The read and write heads are used in the self-replication
process. In order to generate a copy of its genome, an organism must have a means
of reading instructions from memory and writing them back to a different location.
The read head indicates the position in memory from which instructions are currently
being read, and the write head likewise indicates the position to which instructions are
currently being written. The positions of all four heads can be manipulated with special
commands. In that way a program can position the read and write heads appropriately
in order to self-replicate.

The flow control head is used for jumps and loops. Several commands will reposition
the flow control head, and other commands will move specific heads to the same
position in memory as the flow control head.

Finally, the virtual machines have an input buffer and an output buffer, which they
use to interact with their environment. The way in which this communication works is
that the machines can read in one or several numbers from the input buffer, perform
computations on these numbers with the help of the internal registers AX, BX, CX,
and the stacks, and then write the results to the output buffer. This interaction with
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the environment plays a crucial role in the evolution of Avida organisms, and will be
explained in detail in Section 3.3.

2.2 Genetic Language
In the previous subsection, we described the elements that constitute the virtual hard-
ware of an Avida organism. Now we turn to the elements of the assembly-like language
that make up the genomes and in turn the memory of the hardware.

It is important to understand that there is not a single Avida language. Instead, we
have a collection of different languages. The virtual hardware in its current form can
execute hundreds of different instructions, but only a small fraction of them are used
in a typical experiment. The instructions are organized into subsets of the full range of
instructions. We call these subsets instruction sets. Each instruction set forms a logical
unit and can be considered a programming language.

Each instruction in Avida has a well-defined function in any context, that is, there
are no syntactically incorrect programs. Instructions do not have arguments per se,
but the behavior of certain instructions can be modified by succeeding instructions
in memory. A genome is therefore nothing more than a sequence of symbols in an
alphabet composed of the instruction set, as DNA is a sequence made up of the 4
nucleotides, or proteins are sequences made up of the 20 amino acids.

Here, we will give an overview of the default instruction set, which contains 26
instructions. This set is explained in more detail in Appendix 1, as well as an alternative
instruction set that has been used in multiple research projects and does not make use
of the heads.

2.2.1 Template Matching and Heads
One important ingredient of most Avida languages is the concept of template matching.
Template matching is a method of indirectly addressing a position in memory. This
method is similar to the use of labels in many programming languages: Labels tag a
position in the program, so that jumps and function calls always go to the correct place,
even when other portions of the source code are edited. The same reasoning applies
to Avida genomes, because mutations may cause insertions or deletions of instructions
that shift the position of code and would otherwise jeopardize the positions referred
to. Since there are no arguments to instructions, positions in memory are determined
by series of subsequent instructions. We refer to a series of instructions that indicates
a position in the genome as a template.

Template based addressing works as follows. When an instruction is executed that
must reference another position in memory, subsequent nop instructions (described
below) are read in as the template. The CPU then searches linearly through the genome
for the first occurrence of the complement to this template, and uses the end of the
complement as the position needed by the instruction. Both the direction of the search
(forward or backward from the current instruction) and the behavior of the instruction
if no complement is found are defined specifically for each instruction.

Avida templates are constructed out of no-operation (nop) instructions, that is, in-
structions that do not alter the state of either CPU or memory when they are directly
executed. There are three template-forming nops: nop-A, nop-B, and nop-C. They are
cyclically complementary, that is, the complement of nop-A is nop-B, the complement
of nop-B is nop-C, and the complement of nop-C is nop-A. A template is composed
of consecutive nops only. A template will end with the first non-nop instruction.

We give an example in Figure 2. Apart from the nop instructions, it contains the com-
mand jump-f, which causes the CPU to inspect the template immediately following the
jump-f command and to search for the complement template in the forward direction
(likewise, the command jump-b would initiate a search in the backward direction).
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... Some code.
10 jump-f Here comes the jump. Search for the complement

of the template in forward direction.
11 nop-A This is the template. Let’s call it α.
12 nop-B
13 pop Some other code that is skipped.

...

17 nop-B The complement template ᾱ.
18 nop-C

... The program continues . . .

Figure 2. Example code demonstrating nop templates and flow control.

... Some code.
10 h-search Prepare the jump by placing the

flow control head at the end of the
complement template in forward direction.

11 nop-A This is the template. Let’s call it α.
12 nop-B
13 mov-head The actual jump. Move the flow control head

to the position of the instruction head.
14 pop Some other code that is skipped.

...

18 nop-B The complement template ᾱ.
19 nop-C

... The program continues . . .

Figure 3. Example code demonstrating flow control with heads based instruction set.

Now it becomes a bit more complicated. The example in Figure 2 is actually from
an old instruction set that was used for a long time but is not in use by default any-
more (see Section 1 in Appendix 1). The new default instruction set does not contain
the instruction jump-f or jump-b. Instead, jumps have to be implemented through
clever manipulation of the different heads. This happens in two stages. First, the
instruction h-search is used to position the flow control head at the desired posi-
tion in memory. Then, the instruction head is moved to that position with the com-
mand mov-head. Figure 3 shows how the previous example can be coded with these
commands.

Although this example looks somewhat awkward at first glance, evolution of control
structures such as loops is facilitated in the heads based instruction set. In order to
loop over some piece of code, it is only necessary to position the flow control head
correctly once, and to have the command mov-head at the end of the block of code
that should be looped over. Since there are several ways in which the flow control
head can be positioned correctly, of which the above example is only a single one,
there are many more ways in which loops can be generated than in the corresponding
case with jump-f and jump-b. One construction that is not possible with normal jump
instructions, for example, is a loop with varying entry points. The position of the flow
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01 pop We assume the stack is empty. In that case,
the pop returns 0, which is stored in BX.

02 pop Write 0 into the register AX as well.
03 nop-A
04 inc Increment BX.
05 inc Increment AX.
06 nop-A
07 inc Increment AX a second time.
08 nop-A
09 swap The swap command exchanges the contents

of a register with the one of its complement
register. Followed by a nop-C, it exchanges
the contents of AX and CX. Now, BX= 1, CX= 2,
and AX is undefined.

10 nop-C
11 add Now add BX and CX and store the result

in AX.
12 nop-A The program continues with BX= 1, CX= 2,

and AX= 3.
...

Figure 4. Example code demonstrating the principle of nop modification.

control head could be modified in the block of code that is looped over. In that way,
after every execution of that block, a different section of code would be executed the
next time. As a consequence, the heads based method can lead to more complicated
flow control than the relatively rigid direct jumping to templates.

2.2.2 Nops as Modifiers
The instructions in the Avida programming language do not have arguments in the
usual sense. However, as we have seen above for the case of template matching, the
effect of certain instructions can be modified if they are immediately followed by nop
instructions. A similar concept exists for operations that access registers. The inc
instruction, for example, increments a register by one. If inc is not followed by any
nop, then by default it acts on the BX register. However, if a nop is present immediately
after the inc, then the register on which inc acts is specified by the type of the nop.
For example, inc nop-A increments the AX register, and inc nop-C the CX register.
Of course, inc nop-B increments the BX register, and hence works identically to a bare
inc command. Similar nop modifications exist for a range of instructions, including
those that perform arithmetic such as inc or dec, stack operations such as push or
pop, and comparisons such as if-n-equ. The details can be found in Appendix 1. For
some instructions that work on two registers, in particular comparisons, the concept of
the complement nop is important, because the two registers are specified in this way.
Similarly to the nops in the template matching, registers are cyclically complementary to
each other, that is, BX is the complement to AX, CX to BX, and AX to CX. The instruction
if-n-equ, for example, acts on a register and its complement register. By default,
if-n-equ determines whether the contents of the BX and CX registers are identical.
However, if if-n-equ is followed by a nop-A, then it will compare AX and BX. Figure 4
shows a piece of example code that demonstrates the principles of nop modification
and complement registers.
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Nop modification is also necessary for the manipulation of heads. The instruction
mov-head, for example, by default moves the instruction head to the position of the
flow control head. However, if it is followed by either a nop-B or a nop-C, it moves
the read head or the write head, respectively. A nop-A following a mov-head leaves
the default behavior unaltered.

2.2.3 Memory Allocation and Division
When a new Avida organism is created, the CPU’s memory is exactly the size of its
genome, that is, there is no additional space that the organism could use to store its
offspring-to-be as it makes a copy of its program. Therefore, the first thing an organism
has to do at the start of self-replication is to allocate new memory. In the default
instruction set, memory allocation is done with the command h-alloc. This command
extends the memory by the maximal size that a child organism is allowed to have. As
we will discuss later, there are some restrictions on how large or small a child organism
is allowed to be in comparison with the parent organism, and the restriction on the
maximum size of a child organism determines the amount of memory that h-alloc
adds. The allocation happens always at a well-defined position in the memory. As we
mentioned in Section 2.1, although the memory is considered to be cyclical in the sense
that the CPU will continue with the first instruction of the program once it has executed
the last one, the virtual machine nevertheless keeps track of which instruction is the
beginning of the program, and which is the end. By default, h-alloc (as well as all
alternative memory allocation instructions, such as the old allocate) insert the new
memory between the end and the beginning of the program. After the insertion, the
new end is at the end of the inserted memory. The newly inserted memory is initialized
either to a default instruction, typically nop-A, or to random code, depending on the
choice of the experimenter.

Once an organism has allocated memory, it can start to copy its program code into
the newly available memory block. This copying is done with the help of the control
structures we have already described, in conjunction with the instruction h-copy. This
instruction copies the instruction at the position of the read head to the position of
the write head and advances both heads. Therefore, for successful self-replication an
organism mainly has to assure that initially, the read head is at the beginning of the
memory and the write head is at the beginning of the newly allocated memory, and
then it has to call h-copy the correct number of times.

After the self-replication has been completed, an organism issues the h-divide
command, which splits off the instructions between the read head and the write head,
and uses them as the genome of a new organism. The new organism is handed to the
Avida world, which takes care of placing it in a suitable environment, and so on. If
there are instructions left between the write head and the end of the memory, these
instructions are discarded, so that only the part of the memory from the beginning to
the position of the read head remains after the divide.

In most natural asexual organisms, the process of division results in organisms lit-
erally splitting in half, effectively creating two offspring. Thus, the default behavior of
Avida is to reset the state of the parent’s CPU after the divide, turning it back into the
state it was in when it was first born. In other words, all registers and stacks are cleared,
and all heads are positioned at the beginning of the memory. The full allocation and
division cycle is illustrated in Figure 5.

Not all h-divide commands that an organism issues lead necessarily to the creation
of an offspring organism. There are a number of conditions that have to be satisfied;
otherwise the command will fail. (Failure of a command means essentially that the
command is ignored, while a counter keeping track of the number of failed commands
in an organism is incremented. It is possible to configure Avida to punish organisms
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DivideAllocate

Figure 5. The h-alloc command extends the memory, so that the program of the child organism can be stored.
Later, on h-divide, the program is split into two parts, one of which turns into the child organism.

with failed commands.) The following conditions are in place: An h-divide fails if
either the parent or the offspring would have less than 10 instructions, the parent has
not allocated memory, less than half of the parent was executed, less than half of the
offspring’s memory was copied into, or the offspring would be too small or too large
(as defined by the experimenter).

2.3 Mutations
So far, we have described all the elements that are necessary for self-replication. How-
ever, self-replication alone is not sufficient for evolution. There must be a source of
variation in the population, which comes from random mutations.

The main form of mutations in Avida are so-called copy mutations, which arise
through erroneously copied instructions. Such miscopies are a built-in property of
the instruction h-copy. With a certain probability, chosen by the experimenter, the
command h-copy does not properly copy the instruction at the location of the read
head to the location of the write head, but instead writes a random instruction to the
position of the write head. It is important to note that the instruction written will always
be a legal one, in the sense that the CPU can execute it. However, the instruction may
not be meaningful in the context in which it is placed in the genome, which in the
worst case can render the offspring organism nonfunctional.

Another commonly used kind of mutation comprises insertion and deletion muta-
tions. These mutations are applied on h-divide. After an organism has successfully
divided off a child organism, an instruction in the child’s memory may by chance be
deleted, or a random instruction may be inserted. The probabilities with which these
events occur are again determined by the experimenter. Insertion and deletion muta-
tions are useful in experiments in which frequent changes in genome size are desired.

Next, there are point (or cosmic ray) mutations. These mutations affect not only
organisms as they are being created (like the other types described above), but all
living organisms. Point mutations are random changes in the memory of the virtual
machines. One of the consequences of point mutations is that a program may change
while it is being executed. In particular, the longer a program runs, the more sus-
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ceptible it becomes to point mutations. This is in contrast to copy or insertion and
deletion mutations, whose impact depends only on the length of the program, not on
the execution time.

Finally, it is important to note that organisms in Avida can also have implicit mu-
tations. Implicit mutations are modifications in a child’s program that are not directly
caused by any of the external mutation mechanisms described above, but rather by
an incorrect copy algorithm of the parent organism. For example, the copy algorithm
might skip some instructions of the parent program, or copy a section of the program
twice (effectively a gene duplication event). Another example is an incorrectly placed
read head or write head on divide. Implicit mutations are the only ones that cannot
easily be controlled by the experimenter. They can, however, be turned off completely
by using the FAIL IMPLICIT option in the genesis file. With this option, any offspring
organism whose genome has differences to its parent genome that were not caused by
explicit mutations is discarded, rather than placed into the population.

2.4 Phenotype
Each organism in an Avida population has a phenotype associated with it. Phenotypes
of Avida organisms are defined in the same way as they are defined for organisms in the
natural world: The phenotype of an organism comprises all observable characteristics
of that organism. As an organism in Avida goes through its life cycle, it will self-
replicate and, at the same time, interact with the environment. The primary mode of
environmental interaction is by inputting numbers from the environment, performing
computations on those numbers, and outputting the results. The organisms receive a
benefit for performing specific computations associated with resources (see Section 3.3
below).

In addition to tracking computations, the phenotype also monitors several other as-
pects of the organism’s behavior, such as its gestation length (the number of instructions
it executes to produce an offspring, often also called gestation time), its age, whether
it has been affected by any mutations, how it interacts with other organisms, and its
overall fitness. These data are used both to determine how many CPU cycles should
be allocated to the organism and for various statistical purposes.

2.5 Genotype and Species
In Avida, organisms are classified into several taxonomic levels. The lowest taxonomic
level is called genotype. All organisms that have exactly the same initial genomes
are considered to have the same genotype. Certain statistical data are collected only
at the genotype level. We pay special attention to the most abundant genotype in
the population—the dominant genotype—as a method of determining what the most
successful organisms in the population are capable of. If a new genotype is truly more
fit than than the dominant one, organisms with this higher fitness will rapidly take over
the population.

We classify a genotype as threshold if there are three or more organisms that have
ever existed with that genotype (again, the value three is not hard-coded, but con-
figurable by the experimenter). Often, deleterious mutants appear in the population.
These mutants are effectively dead and disappear again in short order. Since these
mutants are not able to self-replicate successfully (or at least not well), there is a low
probability of them reaching an abundance of three. Thus for any statistics we want to
collect about the living portion of the population, we focus on those organisms whose
genotype has the threshold characteristic.

We also consider a layer of taxonomic classification one step above the genotype,
which we equate to species. In the natural world, biologists classify sexual organisms
as part of the same species if they mate in the wild and produce fertile offspring. The
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organisms in Avida are primarily asexual; therefore the standard biological definition
does not translate perfectly, but unfortunately there is no consensus on the definition
of asexual species. As such, we aim to indirectly incorporate the sexual concept of
species into Avida.

Each species in Avida has a prototype associated with it that is the initial genotype
that formed the new species. This genotype is used to determine what other genotypes
are going to be part of the species. When a genotype reaches threshold, we compare
it against existing species with a two-phase test. If the genotype passes both parts,
we label it as part of that species. If it fails either part for all existing species, it
is classified as a new species. In the first part of this test, we make sure that the
genotype being tested matches in key aspects with the phenotype associated with the
species prototype; all genotypes in a species must be phenotypically identical in their
environmental interactions (portions of the phenotype such as age are ignored). In
the second part of the test, we create hybrid genotypes by crossing over the genotype
being tested with the prototype of the species at all possible crossover points. We then
take each of these hybrids and run them in a test environment (that does not feed back
into the main Avida world in any way) to determine if the hybrids are viable. If most
of them are viable (the exact threshold of viability being set by the experimenter), then
the genotype passes this phase of the test.

Note that by default species classification is turned off in Avida, because it is CPU
intensive to perform all of these tests. A limited version of it is also available where each
genotype is only tested against the species of its parent, not all species in the population.

Species and genotype handling are all controlled by the genebank object in the Avida
source code.

3 Avida World

In the previous section, we have presented the details of the inner workings of Avida
organisms. In this section, we will expand that view by explaining how the environment
in which these organisms thrive is structured, and how they interact with it.

In general, the Avida world has a fixed number N of positions, or cells. Each cell
can be occupied by exactly one organism, so that the maximum population size at any
given time is N . Each of these organisms is being run on a virtual CPU, and some of
them may be running faster than others. Avida has a scheduler (see Section 3.1) that
divides up time from the real CPU so that these virtual CPUs execute in a simulated
parallel fashion.

While an Avida organism runs, it may interact with the environment (Section 3.3)
or other organisms (Section 3.4). When it finally reproduces, it hands its offspring
organism to the Avida world, which places the newborn organism in either an empty
or an occupied cell, according to rules we describe in Section 3.2. If the offspring
organism is placed in an already occupied cell, the organism currently occupying that
cell is killed and removed, irrespective of whether it has already reproduced or not.

3.1 Scheduling
In the simplest of Avida experiments, all virtual CPUs run at the same speed. This
method of time sharing is simulated by executing one instruction on each of the N
virtual CPUs in order, then starting over to execute a second instruction on each one,
and so on. An update in Avida is defined as a point where the average organism has
executed k instructions (where k = 30 by default). In this simple case, for one update
we carry out k rounds of execution.

In more complex environments, however, the situation is not so trivial. Different
organisms will have their virtual CPUs running at different speeds (the details of which
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are described in Section 3.3), and the scheduler must portion out cycles appropriately
to simulate that all CPUs are running in parallel. Each organism has associated with it a
value called merit. The merit indicates how fast the CPU should run. Merit is a unitless
quantity, and is only meaningful when compared with the merits of other organisms.
Thus, if organism A has twice the merit of organism B, then A should execute twice as
many instructions in any given time frame as B.

Avida handles this with two different schedulers. The first one is a perfectly inte-
grated scheduler, which comes as close as possible to portioning out CPU cycles in
proportion to merit. Obviously, only whole time steps can be used; therefore perfect
proportionality is not possible in general for small time frames. For time frames long
enough such that the granularity of individual time steps can be neglected, the differ-
ence between the number of cycles given to an organism and the number of cycles the
organism should receive at its merit is negligible.

The second scheduler is probabilistic. At each point in time, the next organism to
be selected is chosen at random, but with the probability of an individual being chosen
proportional to its merit. Thus on average this scheduler is perfect, but there are no
guarantees.

In practice the perfectly integrated scheduler is faster, but occasionally can cause odd
effects, because it is possible for the organisms to become synchronized, particularly
at low mutation rates where a single genotype can represent a large portion of the
population. The stochastic scheduler may be preferred for projects where this effect
might be a problem. By default, Avida uses the perfectly integrated scheduler.

3.2 World Topologies and Birth Methods
The N cells of the Avida world can be assembled into different topologies that af-
fect how offspring organisms are placed and how organisms interact (as described
in Section 3.4). Currently, there are two world topologies: a 2D grid with Moore
neighborhood (each cell has eight neighbors) and a fully connected (sometimes called
well-stirred or mass action) topology. In the fully connected topology each cell is a
neighbor to every other cell. New topologies can easily be implemented by listing the
neighbors associated with each cell (though more work might need to be done in the
user interface to properly visualize the topology).

When a new organism is about to be born, it will replace either the parent cell or
another cell from the neighborhood. The specifics of this placement are set up by
the experimenter. The two most commonly used methods are replace random, which
chooses randomly from the neighborhood, and replace oldest, which picks the oldest
organism from the neighborhood to replace (with a preference for empty cells if any
exist).

Fully connected topologies are used in analogy with experiments with microbes in
well-stirred flasks or chemostats. These setups allow for exponential growth of new
genotypes with a competitive advantage, so that transitions in the state of the population
can happen rapidly. Local neighborhoods, on the other hand, are more akin to a Petri
dish, and the spatial separation between different organisms puts limits on growth rates
and allows for a slightly more diverse population [4].

In choosing which organism in a neighborhood to replace, random placement
matches up well with the behavior of a chemostat, where a random portion of the
population is continuously drawn out to keep population size constant. Experiments
have shown [1], however, that evolution occurs more rapidly when the oldest organism
in a neighborhood is the first to be killed off. In such cases, all organisms are given
approximately the same chance to prove their worth, whereas in random replacement,
about half the organisms are killed before they have the opportunity to produce a single
offspring. Interestingly, when replace oldest is used in 2D neighborhoods, 40% of the
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time it is the parent that is killed off. This observation makes sense, because the parent
is necessarily old enough to have produced at least one offspring.

Note that in the default setup of Avida, the only way for an organism to die is for
it to be replaced by another organism being born. It is also possible to enable an in-
dependent death method that will kill off an organism after it has executed a specified
number of instructions, which can either be a constant or be proportional to the or-
ganism’s genome length. In some cases, if death is not enabled, a population can lose
all ability to self-replicate, but persist because organisms have no way of being purged.
This effect can lead to confusing experimental results if the cause is not identified.

3.3 Environment and Resources
All organisms in Avida are provided with the ability to absorb a default resource that
gives them their base merit. An Avida environment can, however, contain other re-
sources that the organisms can absorb to modify their merit. The organisms absorb a
resource by carrying out the corresponding computation, or task.

An Avida environment is described by a set of resources and a set of reactions that
can be triggered to interact with those resources. A reaction is defined by a computation
that the organism must perform to trigger it, a resource that is consumed by it, a merit
effect on the organism (which can be proportional to the amount of resource absorbed
or available), and a by-product resource if one should be produced. Reactions can also
have restrictions associated with them that limit when a trigger will be successful. For
example, another reaction can be required to have been triggered first, or a limit can
be placed on the number of times an organism can trigger a certain reaction.

A resource is described by an initial quantity (which can be infinite if a resource
should not be depletable), an inflow rate (the amount of that resource that should
come into the population per update), and an outflow rate (the fraction of the resource
that should be removed each update.) If resources are made to be depletable, then
the more organisms trigger a reaction, the less of that resource is available for each of
them. This setup allows multiple, diverse subpopulations to coexist stably in an Avida
world [5].

The default Avida environment rewards nine boolean logic operations, each associ-
ated with a non-depletable resource, but organisms can receive only one reward per
computation. Other pre-built environments that come with Avida include one with 78
different logic operations rewarded; one similar to the default nine-resource environ-
ment, but with the resources set up to be depletable, with fixed inflow and outflow
rates; and one with nine computations rewarded, and where only the resources asso-
ciated with the simplest computations have an inflow into the system, and those for
more complex operations are produced as by-products, in sequence, from the reactions
using up resources associated with simpler computations.

An important aspect of Avida is that the environment does not care how a compu-
tation is performed, only that the output of the organism being tested is correct given
the inputs it took in. As a consequence, the organisms find a wide variety of ways
of computing their outputs, some of which can be surprising to a human observer,
seeming to be almost inspired.

Even though organisms can carry out tasks and collect rewards at any time in their
gestation cycle, these rewards do not immediately affect the speed at which their CPU
runs. The CPU speed (merit) is set only once, at the beginning of the gestation cycle,
and then held constant until the organism divides. At that point, both the organism
and its offspring get a new merit, which reflects the bonuses the organism collected
during the gestation cycle it just completed. In a sense, the organisms collect rewards
for their offspring, rather than for themselves. The reason why we do not change an
organism’s merit during its gestation cycle is to level the playing field between old and
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young organisms. If organisms were always born with a low initial CPU speed, then
they might never execute enough instructions to carry out tasks in the first place. At the
same time, mutants specialized in carrying out tasks but not dividing could concentrate
all CPU time on them, thus effectively shutting down replication in the population. It
can be shown that the average fitness of a population in equilibrium is independent of
whether organisms get the bonuses directly or collect them for their offspring [19].

3.4 Organism Interactions
As explained in Section 3.2, populations in Avida have a firm cap on their size, which
makes space the fundamental resource that the organisms must compete for. In the
simplest Avida experiments, the only interaction between organisms is that an organ-
ism is killed when another gives birth, in order to make room for the offspring. In
slightly more complex experiments, the organisms are rewarded with a higher merit
and hence a larger share of the CPU cycles for performing tasks. Since there are only a
fixed number of CPU cycles given out each update, the competition for them becomes
a second level of indirect interaction among the organisms. As the environment be-
comes more complex still, multiple resources take the place of fixed merit bonuses for
performing tasks, and the organisms must now compete over each of these resources
independently. In the end, however, all these interactions boil down to the indirect
competition for space: More resources imply a higher merit, which in turn grants the
organisms a larger share of the CPU cycles, allowing them to replicate more rapidly
and claim more space for their genotype.

In most Avida experiments, indirect competition for space is the only level of interac-
tion we allow; organisms are not allowed to directly write to or read from each other’s
genomes, so that Tierra-style parasites cannot form (although the configuration files do
allow the experimenter to enable them). The more typical way of allowing parasites in
Avida is to enable the inject command in the Avida instruction set. This command
works similarly to the divide, except that instead of replacing an organism in a target
cell, the would-be offspring is inserted into the memory of the organism occupying the
target cell; the specific position in memory to which it is placed is determined by the
template that follows the inject.

In Tierra, parasites can replicate more rapidly than non-parasites, but an individual
parasite poses no direct harm to the host whose code it uses. These organisms could,
therefore, be thought of more directly as cheaters in the classic biological sense, as
they effectively take advantage of the population as a whole. In Avida, a parasite exists
directly inside of its host, and makes use of the CPU cycles that would otherwise belong
to the host, thereby slowing down the host’s replication rate. Depending on the type of
parasite, it can either take all of the host’s CPU cycles (thereby killing the host) and use
them for replicating and spreading the infection, or else spread more slowly by using
only a portion of the host’s CPU cycles (sickening it), but reducing the probability of
driving the hosts, and hence itself, into extinction.

In the future, we plan to implement two other forms of interactions. First, we plan to
implement sensors with which organisms can detect the presence of resources, which
would allow them to exchange chemical signals. Second, we are considering more
direct communication, whereby the organisms can send numbers to each other, and
possibly distribute computations among themselves to solve environmental challenges
more rapidly.

4 Experimental Environment

The configuration of an Avida experiment requires setting up five different initialization
files. The most important of these is the genesis file, which contains a list of variables
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that control all of the basic settings of a run, including the population size, the mutation
rates, and the names of all of the other configuration files to use. Next, we have the
instruction set, which describes the specific genetic language used in the experiment.
Third is the ancestral organism that the population should be seeded with. Fourth, we
have the environment file that describes which resources are available to the organisms,
and defines reactions by the tasks that trigger them, their value, the resource that they
use, and any by-products that they produce. The final configuration file is that of events,
and is used to describe specific actions that should occur at designated time points
during the experiment, including most data collection, as well as direct disruptions
to the population. Each of these files is described in more detail in the following
subsections.

4.1 The Genesis File
The file genesis is the main configuration file for Avida. With this file, the experi-
menter can set up all of the basic conditions for a run. Below are detailed descriptions
for some of the most important settings in genesis; for the other, less-used settings,
refer to the documentation that is shipped with the Avida software.

WORLD-X WORLD-Y These settings determine the size of the Avida grid that the
organisms populate. In mass action mode the shape of the grid is not relevant, only
the number of organisms that are in it.

RANDOM SEED The random number seed initializes the random number generator.
This seed is the only value that should be altered in a collection of replicate runs.
Setting the random number seed to zero (or a negative number) will base the seed
on the starting time of the run—effectively a random number seed.

INST SET The name of the instruction set configuration file to use for the
experiment.

START CREATURE The name of the ancestral genotype that should be used to seed
the experiment.

ENVIRONMENT FILE The name of the configuration file that describes the
environment to be used in the experiment.

EVENT FILE The name of the events file to use for the experiment.

ANALYZE FILE If Avida is started in analyze mode (i.e., Avida carries out
post-experimental data analysis rather than an actual experiment), this setting
specifies the filename of the script that should be run.

BIRTH METHOD The birth method defines how the placement of a child organism is
determined. Currently, there are six birth methods—the first four (0–3) are all
grid-based (offspring are only placed in the immediate neighborhood), and the last
two (4, 5) assume a well-stirred population. In all nonrandom methods, empty sites
are preferred over replacing a living organism.

CHILD SIZE RANGE This setting defines the maximal difference in genome size
between a parent and offspring, and can be used to prevent out-of-control size
changes. The default of 2.0 means that the genome of the child must be between
one-half and twice the length of the parent. A value of 1.0 will ensure fixed-length
organisms. (For fixed-length organisms, insertion and deletion mutations should be
turned off as well.)
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COPY MUT PROB Whenever an organism tries to copy a single instruction, the copy
process can fail, with the probability given by this parameter. When it fails, that is,
when a mutation occurs, a random instruction is copied to the destination. In
practice, copy mutations are the most common type of mutations that we use in
Avida experiments.

INS MUT PROB, DEL MUT PROB Probabilities with which instructions are inserted or
deleted, respectively, per site (i.e., position in the genome) and per generation.
Instructions are inserted or deleted only once per gestation cycle, when a new
organism is born. Each of these mutations changes the genome length. Deletions
just remove an instruction while insertions add a new, random instruction at a
random position. Multiple insertions and deletions are possible each generation.

DIVIDE INS PROB, DIVIDE DEL PROB Like INS MUT PROB and DEL MUT PROB,
except that the probability is now for the insertion or deletion of one instruction per
genome (rather than per site) per gestation cycle. With these parameters, multiple
insertions and deletions are not possible within a single generation.

POINT MUT PROB Point mutations (sometimes referred to as cosmic ray mutations)
occur every update; the value set here is the probability with which a single
instruction will be mutated in one update. In other words, the value should be kept
low. (The default is zero.) If a mutation occurs, the instruction is replaced with a
random instruction. In practice, point mutations slow Avida down, because many
random numbers have to be calculated every update.

TRACK MAIN LINEAGE In a normal Avida run, the genebank keeps track of all
existing genotypes, and deletes them when the last organism of that genotype dies
out. With this flag set, a genotype will not be deleted unless both it and all of its
descendents have died off. This setting allows us to track back from any genotype to
its distant ancestors, monitoring all of the differences along the way. The ancestral
information can be written out with the event dump historic pop, explained in
Section A2.1 in Appendix 2.

4.2 The Instruction Set File
An instruction set file consists of a list of instructions that belong to that instruction
set, each of which is followed by a series of numbers that define how that instruction
should be used. These numbers are (in order):

redundancy Frequency of the instruction in the set. One instruction with twice the
redundancy of another will have twice the probability of being mutated
to. A redundancy of zero is allowed, and indicates that organisms
injected by the user are allowed to have this instruction, but it can
never be acquired through mutations.

cost Number of CPU cycles required to execute the instruction. One is the
default if this value is not specified.

ft cost Additional cost to be paid the first time the instruction is executed. The
cost can be used to lower the diversity of instructions within organisms.
The default value here is zero.

prob fail Probability that the instruction will not work properly. If an instruction
fails, it will simply do nothing, but still cost the CPU cycles to execute.
The default probability of failure is zero.
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Refer to Appendix 1 for more information on the specific instructions in the default
Avida instruction set.

4.3 The Ancestral Organism
Each Avida run must be seeded with a self-replicating organism, which will fill up the
population and be the basis for all further evolution. Avida comes with a collection
of available ancestors (such as the one described in Section A1.3 of Appendix 1). Any
genotype file output from Avida can be used as an ancestor in a subsequent experiment.

4.4 The Environment File
The environment file controls the resources and reactions available in an Avida run.
By default, all resources are globally available to all organisms. (Spatially localized
resources are more complicated and will not be described in this document. We are
currently working on methods to simplify their use.) A resource is defined by three
main characteristics:

inflow Number of units of the resource that enter the population over the course
of an update, spread evenly throughout that update.

outflow Fraction of the resource that will flow out of the population each update. As
with inflow, outflow happens continuously over the course of the update.

initial The initial abundance of the resource in the population at the start of an
experiment.

The following is an example of a RESOURCE statement that begins a run with 10,000
units of a resource called “glucose” and sets up a chemostat-like resource flow with an
equilibrium concentration of 10,000 units for unused resources:

RESOURCE glucose:initial=10000:inflow=100:outflow=0.01

At equilibrium, 100 units are flowing out each update (because the resource has an
abundance of 10,000 if not used), and 100 units are flowing in.

Reactions are somewhat more complicated than resources. A REACTION statement
has the following form:

REACTION name task process:arguments requisite:arguments

Here, name is an identifier for the reaction, and can be chosen arbitrarily. The task
identifies which task will trigger the reaction. The following tasks are predefined in
Avida: echo, not (one-input tasks); add, sub (two-input computational tasks); nand,
and, orn, or, andn, nor, xor, equ (all possible two-input logic tasks); logic 3AA,
logic 3AB, logic 3AC, . . . , logic 3CP (all 68 possible three-input logic tasks). The
process statement determines consumption of resources, their by-products, and the
resulting bonuses, and the requisite statement limits under what conditions a reac-
tion can be triggered. Each of the latter two statements has one or several arguments,
separated by colons.

We now list the arguments for the process statement:

resource The name of the resource consumed. By default, an infinite resource is
being consumed, which means that the max limit (below) determines
the amount actually absorbed. Default: resource=infinite
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value The value is multiplied by the amount of the resource consumed to
obtain the bonus. (0.5 may be inefficient, while 5.0 is very efficient.)
This parameter allows different reactions to make use of the same
resource at different efficiency levels. Default: value=1.0

type Determines how to apply the bonus (i.e., the amount of the resource
absorbed times the value of this process) to change the merit of the
organism. There are three possible settings: (1) type=add—The bonus
is added to the current merit. (2) type=mult—The current merit is
multiplied by the bonus. (Warning: If the bonus is ever less than one,
this setting will be detrimental.) (3) type=pow—The current merit is
multiplied by 2bonus. The last setting is similar to multiplicative, but
positive bonuses are always beneficial, and negative bonuses are
harmful. Default: type=add

max The maximum amount of the resource consumed per occurrence.
Default: max=1.0

min The minimum amount of resource required. If less than this quantity is
available, the reaction ceases to proceed. Default: min=0.0

frac The maximum fraction of the available resource that can be consumed.
Default: frac=1.0

product The name of the by-product resource. At the moment, only a single
by-product can be produced at a time. Default: product=none

conversion The rate of conversion to the by-product resource. Default:
conversion=1.0

If no process is given, a single associated process with all default settings is assumed.
If multiple process statements are given, all are executed when the reaction is triggered.
If we wanted to set all parameters of the process statement to their default values, we
would write:

process:resource=infinite:value=1:type=add:max=1:min=0:\
frac=1:product=none:conversion=1

This statement has many redundancies; for example, it indicates that the associated
reaction should use the infinite resource, making the frac and min settings irrelevant.
Likewise, since product is set to none, the conversion statement is superfluous.

Finally, the following arguments can be given (in any combination) to the requisite
statement:

reaction Prevents the reaction from being triggered until the other reaction
specified here has been triggered first. With this parameter, the
experimenter can force organisms to perform reactions in a specified
order. Default: reaction=none

no reaction Prevents the reaction from being triggered if the reaction specified
here has already been triggered. This parameter enables the
experimenter to define mutually exclusive reactions and force
organisms to diversify. Default: no reaction=none
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min count Requires that the task used to trigger the reaction be performed a
certain number of times before the trigger will actually occur. This
parameter (along with max count) allows the experimenter to specify
different reactions depending on the number of times an organism has
performed a task. Default: min count=0

max count Places a cap on the number of times a task can be done and still
trigger the reaction. It allows the experimenter to limit the number of
times a reaction can be done, as well as (along with min count) to
specify different reactions depending on the number of times an
organism has performed a task. Default: max count=infinite

We can simulate the pre-environment system of older versions of Avida (in which
no resources were present and task performance was rewarded with a fixed bonus)
with an environment file including only lines like the following:

REACTION AND and process:type=mult:value=4.0 requisite:
max count=1
REACTION EQU equ process:type=mult:value=32.0 requisite:
max count=1

The documentation files shipped with Avida provide more detailed information on
how to configure the environment file.

4.5 The Events File
The events file controls events that need to occur throughout the course of an experi-
ment, such as the output of data to files, as well as disturbances to or modifications of
the population (such as extinction events or changes to the mutation rate).

The events file consists of a list of events that will be triggered either once or peri-
odically. The format for each line is:

type timing event arguments

The type determines what kind of timings the event will be based on. Timing can
be immediate (i), based on update (u), or based on generation (g).

The timing should only be included for non-immediate events. If a single number is
given for timing, the event occurs at that update (or generation). A second number can
be included (separated by a colon, :) to indicate at what intervals the event should be
repeated. And if a third number is listed (again, colon separated), it specifies the last
time at which the event can occur. For example, the type and timing u 100:100:5000
indicates that the event first occurs at update 100, and repeats every 100 updates there-
after, until update 5000 is reached. An entry g 10:10 causes the event to be triggered
every 10 generations for the entire run.

The event is the event that should be triggered, and the arguments define how
exactly the event should work when it is triggered. Each event has its own arguments.

For example, to print out all average measurements collected every 100 updates,
starting at update 100, we write:

u 100:100 print average data

The next example uses the print data event:

g 10000:10:20000 print data dom info.dat \
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update,dom fitness,dom depth,dom sequence

This entry has the following effect: Between generations 10,000 and 20,000, append
the specified information to the file “dom info.dat” every ten generations. Specifically,
the first column in the file contains the update number, the second column contains
the fitness of the dominant genotype, followed by the depth in the phylogenetic tree
of the dominant genotype, and the last column lists the dominant organism’s genome
sequence.

See Section A2.1 in Appendix 2 for a guide to the output events, and Section A2.2
for the events that will directly affect the population.

5 Experimental Techniques

Just as there are many ways of configuring Avida experiments, there are also many
ways of studying the data that come out of them. In this section we will describe the
standard forms of output data available at the end of an experiment, and the built-in
techniques to work with those data.

5.1 Output Files
Avida output files must be scheduled to be written as part of the events file. Spe-
cific files have been designed for regularly output data. For example, the event
print tasks data will output the current update as the first column, and then each
subsequent column will display the number of organisms that are capable of perform-
ing the associated task. The top of each file contains a key to the specific values that
the columns represent. Over the course of a single experiment, each time this event
is run the associated data will be written to the end of the file. See Section A2.1 in
Appendix 2 for a complete list of these periodic output events and a guide to the values
in the columns of each file.

Other types of output can be triggered by events such as print dom, which will print
the dominant (most abundant) genotype to an output file in the genebank/ directory.
Two output events to take special notice of are detail pop and dump historic pop,
which will store information that Avida has saved about the genotypes in the popu-
lation—the first of these events prints out all of the existing genotypes in the population,
and the second prints out all ancestors of the current population. Both of these files have
the same format, which includes all of the basic information about each genotype (one
per line in the files). Note that in order to use dump historic pop, the parameter
TRACK MAIN LINEAGE in the genesis file needs to be set to 1. The files created by
detail pop and dump historic pop can later be post-processed in the analyze mode
(see next subsection). These files are useful because they represent the state of the
entire population at the time point when they were created.

5.2 Test Environments
Often, when examining populations in Avida, the user will need to know the fitness or
some other characteristic of an organism that has not yet gone through a full gestation
cycle during the course of the run. For this reason, we have constructed a test envi-
ronment in which organisms can run outside the population, and without affecting the
population. The test environment will run the organism for at least one gestation cycle;
it can be used either during a run or as part of the post-processing of Avida data. While
an organism is run in a test environment, Avida keeps track of all the vital statistics of
that organism, such as how many instructions the organism executes in one gestation
cycle, which parts of its genome it executes or copies, which tasks it carries out, and
so on.
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When an organism is loaded into a test environment, its instructions are executed
until it produces a viable offspring or a timeout is reached. In principle, we would
want to be able to determine exactly whether an organism can replicate or not, but
unfortunately, that is not possible. (Testing whether an organism can replicate amounts
to solving the Halting Problem in computer science.) Therefore, at some point we must
give up on any program we are testing and assume that it is not going to replicate. If
age-based death is turned on in the population, then the maximum age organisms can
reach in the population is a good limit on how long an organism in the test environment
should be run.

One of the main goals of running an organism in a test environment is to determine
whether it is viable and what its fitness is. However, for certain organisms it can
be difficult to perform this test. We have already mentioned the halting problem.
Another problem is caused by implicit mutations. For example, we might determine
that an organism does produce an offspring, but that this offspring is not identical to
its parent. In this case, if the offspring is not viable, then certainly the parent is also
not viable. Therefore, we take the next step of continuing to run the offspring in the
test environment, and if necessary its offspring, until we either find a self-replicator
or a sustainable cycle. By default we will only test three levels of offspring before
we assume the original organism to be nonviable. However, such cases happen very
rarely, and not at all if implicit mutations are turned off in the genesis file.

Two final problems with the test environments are that they do not properly reflect
the levels of limited resources (this can be difficult to know, particularly if we are post-
processing) and that they do not handle any special interactions with other organisms,
since only one is being tested at a time. Both of these issues are currently being
examined, and we plan to have a much-improved test environment in the future. Test
environments do, however, work remarkably well in most circumstances.

In addition to reconstructing statistics about organisms as they existed in the pop-
ulation, it is also possible to determine how an organism would have fared in an
alternate environment, or even to construct entirely new genomes to determine how
they perform. This last approach includes techniques such as performing all single-
point mutations on a genome and testing each result to determine what its local fitness
landscape looks like, or artificially crossing over pairs of organisms to determine their
viability (as used for species determination, described in Section 2.5 above). Test envi-
ronments are most commonly used in the post-processing of Avida data, as described
in the next section.

5.3 Analyze Mode
Avida has an analysis-only mode (briefly, the analyze mode), which allows for powerful
post-processing of data. Avida is brought into the analyze mode by the command-line
parameter -a. In analyze mode, Avida processes the analyze file specified in the genesis
file (“analyze.cfg” by default). The analyze file contains a program written in a simple
scripting language. The structure of the program involves loading in genotypes in one
or more batches, and then either manipulating single batches, or doing comparisons
between batches.

In the following paragraphs, we present several example programs that will illustrate
the basics of the analyze scripting language. A full list of commands available in analysis
mode is given in Appendix 3.

5.3.1 Testing a Genome Sequence
The following program will load in a genome sequence, run it in a test environment,
and output the results of the tests in a couple of formats:
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VERBOSE
LOAD SEQUENCE rmzavcgmciqqptqpqcpctletncogcbeamqdtqcptipqfpgqxuty

cuastttva
RECALCULATE
DETAIL detail test.dat fitness merit gest time length viable

sequence
TRACE
PRINT

The program starts off with the VERBOSE command, which causes Avida to print to
screen all details of what is going on during the execution of the analyze script; the com-
mand is useful for debugging purposes. The program then uses the LOAD SEQUENCE
command to define a specific genome sequence in compressed format. (The com-
pressed format is used by Avida in a number of output files. The mapping from
instructions to letters is determined by the instruction set file, and may change if the
instruction set file is altered.)

The RECALCULATE command places the genome sequence into the test environ-
ment, and determines the organism’s fitness, merit, gestation time, and so on. The
DETAIL command that follows prints this information into the file “detail test.dat”.
(This filename is specified as the first argument of DETAIL). The TRACE and PRINT
commands will then print individual files with data on this genome, the first tracing
the genome’s execution line by line, and the second summarizing several test results
and printing the genome line by line. Since no directory was specified for these com-
mands, “genebank/” is assumed, and the filenames are “org-S1.trace” and “org-S1.gen”.
If a genotype has a name when it is loaded, then that name will be kept. Otherwise,
it will be assigned a name starting with “org-S1”, then “org-S2”, and so on. The TRACE
and PRINT commands add their own suffixes (“.trace” and “.gen”) to the genome’s
name to determine the filenames they will use.

5.3.2 Using Variables
Often, it is necessary to run the same section of analyze code on multiple data sets, or
it might be useful to be able to easily change settings throughout an analyze script. To
facilitate such programming practices, variables are available in analyze mode.

There are actually several types of variables, all of which are denoted by a single
letter or number. For a command that requires a variable name as an input, we give the
name of that variable where it is requested. For example, in order to set the variable i
to the value 12, we have to type

SET i 12

But later on in the code, how does Avida know whether an i is meant to be the
letter or the value of the variable? To distinguish these cases, variables are marked by
a leading dollar sign ($) wherever they are meant to be translated into their value.

There are several commands with which variable values can be manipulated. Some
of these commands execute a section of code multiple times, each time with a different
value for the variable. Here is one example:

FORRANGE i 100 199
SET d /home/charles/dev/Avida/runs/evo-neut/evo neut $i
PURGE BATCH
LOAD DETAIL DUMP $d/detail pop.100000
RECALCULATE
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DETAIL $d/detail.dat update length fitness sequence
END

The FORRANGE command runs the contents of the loop once for each possible value
in the range, setting the variable i to each of these values in turn. Thus the first time
through the loop, i will be equal to 100, then 101, 102, and so on, all the way up to
199. In this particular case, we have 100 runs (numbered 100 through 199) that we
want to work with.

The first thing we do once we are inside the loop is to set the value of the variable
d to the name of the directory we are going to be working with. Since this directory
name is long, we do not want to have to type it every time we need it. If we set the
variable d to it, then all we need to do thereafter is to type $d. Note that in this case
we are setting a variable to a string instead of a number; that is fine, and Avida will
figure out how to handle the contents of the variable properly. The directory we are
working with changes each time the loop is executed, since the variable i is part of
the directory name.

We then use the command PURGE BATCH to get rid of all genotypes from the last
execution of the loop (so as not to accumulate more and more genotypes in the cur-
rent batch), and refill the batch by using LOAD DETAIL DUMP to load in all genotypes
saved in the file “detail pop.100000” within our chosen directory. The RECALCULATE
command runs all of the genotypes through a test environment, so that we have all
the statistics we need, and finally DETAIL prints out the chosen statistics to the file
“detail.dat”, again placing it into the proper directory. The END command signifies the
end of the FORRANGE loop.

5.3.3 Finding Lineages
The portion of an Avida run that we will often be most interested in is the lineage
from a genotype (typically the final dominant genotype) back to the original ancestor.
There are tools in the analyze mode to obtain this information, if the necessary pop-
ulation and ancestral dumps have been written out with the events detail pop and
dump historic pop. The following program demonstrates how to make use of these
dump files:

FORRANGE i 100 199
SET d /home/charles/dev/Avida/runs/evo-neut/evo neut $i
PURGE BATCH
LOAD DETAIL DUMP $d/detail pop.100000
LOAD DETAIL DUMP $d/historic dump.100000
FIND LINEAGE num cpus
RECALCULATE
DETAIL lineage.$i.html depth parent dist length fitness
html.sequence

END

The program looks similar to the previous one. The first four lines are actually
identical, but after loading the detail dump at update 100,000, we also load the history
dump from the same time point. A detail file contains all of the genotypes that were
currently alive in the population at the time the detail file was printed, while a history
file contains all of the genotypes that are ancestors of those that are still alive. The
combination of these two files gives us the lineages of the entire population back to
the original ancestor. Since we are only interested in a single lineage, we next run the
FIND LINEAGE command to pick out a single genotype, and discard everything else
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except for its lineage. In this case, we pick the genotype with the highest abundance
(i.e., the largest number of organisms, or virtual CPUs, associated with it) at the time
of output.

As before, the RECALCULATE command gets us any additional information we may
need about the genotypes, and then we print that information to a file using the DETAIL
command. The filenames that we are using this time have the format “lineage.$i.html”,
that is, the files are all written to the current directory, with filenames that incorporate
the run number. Also, because the filename ends in the suffix “.html”, Avida prints
the file in HTML format, rather than in plain text. Note that the specific values that
we choose to print take advantage of the fact that we have a lineage (and hence have
measured things like the genetic distance to the parent) and are in HTML mode (and
thus can print the sequence using colors to specify where exactly mutations occurred).

6 Outlook

Digital organisms are a powerful research tool that has opened up methods to ex-
perimentally study evolution in ways never before possible. We have explained the
capabilities of the Avida system, and detailed the methods by which researchers can
make use of them. One must be careful, however, not to be lured into the trap of think-
ing that, because these systems can be set up and examined so easily, any experiment
will be possible. There are definite limits on the questions that can be answered.

Using digital organisms, we cannot learn anything about physical structures evolved
in the natural world, nor the specifics of an evolutionary event in our own history;
the questions we ask must be about how evolution works in general, and how we
can harness it. Even for the latter type of question, it is sometimes difficult to set up
experiments in such a way that they give meaningful results. We must always remember
that we are working with an arguably living system that will evolve to survive as best
it can, not always in the direction that we intend. For example, in one experiment
we wanted to study a population that could not adapt, but that would nevertheless
accumulate deleterious or neutral mutations through drift. We thought that this situation
was perfect to study with digital organisms: With the fine control over the system
inherent in digital life, we could examine each mutation as it occurred by running a
copy of the mutated organism in a test environment and measuring its fitness. We then
killed those organisms in the main population for which the test revealed that they
had gotten a beneficial mutation, thereby in theory stopping all future adaptation. We
were shocked, however, to see that the population continued to evolve, albeit with
a slow start, but ramping up to the normal evolutionary rates later on. Upon further
investigation, it turned out that the organisms developed a method of detecting the fixed
inputs that we provided in the test environments—and once they determined that they
were in a test environment, they purposefully downgraded their own performance so as
not to be killed. As a colleague put it, “they evolved predator avoidance.” Remarkably,
even when we removed all differences between the test environment and the real
environment, we still could not prevent adaptation. The organisms then shifted to
probabilistically expressing their complex features. With probabilistic expression, they
had a chance of appearing to have low fitness in the test environment, even though their
actual fitness was quite high. While some people initially saw these results as a failure
in the Avida system, it is unexpected evolution such as this one that has convinced
many biologists that digital organisms are all the more lifelike.

The genesis file still contains the option STERILIZE BENEFICIAL (which is meant
to disable further adaptation), but this option now compares the realized fitness of
both the parent and offspring within the population. The parent’s fitness is saved;
the offspring then has to live out its entire life, and only when it, in turn, is about to
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give birth can we be sure if it is more fit than its parent. At that point we cause the
replication to fail. This method is further away from the occurrence of the mutation
than we would like, but since it focuses on events in the population itself, it is the only
way to halt adaptation.

The quest to halt adaptation is only one example of a special feature in Avida; many
more have been explored, and are continuously being added to the source code. The
most successful features are all fully described in the documentation that comes with
the software.

From this point, many possible future directions exist for the development of Avida.
Ongoing efforts include (among others) the implementation of a new CPU model that
is more powerful and realistic, an overhaul of the graphical user interface so that it can
easily be used by those not familiar with the software, an expanded analyze mode based
on the scripting language Python, and the move from asexual to sexual organisms. We
hope for these additions to expand the user base of the software as well as the range
of experiments possible.
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Appendix 1 Instruction Sets

A1.1 Complements and Nop Modification
Nop commands are complemented as follows (here A −→ B means B is the complement
of A):

nop-A −→ nop-B
nop-B −→ nop-C
nop-C −→ nop-A

Registers are complemented as follows:

AX−→ BX
BX−→ CX
CX−→ AX

Nop modification for registers works as follows (here A ❀ B means instruction A
indicates register B):

nop-A ❀ AX
nop-B ❀ BX
nop-C ❀ CX

Nop modification for heads works as follows:

nop-A ❀ instruction head
nop-B ❀ read head
nop-C ❀ write head
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A1.2 The Default Instruction Set
Below, we explain the instructions of the default instruction set. We use the notation
?register? to indicate that an instruction acts by default on the given register, but that a
nop instruction following the instruction changes the default register according to the
rules of nop modification. We use the same notation for nop modification on heads.

nop-A Do nothing.

nop-B Do nothing.

nop-C Do nothing.

if-n-equ If the ?BX? register does not equal its complement register, execute the
next instruction; otherwise skip it. (Thus nop-A following this command
causes AX and BX to be compared; nop-B, the default, compares BX and
CX, and finally, nop-C compares CX and AX.)

if-less If the ?BX? register is smaller than its complement register, execute the
next instruction; otherwise skip it.

swap Swap the contents of the ?BX? register and its complement register.

pop Pop the top value on the currently active stack into register ?BX?.

push Push register ?BX? onto the currently active stack.

swap-stk Swap the currently active stack (there are two stacks in total).

shift-r Shift the bits in the ?BX? register to the right.

shift-l Shift the bits in the ?BX? register to the left.

inc Increment the ?BX? register.

dec Decrement the ?BX? register.

add Set ?BX? equal to the sum of the BX and CX registers: ?BX? = BX + CX.

sub ?BX? = BX - CX.

nand ?BX? = BX NAND CX (bitwise).

h-alloc Allocate the maximum number of instructions that a child organism may
have on divide.

h-divide Split off the instructions between the read head and the write head, and
turn them into a new organism. If there are instructions between the write
head and the end of the memory, discard these. There are a number of
conditions under which a divide will fail. Those are:

1. If either the parent or the offspring would have less than 10
instructions.

2. If the parent has not allocated memory.

3. If less than 70% of the parent was executed.

4. If less than 70% of the offspring’s memory was copied into.

5. If the offspring would be too small or too large (as defined by the
experimenter).

IO Do a put and a get immediately one after the other. Working register is
?BX?.
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h-copy Copy an instruction from the read head to the write head (possibly doing
a mutation), and advance both heads.

h-search Search in the forward direction for the complement label, and set the flow
control head to the end of the label. The distance to the end of the label
found is placed in the BX register, and the size of the label in CX. If a
complement label is not found or no label follows the instruction, the flow
control head is set to the current position of the instruction head.

mov-head Move the ?instruction head? to the position of the flow control head.

jmp-head Advance the ?instruction head? by CX positions, and set the CX register to
the initial position of the head.

get-head Write the position of the ?instruction head? into the CX register.

set-flow Set the ?flow control head? to the address pointed to by the ?CX? register.

if-label If the label after this instruction is the complement of the most recently
copied instructions, execute the next instruction after the label; otherwise
skip it.

A1.3 Simple Organism for the Default Instruction Set
The following is a simple self-replicating program written in the default instruction set.
This program is used as the default starting organism in Avida.

01 h-alloc Allocate space for child
02 h-search Locate the end of the organism
03 nop-C Label α

04 nop-A
05 mov-head Place write head at the beginning of the offspring
06 nop-C Nop modifier for mov-head
07 h-search Mark the beginning of the copy loop
08 h-copy Do the copy
09 if-label If we’re done copying. . .

10 nop-C Label α

11 nop-A
12 h-divide . . . divide!
13 mov-head Otherwise, loop back to the beginning of the copy loop
14 nop-A Label ᾱ

15 nop-B

A1.4 The Old Instruction Set (without Heads)
The following instructions are identical to the ones from the default set: nop-A, nop-B,
nop-C, if-n-equ, if-less, pop, push, swap-stk, swap, shift-r, shift-l, inc,
dec, add, sub, nand. Below, we explain the instructions that differ from the default
instruction set.

if-bit-1 If bit 1 of the ?BX? register is set, execute the next instruction; otherwise
skip it.

jump-f If a label follows, search for its complement in the forward direction; if a
match is found, jump to it. If there is no label, jump by BX instructions in
the proper direction. If there is a label, but its complement is not found,
do nothing.
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jump-b Same as jump-f, but in backward direction.

call Put the location of the next instruction on the currently active stack (there
are two stacks in total), and jump forward to the complement of the label
that follows. If there is no label, jump BX instructions.

return Pop the top value from the currently active stack, and jump to that index
in the organism’s memory.

copy Copy a command from the memory location pointed to by the BX register
to the memory location pointed to by AX + BX, that is, copy the instruction
at location BX into a location offset by AX. If a location is out of range of
the memory, it will be cycled back into range. The copy process is not
error free, which means that sometimes a random instruction is written
instead of the instruction at BX. The rate at which this happens is the copy
mutation rate, controlled in the genesis file.

allocate Allocate memory for ?BX? instructions at the end of the organism’s
memory, and return the start location of the new memory in AX. Only one
allocate may occur between successful divides; any additional attempts to
allocate will fail. Additionally, not more than double or less than half of
the current memory size can be successfully allocated.

divide Split the memory of the organism at AX, turning the instructions beyond
the divide point into a new organism. The same restrictions that have to
be satisfied for h-divide have to be satisfied for divide.

get Read the next value from the input buffer into ?CX?.

put Place ?BX? in the output buffer, and set the register used to 0.

search-f Search in the forward direction for the complement label, and return its
distance. The returned value is placed in the BX register, and the size of
the label that followed is placed in CX. If a complement label is not found,
a distance of 0 is returned.

search-b As search-f, but in the backward direction.

A1.5 Simple Organism for the Old Instruction Set
The following is a simple self-replicating program written in the old instruction set:

01 search-f Find distance to the end label
02 nop-A Label α

03 nop-A
04 add Account for label α’s size
05 inc Account for the initial search-f
06 allocate Allocate space for the daughter
07 push Push size from BX onto the stack
08 nop-B Nop modifier for push
09 pop Pop size off of the stack into CX
10 nop-C Nop modifier for pop
11 pop Since the stack is empty, pop 0 into BX
12 nop-B Label β̄ (copy loop start)
13 nop-C
14 copy Copy the current line
15 inc Move on to the next line
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16 if-n-equ If we aren’t done copying. . .

17 jump-b . . . jump back to the loop’s beginning
18 nop-A Label β

19 nop-B
20 divide Done copying; separate the daughter!
21 nop-B Label ᾱ

22 nop-B

Appendix 2 Events

In the following sections, we describe the most commonly used events in Avida. As
a formatting guide, command arguments will be presented between brackets, such as
{filename}. Optional arguments will have a default value listed, such as {filename=
‘‘output.dat’’}.

A2.1 Output Events
Output events are the primary way of saving data from an Avida experiment. The main
two types are continuous output, which appends to a single file every time the event is
triggered, and singular output, which produces a single, complete file for each trigger.

print data {filename} {column list} Append the data given in the column
list to the file specified (continuous output). The column list needs to be a
comma-separated list of keywords representing the data types. Many possible data
types can be output; see Section A2.3 for the complete list. The event will create a
detailed column legend at the top of the file, so that the file format is always
properly documented.

print average data A print data shortcut that will append all of the
population averages to the file “average.dat”.

print error data A print data shortcut that will append all of the standard
errors of the population statistics to the file “error.dat”.

print variance data A print data shortcut that will append all of the
variances of the population statistics to the file “variance.dat”.

print dominant data A print data shortcut that will append all of the
statistics relating to the dominant genotype to the file “dominant.dat”.

print stats data A print data shortcut that will append all of the
miscellaneous population statistics to the file “stats.dat”.

print counts data A print data shortcut that will append all of the statistics
that keep track of counts (such as the number of organisms in the population or
the number of instructions executed) to the file “count.dat”.

print totals data A print data shortcut that will append the same
information as the previous event, but the counts will be the totals for the entire
length of the run (for example, the total number of organisms ever) to the file
“totals.dat”.

print time data A print data shortcut that will append all of the timing
related statistics to the file “time.dat”.

print tasks data Append the number of organisms that are able to perform
each task to the file “tasks.dat”. This event uses the environment configuration to
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determine what tasks are in use.

print resource data Append the current counts of each resource available to
the population to the file “resource.dat”. This event uses the environment
configuration to determine what resources are in use.

detail pop {filename} Save the genotypes and additional data from the
population to the file specified; if no file name is given, the event uses the name
“detail pop.update#”, where “update#” is the update number at which the event is
triggered. Columns in the output are as follows (one line per genotype):
(1) genotype ID, (2) parent ID, (3) distance from parent, (4) current number of
organisms of this genotype, (5) total number of organisms of this genotype,
(6) length, (7) merit, (8) gestation time, (9) fitness, (10) update born, (11) update
deactivated, (12) depth, (13) genome (in compressed format).

dump historic pop {filename} This event is used to output all of the ancestors
of the currently living population to the file specified, or “historic dump.update#”.
It uses the same format as the detail pop event. In order to use this event, the
parameter TRACK MAIN LINEAGE in the genesis file has to be set to 1.

A2.2 Population Events
Population events modify the state of the population, and will actually change the
course of the run.

inject {filename} {cell id=0} {merit=-1} {lineage id=0} Inject a single
organism into the population. Arguments must be included from left to right; if all
arguments are left out, the organism chosen by default is the ancestral organism; it
will be injected into cell 0, have its merit initialized to its genome length, and be
marked as lineage 0.

inject all {filename} {merit=-1} {lineage id=0} Same as inject, but
no cell id is specified, and the organism is placed in all cells in the population.

apocalypse {kill prob} Organisms in the population are killed randomly with
the given probability.

serial transfer {num organisms} Similar to apocalypse, but here we can
specify the exact number of organisms to keep alive after the event.

kill rectangle {X1} {Y1} {X2} {Y2} Kill off all organisms in a rectangle
defined by the points (X1, Y1) and (X2, Y2).

A2.3 Data Types
These are the data types available to the print data command.

update Current update

sub update Instructions executed within update

generation Average generation in population

entropy Genotype entropy (diversity)

species entropy Species entropy (diversity)

energy Average inferiority (energy)
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dom merit Average merit of dominant genotype

dom gest Average gestation time of dominant genotype

dom fitness Average fitness of dominant genotype

dom repro Average reproduction rate (1/gestation) of dominant genotype

dom length Genome length of dominant genotype

dom copy length Copied length of dominant genotype

dom exe length Executed length of dominant genotype

dom id ID of dominant genotype

dom name Name of dominant genotype

dom births Birth count of dominant genotype

dom breed true Breed-true count of dominant genotype

dom breed in Breed-in count of dominant genotype

dom breed out Breed-out count of dominant genotype

dom num cpus Abundance of dominant genotype

dom depth Tree depth of dominant genotype

dom sequence Sequence of dominant genotype

num births Count of births in population

num deaths Count of deaths in population

breed in Count of non-breed-true births

breed true Count of breed-true births

bred true Count of organisms that have bred true

num cpus Count of organisms in population

num genotypes Count of genotypes in population

num threshold Count of threshold genotypes

num species Count of species in population

thresh species Count of threshold species

num lineages Count of lineages in population

num parasites Count of parasites in population

num no birth Count of childless organisms

tot cpus Total organisms ever in population

tot genotypes Total genotypes ever in population

tot threshold Total threshold genotypes ever

tot species Total species ever in population

tot lineages Total lineages ever in population
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ave repro rate Average reproduction rate

ave merit Average merit

ave age Average age

ave memory Average memory used

ave neutral Average neutral metric

ave lineage Average lineage label

ave gest Average gestation time

ave fitness Average fitness

ave gen age Average genotype age

ave length Average genome length

ave copy length Average copied length

ave exe length Average executed length

ave thresh age Average threshold genotype age

ave species age Average species age

max fitness Maximum fitness in population

max merit Maximum merit in population

Appendix 3 Analyze Commands

This analysis language is a simple programming language. The structure of a program
involves loading in genotypes into one or more batches, and then either manipulating
single batches, or doing comparisons between batches. Currently there can be at most
300 batches of genotypes, but we will eventually remove this limit.

The rest of this section describes how individual commands work, and gives some
notes on other language features, such as how to use variables. As a formatting guide,
command arguments will be presented between brackets, such as {filename}. Op-
tional arguments will have a default value listed, such as {filename=‘‘output.dat’’}.

A3.1 Genotype Loading Commands
There are currently four ways to load in genotypes:

LOAD ORGANISM {filename} Load in a normal single-organism file of the type
that is output from Avida from events such as print dom. These files consist of
information on the organism enclosed in comments, followed by the full genome
of the organism one instruction per line.

LOAD BASE DUMP {filename} Load in a basic dump file from Avida. Each line
contains a genotype sequence, but little additional information.

LOAD DETAIL DUMP {filename} Load in a detail file. Detail files are similar to the
basic dump files, but contain a lot more information on each line. When saved
from Avida (with events detail pop or dump historic pop), these files typically
begin with the word “detail” or “historic”.
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LOAD SEQUENCE {sequence} Load in a user-provided sequence as the genotype.
Avida has a symbol associated with each instruction; this command is followed by
a sequence of such symbols that is then translated into a genotype.

A3.2 Batch Control Commands
All of the load commands place the new genotypes into the current batch, which can be
set with the SET BATCH command. The following are the commands that manipulate
batches:

SET BATCH {id} Set the batch that is currently active. The initial active batch at
the start of a program is 0.

NAME BATCH {name} Attach a name to the current batch. Some of the printing
methods will print data from multiple batches, and we want the data from each
batch to be attached to a meaningful identifier.

PURGE BATCH {id=current} Remove all genotypes in the specified batch (if no
argument is given, the current batch is purged).

DUPLICATE {id1} {id2=current} Copy the genotypes from batch id1 into id2.
By default, copy id1 into the current batch. Note that DUPLICATE is
nondestructive, which means that the genotypes that were previously in batch id2
remain there. In order to remove them, the command PURGE BATCH has to be run
on the batch id2 before the command DUPLICATE.

STATUS Print out (to the screen) the genotype count of each nonempty batch, and
identify the currently active batch.

A3.3 More Analysis Control Commands
There are several other commands that allow the experimenter to interact with the
analysis mode in important ways, but that do not actually trigger any analysis tests or
output. Below is a list of some of the more important control commands:

VERBOSE Toggle between verbose and minimal messages. Verbose messages will
print all of the details of what is happening to the screen. Minimal messages will
only briefly state the process being run. Verbose messages are recommended in
interactive mode.

SYSTEM {command} Run the given command on the underlying operating system.
This command is useful to manipulate files, for example, to copy or delete them.

INCLUDE {filename} Include another file into this one, and run its contents
immediately. This command is useful for prewritten routines that should be
available in several analysis files. Warning: There are currently no protections
against cyclical includes.

INTERACTIVE Switch the analyze mode into interactive. In interactive mode, it is
possible to enter analyze commands on the command line, and these commands
will be executed immediately. This command can be placed anywhere within the
analyze file, so that some processing can take place before interactive mode starts.
The command quit will switch back to batch mode, and Avida will continue with
the normal processing of the analyze script.

DEBUG {message} This command will print the given message to the screen. If
there are any variables (see Appendix A3.8) in the message, they will be translated
before printing. Therefore, the command is useful for debugging programs.
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A3.4 Genotype Manipulation Commands
Having explained how to interact with analysis mode and how to load in genotypes,
we will now explain how genotypes can be manipulated. The following commands
do basic analysis on genotypes, or can be used to prune batches to keep only those
genotypes that meet specific criteria.

RECALCULATE Run all of the genotypes in the current batch through a test
environment, and record the measurements taken (fitness, gestation time, and so
on). This command overrides any values that may have been loaded in with the
genotypes.

FIND GENOTYPE {type=‘‘num cpus’’ . . . } Remove all genotypes apart from
the ones selected. Type indicates which genotypes to choose. Options available
for type are ‘‘num cpus’’ (choose the genotype with the maximum abundance
at time of printing), ‘‘total cpus’’ (genotype with maximum number of
organisms ever), ‘‘fitness’’ (genotype with highest fitness), and ‘‘merit’’
(genotype with highest merit). If the type entered is a number, it is used as an ID
number to indicate the desired genotype (if no such ID exists, a warning will be
printed to screen). Multiple arguments can be given to this command, in which
case all those genotypes in the list will be preserved and the remainder
deleted.

FIND LINEAGE {type=‘‘num cpus’’} Delete everything except the lineage from
the chosen genotype back to the most distant ancestor available. This command
will only function properly if parental information was loaded in with the
genotypes. Type is the same as the FIND command.

ALIGN Create an alignment of all sequences in batch; gaps in the alignment will be
indicated with . Note that a FIND LINEAGE must first be run on the batch;
otherwise alignment is not possible.

SAMPLE ORGANISMS {fraction} Keep only a fraction of organisms in the current
batch. The sampling is done per organism, not per genotype. Thus, genotypes of
high abundance may only have their abundance lowered, while genotypes of
abundance 1 will either stay or be removed entirely.

SAMPLE GENOTYPES {fraction} Keep only a fraction of genotypes in the current
batch.

RENAME {start id=0} Change the ID numbers of all genotypes in the batch to
successive numbers starting at start id. In long Avida experiments, ID numbers
can grow to six or more digits. After reducing a batch to a lineage, in particular, it
is useful to number the genotypes in order from the ancestor to the final one,
rather than to keep the original six-digit numbers.

A3.5 Basic Output Commands
Next, we explain standard output commands that save information generated in analyze
mode.

PRINT {dir=‘‘genebank/’’} Print the genotypes from the current batch as
individual files (one genotype per file) in the directory given. The files will be
named by the genotype name with “.gen” appended.

TRACE {dir=‘‘genebank/’’} Trace all of the genotypes and print a listing of
their execution. The trace will show step by step the status of all of the CPU
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components and the genome during the course of the execution. The filename
used for each trace will be the genotype’s name with “.trace” appended.

PRINT TASKS {file=‘‘tasks.dat’’} This command will print out the tasks
doable by each genotype, one per line, into the output file specified. Note that this
information must either have been loaded in, or a RECALCULATE must have been
run to collect it.

DETAIL {file=‘‘detail.dat’’} {format . . . } Print out all statistics for each
genotype, one per line. The format indicates the layout of columns in the file. If
the filename specified ends in “.html”, HTML formatting will be used instead of
plain text. For the format, see Appendix A3.7.

A3.6 Analysis Commands
Finally, we list actual analysis commands that perform tests on the genomes and output
the results.

LANDSCAPE {file=‘‘landscape.dat’’} {dist=1} For each genotype in the
current batch, test all possible mutations (or combinations of mutations if dist
> 1), and summarize the results, one per line in the specified file.

MAP TASKS {dir=‘‘phenotype/’’} {flags . . . } {format . . . } Construct a
genotype-phenotype array for each genotype in the current batch. The format is
the list of data that should be included as columns in the array. Additionally,
special format flags can be given; the possible flags are html to print output in
HTML format, and link maps to create html links between consecutive genotypes
in a lineage.

MAP MUTATIONS {dir=‘‘mutations/’’} {flags . . . } Construct a
genome-mutation array for each genotype in the current batch. Each line in the
genome is given as a row in the chart, and all available instructions represent the
columns. The cells in the chart indicate the fitness were a mutation to the listed
instruction to occur at the position in the matrix. If the html flag is used, the charts
will be output in HTML format.

HAMMING {file=‘‘hamming.dat’’} {b1=current} {b2=b1} Calculate the
Hamming distance between batches b1 and b2. If only one batch is given,
calculations are done on all pairs within that batch.

LEVENSTEIN {file=‘‘lev.dat’’} {b1=current} {b2=b1} Calculate the
Levenstein distance (edit distance) between batches b1 and b2. This metric is
similar to the Hamming distance, but calculates the minimized edit
distance.

SPECIES {file=‘‘species.dat’’} {b1=current} {b2=b1} Again this
command is similar to the Hamming distance, but calculates as if genotypes were
considered the same species.

A3.7 Output Formats
Several commands (such as DETAIL and MAP TASKS) require format parameters to
specify what genotypic features should be output. Before such commands can be
used, other collection functions may need to be run.

Allowable formats after a normal load (assuming these values were available from
the input file that was loaded in) are:
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id (genome ID) parent id (parent ID)
num cpus (number of organisms) total cpus (total organisms ever)
length (genome length) update born (update born)
update dead (update dead) depth (tree depth)
sequence (genome sequence)

After a RECALCULATE, several calculations are performed that make these additional
formats available:

viable (is viable [0/1]) copy length (copied length)
exe length (executed length) merit (merit)
comp merit (computational merit) gest time (gestation time)
efficiency (replication efficiency) fitness (fitness)

If a FIND LINEAGE was done before the RECALCULATE, the parent genotype for
each regular genotype will be available, enabling the additional formats:

parent dist (parent distance)
comp merit ratio (ratio of comp merit to parent’s)
efficiency ratio (ratio of efficiency to parent’s)
fitness ratio (ratio of fitness to parent’s)
parent muts (list of mutations from parent)
html.sequence (color genome sequence in HTML format)

Finally, if an ALIGN command is run, one additional format becomes available:

alignment (aligned sequence)

A3.8 Variables
Variables can only be a single character (letter or number) and begin with a $ whenever
they need to be translated to their value. Lowercase letters are global variables, capital
letters are local to a function (described later), and numbers are arguments to a function.
A $$ will act as a single dollar sign, if needed.

SET {variable} {value} Set the variable to the value.

FOREACH {variable} {value . . . } Set the variable to each of the values listed,
and run the code that follows between the FOREACH command and the next END
command once for each of those values.

FORRANGE {variable} {min value} {max value} {step value=1} Set the
variable to each of the values between min and max (in steps given), and run the
code that follows between the FORRANGE command and the next END command,
once for each of those values.

A3.9 Functions
Function support is currently primitive. Functions have fixed inputs of $0 through $9.
$0 is always the function name; the remaining nine variables are arguments that can
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be given to the function. Once a function is created, it can be run just like any other
command.

FUNCTION {name} This command will create a function of the given name,
including in it all of the commands up until the END command. These commands
will be bound to the function, but are not executed until the function is run as a
command. Inside the function, the variables $1 through $9 can be used to access
arguments passed in.

Currently there are no conditionals or mathematical commands in this scripting lan-
guage. These are both planned for the future.
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