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AVIDA: An Alternating method for Visualizing and Integrating Data

Kathryn Dover, Zixuan Cang, Anna Ma, Qing Nie, Roman Vershynin

• We propose a framework for the simultaneous

alignment and dimension reduction of coupled

high-dimensional datasets without any knowledge

of common features.

• By accomplishing both the dimension reduction

and alignment simultaneously, AVIDA is better

able to preserve fine-scale structures unique to in-

dividual data sets compared to previous approaches

in data alignment.

• To demonstrate the efficacy of our framework,

we use the Gromov-Wasserstein optimal transport

(GW-OT) for alignment and the t-stochastic neigh-

bor embedding (t-SNE) for dimension reduction

and visualization.
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Abstract

High-dimensional multimodal data arise in many scientific fields. The integration of multimodal data becomes chal-

lenging when there is no known correspondence between the samples and the features of different datasets. To tackle

this challenge, we introduce AVIDA, a framework for simultaneously performing data alignment and dimension re-

duction. In the numerical experiments, Gromov-Wasserstein optimal transport and t-distributed stochastic neighbor

embedding are used as the alignment and dimension reduction modules respectively. We show that by alternating

dimension reduction and alignment, AVIDA aligns the representations of high-dimensional datasets without common

features with four synthesized datasets and two real multimodal single-cell datasets. Compared to several exist-

ing methods, we demonstrate that AVIDA better preserves structures of individual datasets, especially distinct local

structures in the joint low-dimensional representation, while achieving comparable alignment performance. Such a

property is important in multimodal single-cell data analysis as some biological processes are uniquely captured by

one of the datasets. In general applications, other methods can be used for the alignment and dimension reduction

modules.

Keywords: Dimension reduction, Data integration, Multi-omics data

1. Introduction

Databases are expanding not only in size but also

with increasing complexity. In many applications, mul-

tiple measurements of a system are taken across differ-

ent samples or in different feature spaces which produce

multimodal data such as texts attached to images [1].

Multimodality allows a more comprehensive investiga-

tion of a system. Establishing connections among the

∗Corresponding author.
Email addresses: qnie@uci.edu (Qing Nie),

rvershyn@uci.edu (Roman Vershynin)

modalities is the foundation of coherent analysis. Re-

cently, the emerging multimodal single-cell omics has

become a powerful tool to analyze different aspects of

a biological system at the same time [2]. Fusing mul-

timodal single-cell data is especially challenging when

there is no direct correspondence between the measure-

ments and the samples.

Single-cell RNA sequencing (scRNA-seq) is a recent

technology that measures RNA abundance at transcrip-

tomics level with single-cell resolution [3]. The matu-

ration of the technology allows analysis with scRNA-

seq assays across many samples that, for example, rep-
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resent different ages or healthy and diseased individu-

als [4, 5]. On the other hand, the emerging single-cell

assays provide a more comprehensive examination of

a system, such as single-cell ATAC-seq (scATAC-seq)

[6] that measures chromatin accessibility and single-cell

Hi-C [7] that explores chromosome architecture.

Integrating the various single-cell assays across dif-

ferent samples provides a comprehensive characteriza-

tion of a biological system. Many computational meth-

ods have been developed to integrate the same single-

cell assays of multiple samples [8, 9, 10] or different

single-cell assays [11, 12]. In the integration of multiple

single-cell omics assays, most current methods rely on

the known correspondence between features, for exam-

ple by mapping chromatin loci to genes and assuming

the similarity between the samples. The multi-omics

integration becomes a harder problem when no prior

correspondence is assumed, for example, a gene actu-

ally corresponds to multiple loci and accessible loci do

not directly indicate gene expression. This leads to a

general problem of integrating datasets without known

correspondence between features.

When no feature correspondence is given, the struc-

tures of the individual datasets can be exploited and

matched to integrate the datasets. For example, canon-

ical correlation analysis examines covariances between

the datasets but is limited to deriving linear correspon-

dence between the features. When the datasets are rep-

resented as graphs with edges annotating pairs of simi-

lar data points within each dataset, the integration prob-

lem can be addressed using various graph alignment

methods [13, 14]. Among the graph alignment meth-

ods, Gromov-Wasserstein optimal transport (GW-OT)

can align graphs based only on the graph structures [15].

It finds a coupling of the distributions representing the

graphs that best preserves the intra-dataset distances be-

tween the nodes.

Optimal transport (OT) compares and finds connec-

tions between measures. It seeks the coupling be-

tween distributions with the minimum total coupling

cost based on predefined costs between locations [16,

17, 18]. OT has been a versatile tool widely used in

practical problems, such as generative deep learning

models [19], domain adaptation [20], and image sci-

ences [21]. It has been used to find correspondence

between data points in single-cell gene expression data

with common features [22, 23, 24]. The aforementioned

GW-OT has been used in this field to exploit the struc-

tural information within individual datasets. SpaOTsc

[23] uses fused Wasserstein-Gromov-Wasserstein opti-

mal transport to improve the integration of spatial data

and scRNA-seq data with few shared genes by matching

the spatial structure and the structure in scRNA-seq data

based on gene expression similarity. SCOT [25] uses

Gromov-Wasserstein optimal transport to align scRNA-

seq and scATAC-seq data by matching the structures

represented by intra-dataset similarity among cells. Pa-

mona [26] uses partial Gromov-Wasserstein optimal

transport to partially align scRNA-seq and scATAC-seq

data to address the partially overlapping cell populations

among different samples.

In addition to studying shared structures revealed by

the overlapping part of integrated data, it is equivalently

important to examine the structures of non-overlapping

parts which may depict a biological process uniquely

captured by a certain assay [27]. Since most integra-

tion methods depend on similarities between samples,

the dissimilar parts are often overlooked. Efforts have

been made to keep the variation among samples exam-

ined with the same single-cell assay [27].
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In the analysis of high-dimensional multimodal

datasets, another crucial step is dimensionality reduc-

tion. Dimensionality reduction is the process of tak-

ing high-dimensional data and finding a representation

in lower dimensions that is still meaningful. It has

many important applications because dimensionality re-

duction helps address the curse of dimensionality and

other challenges that come with working with high-

dimensional data [28]. Principal Component Analysis

(PCA) [29] is the most traditional linear technique used

in dimensionality reduction but there are many popular

non-linear techniques, such as Local Linear Embedding

[30], Isomap [31], UMAP [32], and t-SNE [33].

t-SNE is a popular dimensionality reduction and vi-

sualization technique that was introduced in 2008 by

van der Matten and Hinton [33]. It has been applied

to a variety of high dimensional data, including deep

learning [34], physics [35], and medicine [36]. Given a

high dimensional dataset, t-SNE outputs a low dimen-

sional representation. t-SNE works by making pairwise

affinities between points in high dimensions and pair-

wise affinities between points in low dimensions. It then

uses gradient descent to find the set of points (in low di-

mensions) that minimize the KL divergence between the

two sets of joint probabilities.

In the analysis of multimodal single-cell data, the di-

mensionality reduction and the integration steps are of-

ten performed separately or sequentially, including the

existing methods that integrate datasets without known

feature correspondences [25, 26]. However, these two

steps are closely related in that they both preserve the

structures from high dimension to low dimension or

from the original spaces to the joint space. The ben-

efit of combining these two steps has been shown in

many recent works. For example, MultiMAP performs

dimensionality reduction and integration utilizing both

shared and non-shared features between datasets [37].

As another example, j-SNE learns a joint representation

in low dimensions without shared features across multi-

ple data sets with one-to-one correspondences [38]. In

this work, we present a workflow called AVIDA (Al-

ternating Method for Visualizing and Integrating Data),

that integrates 2D representations of high dimensional

data sets by alternating between dimension reduction

and alignment. AVIDA operates without knowledge

or the necessity of shared features or one-to-one corre-

spondences across data sets. To demonstrate this work-

flow, we use t-SNE for the dimension reduction mod-

ule and Gromov-Wasserstein optimal transport for the

integration module. Different choices for the dimen-

sion reduction module and alignment module can be uti-

lized in this framework, depending on the application.

We also include a small set of additional experiments

in Appendix A, which utilize UMAP in the dimension

reduction step instead of t-SNE to further demonstrate

AVIDA’s flexibility as a framework. In four synthetic

datasets and two real biological datasets with ground

truth, we show that AVIDA better preserves the struc-

tures of the individual datasets while achieving compa-

rable integration quality compared to other methods.

2. Results

2.1. Overview of AVIDA

The proposed method is called the alternating

method for visualizing and integrating data, or AVIDA.

AVIDA alternates between improving the low dimen-

sional representation through a dimensionality reduc-

tion technique and the alignment of data points in

low dimensions across different datasets. The pur-
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Figure 1: A visual schematic of AVIDA.

pose of alternating between dimensionality reduc-

tion and alignment is to find a balance between a

good representation while still accurately aligning the

datasets. We denote AVIDA as a function, taking as

input the datasets X1, . . . ,Xk, and is parameterized by

choice of dimensionality reduction and alignment tech-

niques: AVIDA(X1,X2, ...,Xk;DR,ALIGN). A simpli-

fied schematic of the method is shown in Figure 1.

As shown in Figure 1, AVIDA can take as input two

datasets and organizes the data as a pairwise distance

matrix. Next, dimensionality reduction using the given

pairwise distance matrix is performed on both datasets

independently. An alignment method is used to “align”

the datasets in the lower dimensional space and using

the aligned data points, a new pairwise distance matrix

is formed for each dataset, and the process iterates. This

framework is flexible in its choice of dimensionality re-

duction technique (in fact, different dimension reduc-

tion algorithms can be used on different datasets if one

so chooses) and alignment method.

Suppose one is given two datasets X (1) and X (2)

and the goal is to create a joint representation of the

datasets in a common lower dimensional space. Using

some technique DR for dimensionality reduction (e.g.,

PCA, t-SNE, Random Forests, etc.) and GW-OT for

alignment, we can formulate the objective function for

AVIDA as AVIDA(X1,X2;DR,GW). The GW-OT ob-

jective is defined with respect to the low dimensional

representation of points:

GW(Y (1),Y (2)) = ∑
i, j,i′ , j′

Li, j,i′, j′Ti,i′T j, j′ − ε(H(T)),

(1)

where H(T) = ∑i, j Ti j log(Ti j) is the Entropic regular-

ization term and

Li, j,i′, j′ = ‖d(y
(1)
i ,y(1)j )−d(y(2)

i′
,y(2)

j′
)‖2 with a cho-

sen distance metric d(·, ·). This objective is

minimized by using the projected gradient de-

scent method with KL metric-based projections [39],
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T ← ProjKL
U(a,b)(T � e−τ(L⊗T+ε log(T ))) where

U(a,b) = {T ∈ Rn1×n2
+ : T1= a,T T

1= b} and τ is the

step size. The implementation in Python Optimal Trans-

port [40] package is used. The representation for Y (1)

will subsequently be mapped to Y (2) using the mapping

found by minimizing (1) with respect to T , i.e., by set-

ting Y (1) = TY (2). Our combined loss function can be

represented as

AVIDA(X (1),X (2);DR,GW)

= min
Y (1),Y (2)

DR(X (1),Y (1))+DR(X (2),Y (2))+GW(Y (1),Y (2)),

(2)

where DR(X (i),Y (i)) represents the objective loss asso-

ciated with the dimensionality reduction technique DR.

For example, if t-SNE is used for the DR step, the objec-

tive can be represented as the KL loss between proba-

bility distributions on the points in high and low dimen-

sions. See 4 for more details.

2.2. AVIDA accurately reproduces the intra-dataset

structures in integration of synthetic data

We compared AVIDA(X1,X2;TSNE,GW) to both

Pamona and SCOT across four simulated datasets and

two real-world single-cell multi-omics datasets. We

chose Pamona and SCOT as a comparison because they

are both advanced integration methods that do not re-

quire common features or one-to-one correspondence

across data sets. To have a fair comparison with SCOT

and Pamona, for these experiments we had SCOT and

Pamona perform their alignment and then used t-SNE

to visualize their low dimensional representations rather

than UMAP or PCA. This way we are not comparing

different kinds of visualization techniques to each other.

To see how these methods would perform using UMAP

instead of t-SNE, see Appendix A. Table 1 contains the

performance metrics for AVIDA(X1,X2;TSNE,GW),

SCOT and Pamona on both the simulated and real-life

datasets. We used five different metrics to assess the

performance of these methods: the fraction of samples

closer than the true match (FOSCTTM), alignment, in-

tegration, accuracy, and representation loss. The accu-

racy metric is only included on the datasets where the

ground truth is known and an empty cell in the table im-

plies the dataset did not meet that requirement. Details

on the metrics are included in Section 4.2.

Our four simulated datasets include a bifurcated tree,

a circular frustum (from [41]), a dumbbell, and distant

rings. The dumbbell and distant rings datasets are in-

troduced in order to highlight the difference between

AVIDA and SCOT and Pamona. The dumbbell dataset

consists of two rings that are connected by a line. We

consider the following split of the dumbbell data set: X1

contains data points from the two rings and a subset of

the points along the line connecting the two rings. Then

dataset X2 contains all the points along the line connect-

ing the two rings. Thus, the dumbbell dataset allows us

to investigate the performance of AVIDA when there is

only a partial direct correspondence between data sets.

We also introduce the distant rings dataset. The rings

dataset consists of two rings that are far apart from each

other in high dimensions. We set the sizes of their radii

to be much smaller than the distance between the cen-

ters of the rings. Then, the datasets X1 and X2 are gener-

ated such that they both contain the entirety of the two

rings dataset, i.e. X1 = X2. This is done so that there

is a direct correspondence between points in X1 and X2.

Thus, the rings dataset allows us to investigate the per-

formance of AVIDA when there is a full direct corre-

spondence between data sets. In addition, the difference

in scale of the distances in the rings dataset allows us
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Dataset Method FOSCTTM Integration Accuracy Alignment Representation Loss

Bifurcated Tree

AVIDA 0.1202 1.0820 4.3863 0.5157 0.3275

Pamona 0.1108 0.2933 7.6098 0.9897 1.0969

SCOT 0.2103 1.0016 12.2095 0.75 2.1466

Circular Frustrum

AVIDA 0.1187 0.9699 2.9377 0.4267 0.3955

Pamona 0.0186 0.2532 1.2577 0.9363 0.8377

SCOT 0.0515 1.0032 4.3857 0.9727 1.7083

Dumbbell

AVIDA 0.5228 0.5568 25.1281 0.6385 0.1220

Pamona 0.5055 0.3679 32.1714 0.7785 0.6176

SCOT 0.4754 2.565 11.2244 0.2070 3.6008

Distant Rings

AVIDA 0.3138 0.6847 5.3429 0.639 0.1916

Pamona 0.2580 1.2407 1.0 0.993 1.1784

SCOT 0.0056 0.0791 0.2759 0.9125 0.9261

sc-GEM

AVIDA 0.2070 0.4700 2.4996 0.8994 0.4879

Pamona 0.2108 0.3567 10.894 0.7237 1.4298

SCOT 0.1818 2.3164 6.9267 0.5616 0.8790

scNMT-seq

AVIDA 0.2745 0.3631 4.5787 0.6619 1.0489

Pamona 0.3889 0.2446 0.7032 0.9746 4.2435

SCOT 0.2675 2.4333 28.6287 0.7522 1.1979

Table 1: Metrics for AVIDA(X1,X2;TSNE,GW) (labeled as AVIDA above), Pamona and SCOT experiments.

to highlight the advantage of using AVIDA rather than

other forms of alignment.

The specific parameters used to generate these

datasets are given in Section 4. The evaluations of these

methods on the various metrics are given by Table 1.

Looking at Figures 2 and 3, it is clear why we want

to introduce these datasets. In Figure 2, AVIDA clearly

preserved the local structure of both datasets while Pa-

mona and SCOT highlight the linear structure found in

both datasets. This is demonstrated by both visual in-

spection of the loop structures preserved by AVIDA,

as shown in Figure 2(a) and Figure 3(a) and the per-

sistence diagrams, as shown in Figure 2(b) and Fig-

ure 3(b). The persistence diagram is the result of persis-

tent homology[42, 43] which grows a simplicial com-

plex on a point cloud and tracks the scale at which the

topological features appear (birth value) and disappear

(death value). A topological feature with large persis-

tence value (difference between birth and death values)

is considered significant and we are interested in the one

dimensional H1 features that correspond to circles in

data. Details of persistent homology are discussed in

Section 4.2.2. AVIDA is the only method that is able

to successfully integrate the two representations gener-
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Figure 2: (a) Pamona, AVIDA, SCOT, and t-SNE representation of the dumbbell dataset. (b) The H1 persistence diagrams of Vietoris-Rips filtration

with Euclidean distance of the original data, and AVIDA and SCOT embeddings. The birth and death values are the scales at which topological

features appear and disappear. A point farther away from the diagonal (blue line) represents a significant 1-dimensional loop. “Domain 1” and

“Domain 2” correspond to the points colored red and black respectively in (a).

ated by t-SNE’s representation. Figure 3 shows that Pa-

mona’s method collapses both rings to a single point,

destroying the local structure of the data. SCOT is able

to integrate the datasets while still preserving some lin-

ear structure but compared to t-SNE’s actual 2D rep-

resentation, AVIDA produces a 2D representation with

the most accurate local structure. Since AVIDA allows

t-SNE to construct the local structure of the line before

mapping, that structure is preserved in the final repre-

sentation.

However, if we were to look at the FOSCTTM and

accuracy scores in Table 1 for Figure 2 and Figure 3,

Pamona scores best because all the points are correctly

mapped close together. The datasets illustrate our need

for a representation metric since the traditional metrics

do not penalize for poor representations in 2D. We use t-

SNE’s loss function as our representation loss since it is

a popular dimensionality reduction technique, however,

it could easily be replaced by a loss function from other

methods (e.g. UMAP).

2.3. AVIDA achieves a balance between structure rep-

resentation and multimodal dataset alignment

We also compare the outputs from two real-world

single-cell multi-omics datasets. The first is sc-GEM, a
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Figure 3: (a) t-SNE, AVIDA, SCOT and Pamona representation of the distant rings dataset. (b) The H1 persistence diagrams of Vietoris-Rips

filtration with Euclidean distance of the original data, and AVIDA and SCOT embeddings. The birth and death values are the scales at which

topological features appear and disappear. A point farther away from the diagonal (blue line) represents a significant 1-dimensional loop. The H1

diagrams of Pamona embeddings are empty. “Domain 1” and “Domain 2” correspond to the points colored red and black respectively in (a).

dataset from [44] which contains both gene expression

and DNA methylation at multiple loci on human so-

matic cell samples under coversion to induced pluripo-

tent stem cells. The second is scNMT-seq, a dataset

of chromatin accessibility, DNA methylation, and gene

expression on mouse gastrulation samples collected at

four different time states from [45]. The evaluations of

AVIDA, SCOT, and Pamona on these datasets are also

given in Table 1. In Figure 4, we can see the different

2D representations for sc-GEM. The left column of the

figure shows the integration between the two datasets

and the right column has the data points colored by cell.

From these representations, we can see that AVIDA is

able to fully integrate the two different datasets where

there is some noticeable separation in the SCOT rep-

resentation. Since this dataset contains the conversion

from somatic cells to stem cells, we hope to see a gra-

dient of colors from one end of the representation to the

other which all methods are able to achieve. This is a

good example of how AVIDA’s performance on integra-

tion of real-life datasets is comparable to both SCOT

and Pamona.

We can also confirm this observation in Table 1.

AVIDA is able to achieve FOSCTTM and alignment

scores that are comparable to SCOT and Pamona while

simultaneously having the best representation loss. The

same holds true for scNMT-seq as well. These examples

illustrate that AVIDA is comparable to both Pamona and

8



Figure 4: AVIDA, SCOT and Pamona representation of sc-GEM. The

visualizations for each of the methods were made by t-SNE.

SCOT on real-life datasets while also performing well

on the adversarial datasets: the dumbbell and distant

rings datasets.

While we did not plot every dataset’s low dimen-

sional representation here, Figure 5 compares the FOS-

CTTM and representation losses for each 2D represen-

tation generated by SCOT, AVIDA, and Pamona. The

shapes designate the dataset’s low dimensional repre-

sentation and the different colors represent the method

that was used. We can see that across the different

datasets, all three methods have comparable FOSCTTM

scores, indicating that the integration of the datasets are

similar. However, we can also see that AVIDA by far

has the best representation loss, indicating a more accu-

rate low dimensional representation.

3. Discussion

Motivated by the similar fundamental assumptions in

dimension reduction and data integration that they both

Figure 5: A comparison of methods using integration and 2D repre-

sentation.

try to preserve the structures of datasets, we developed

an alternating method, AVIDA, which combines these

two processes for joint 2D representation of datasets

without shared features. Comparing with the methods

that perform integration first and then dimension reduc-

tion, AVIDA better preserves the detailed structures of

the datasets being integrated especially the structures

present in only one of the datasets. This property al-

lows the identification of mechanisms that can only be

revealed with one of the technologies.

In this work, we demonstrate the method using t-SNE

for dimension reduction and Gromov-Wasserstein op-

timal transport for data integration. In general, other

dimension reduction methods and integration methods

could be used. The representation loss used in the com-

parison can also be used as a control metric about how

well the structures of individual datasets are preserved

in the joint representation. This metric can be used to

find a balance between integration and representation

when other methods are used for the dimension reduc-

tion and integration modules. The comparison indicates

that a method could do a perfect job in integration while

missing structures presented in the individual datasets.

It is thus important to also evaluate the quality of the

structure representation of individual datasets when de-

9



veloping joint dimension reduction methods for high-

dimensional multimodal datasets.

Despite the improvements on performing the two pro-

cesses separately, the quality of the joint 2D represen-

tation still heavily depends on the performance of the

specific dimension reduction method and integration

method. While the quality of dimension reduction can

be checked by comparing it to the structures present in

the original high dimensional datasets, it is hard to eval-

uate the integration quality without ground truth. It is

thus also important to further validate the result with

prior knowledge or assess the robustness of the integra-

tion with, for example, subsampling.

Upon the joint representation of multimodal datasets,

one major downstream task is to find the correspon-

dence between the non-overlapping features across the

datasets. A potential method for this is to track the

contributions of original features to the common low

dimensional representations and subsequently find the

correspondence between them.

4. Methods

AVIDA is a framework that takes input data sets

{X (`)}N
i=1 where the data sets X (`) ∈ Rn`×d` need not

be in the same feature space. The output of AVIDA

is a low dimensional representation of all data sets si-

multaneously in a single feature space. This is accom-

plished by alternating between dimensionality reduction

and alignment. The AVIDA framework is presented in

Algorithm 1. The choice of dimensionality reduction

technique and alignment method is up to the user and

can be chosen based on the use case. In Section 4.1,

we present a detailed implementation of AVIDA us-

ing t-SNE for dimensionality reduction and GW-OT for

alignment.

Algorithm 1 AVIDA

Input:N datasets X (`) = {x(`)i }
n`
i=1 ⊂ Rd` , target di-

mension d, Dimensionality Reduction Method DR(·),

Alignment Method ALIGN(·).

Output: Low-dimensional representations Y (`) =

{y(`)i }
n`
i=1 ⊂ Rd .

Initialize Y (`)
0 for ` ∈ [N] and set t = 0.

do

Dimensionality reduction step:

Ŷ (`)
t = DR(X (`),Y (`)

t ) for ` ∈ [N]. . Input

dataset X (`) and initialization Y (`)
t

Alignment step:

[Y (1)
t+1, · · · ,Y

(N)
t+1 ] = ALIGN(Ŷ (1)

t , · · · ,Ŷ (N)
t ).

Increment iteration count: t = t +1.

while stopping criteria not satisfied

Return Y (`) = Y (`)
t for ` ∈ [N].

4.1. AVIDA with t-SNE and GW-OT

In this section, we present our implementation

of the AVIDA framework using t-SNE for dimen-

sionality reduction and GW-OT for alignment, i.e.,

AVIDA(X1,X2;TSNE,GW). For simplicity, we assume

there are two input data sets X (1) = {x(1)i }
n1
i=1 ⊂ Rd1

and X (2) = {x(2)i }
n2
i=1 ⊂ Rd2 and that the low dimen-

sional output feature space has dimension d = 2, i.e.,

Y (1) = {y(1)i }
n1
i=1 ⊂ R2 and Y (2) = {y(2)i }

n2
i=1 ⊂ R2.

In the dimensionality reduction step, t-SNE generates

pairwise affinity values {p(`)i j } for each of the dataset

X (`), as given by

p(`)j|i =
exp(−‖x(`)i − x(`)j ‖2/2σ

(`)
i )

∑k 6=i exp(−‖x(`)k − x(`)i ‖2/2σ
(`)
i )

(3)

p(`)i j =
p(`)j|i + p(`)i| j

2n`
, (4)

10



where the σ
(`)
i ’s satisfy

ρ = 2−∑ j 6=i p(`)j|i log(p(`)j|i ), (5)

for a perplexity value ρ chosen by the user. To obtain

y(`)i , t-SNE minimizes the Kullback-Leibler divergence

between {p(`)i j } j 6=i and {q(`)i j } j 6=i using gradient descent.

The target probabilities q(`)i j are defined as:

q(`)i j =
(1+‖y(`)i − y(`)j ‖2)−1

∑i′ , j′ (1+‖y
(`)

i′
− y(`)

j′
‖2)−1

. (6)

To obtain y(`)i , t-SNE minimizes the Kullback-Leibler

divergence between {p(`)i j } j 6=i and {q(`)i j } j 6=i using gra-

dient descent:

KL(P̀ ||Q`) =
n`

∑
i, j=1

p(`)i j log

 p(`)i j

q(`)i j

 , (7)

The t-SNE method utilizes a “early exaggeration” phase

to artificially highlights the attractions between points in

similar neighborhoods, promoting clusters. This period

is a very important tool that allows t-SNE to develop

local structures in its representation. The early exagger-

ation phase occurs in the first 200 iterations of gradient

descent in which p(`)i j values are scaled by a factor of 4.

It has been shown that the early exaggeration phase in

t-SNE promotes clustering of similar points [46]. Af-

ter the first 200 iterations, the p(`)i j values are returned

to their original value and t-SNE continues to perform

gradient descent.

In the alignment step of AVIDA, GW-OT is used to

align data points across data sets. Given the current low

dimensional representations outputs from t-SNE, Y (1)

and Y (2), the following optimization problem is solved

to compute the transport matrix T:

GW(Y (1),Y (2))

= min
T ∑

i, j,i′ , j′
‖d(y(1)i ,y(1)j )−d(y(2)

i′
,y(2)

j′
)‖2Ti,i′T j, j′ − ε(H(T)),

(8)

where H(T) = ∑i, j Ti j log(Ti j) is an Entropic regular-

ization term and d(·, ·) is a chosen distance metric. The

representation for Y (1) is mapped to Y (2) using the map-

ping found by minimizing (8), or by computing Y (1) =

TY (2). AVIDA(X (1),X (2);TSNE,GW) continues alter-

nating between minimizing the KL loss in t-SNE and

using optimal transport to align points until a stopping

criteria is reached. In this implementation, we choose

to limit the number of iterations to 1000 and perform

alignment every 100 iterations after the early exaggera-

tion phase (i.e., after the first 200 iterations) of t-SNE.

The pseudo-code for AVIDA(X (1),X (2);TSNE,GW) is

provided in Algorithm 2.

4.2. Metrics, parameters, hardware

The metrics used in Section 2 are described in detail

in this section. For reproducibility, we also include

the hardware settings under which these experiments

were run and the user-selected parameters employed to

obtain our numerical results.

4.2.1. Metrics

To compare AVIDA(X1,X2;TSNE,GW), Pamona,

and SCOT five different metrics are employed: frac-

tion of samples closer than the true match (FOSCTTM),

alignment, integration, accuracy, and representation

loss. The FOSCTTM and alignment are metrics pro-

posed in previous works. FOSCTTM was originally

proposed by Liu et al. [41] and was used to validate the
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Algorithm 2 AVIDA(X1,X2;TSNE,GW)

Input: datasets X (1) = {x(1)1 , . . . ,x(1)n1 }, X (2) =

{x(2)1 , . . . ,x(2)n2 }, perplexity ρ , and regularization pa-

rameter ε

Output: low-dimensional representations: Y (1)
0 =

{y(1)1 , . . . ,y(1)n1 }, Y (2)
0 = {y(2)1 , . . . ,y(2)n2 }

Compute pairwise affinities p(1)i j , p(2)i j with perplexity

ρ (using Eq. (3) and Eq. (4))

Initialize solutions Y (1)
0 ,Y (2)

0 with points drawn i.i.d.

from N (0,10−4I)

while t < 1000 do

if mod (t,100) 6= 0 then

for `= 1,2 do

Compute pairwise affinities q(`)i j (using

Eq. 6)

Compute gradients ∆
(`)
t =

δ

δY (`)
t

TSNE(X (`),Y (`)
t ) (using Eq. 7)

Set Y (`)
t = Y (`)

t +∆
(`)
t

end for

else

Compute the GW-OT mapping, T, between

Y (1)
t and Y (2)

t (using Eq. 1)

Set Y (`)
(t+1) =T Y (`)

t

end if

t← t +1

end while

performance of SCOT. The alignment score was used

in [26] to compare Pamona and SCOT. In addition to

the metrics used in previous works, we also introduce

a few others to capture various aspects of the output

representation. The additional metrics we measure are

integration, accuracy, and representation loss. In this

section, we define each and the conditions under which

these metrics are meaningful. For notational simplicity,

D ∈Rn1×n2 such that Di j = d(y(1)i ,y(2)j ) denote the pair-

wise distance matrix between points in Y (1) and points

in Y (2).

The FOSCTTM captures roughly the accuracy of the

representation. FOSCTTM operates under the assump-

tion that every point has a “true match” and that the

“true matches” should be close together in the lower di-

mensional representation. This is formalized as follows.

Assume, for simplicity, and n1 = n2 = n and without

loss of generality that the true match of x(1)i is x(2)i for

all i ∈ [n]. The FOSCTTM is defined as:

FOSCTTM=
n

∑
i=1

|{ j : Di j < Dii}|
n−1

+
n

∑
j=1

|{i : Di j < D j j}|
n−1

.

(9)

In other words, for each point Y (1), determine the frac-

tion of the points y(2)i that are closer to y(1)i than y(2)i .

Then, repeat the process for points in Y (2). Smaller val-

ues of FOSCTTM indicate better performance.

Under these same assumptions (that every point has a

true match), we can also define an accuracy score. The

idea is that points that are true matches should appear

close together in the lower dimensional representation.

This is measured by taking a simple trace of the matrix

D:

Accuracy =
n

∑
i=1

Dii = tr(D)

The Alignment score used in this work was also used

in [26]. The alignment score measures how well aligned

the two datasets being integrated are in low dimen-

sions. For the alignment score, we assume that each

data set has class labels and that those class labels can

be shared across data sets. The points in each data set

are split into “shared” and “dataset specific”. “Shared”

data points have representation in both Y (1) and Y (2)

whereas “dataset specific” data points only appear in
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one of the datasets. The alignment score is computed

as follows. Let S(1)∪P(1) = Y (1) and S(2)∪V (2) = Y (2)

where sets S(`) denote the set of all points corresponding

to “shared” data points and V (`) denote the set indices of

all dataset specific points in Y (`). The alignment score

is defined as:

Alignment = 1− |x̄s− k/(`+1)|
k− k/(`+1)

,

where x̄s is the average number of nearest neighbors that

are shared points from the same dataset.

The aforementioned metrics have been utilized in

previous works. We also propose to use the following

for evaluating the representation of the low dimensional

data. First, we employ a symmetrized Kullback-Leibler

loss with a student t-distribution kernel to evaluate how

well the output represents the high dimensional data in

an integrated fashion. We refer to this as the Represen-

tation Loss:

Representation Loss =
1
2

(
KL(X (1)‖Y (1))+KL(Y (1)‖X (1))

)
+

1
2

(
KL(X (2)‖Y (2))+KL(Y (2)‖X (2))

)
.

The choice of this representation loss as a way to mea-

sure the quality of the representation in 2D is based

on the fact that popular data dimensionality reduction

techniques such as UMAP and t-SNE, both use a ver-

sion of the KL loss. We recognize that there are other

dimensionality reduction techniques, such as PCA or

Laplacian Eigenmaps. However such techniques are

spectral methods whose loss functions are evaluated by

manifold-based metrics similar to FOSCTTM (9) and

Integration (10). This representation loss is a way to

measure the quality of the representation in cases of

structures that are not best described by the alignment

of nearest neighbors, such as clusters or rings. Since

t-SNE and UMAP are most adept at preserving these

structures in low dimensions, it seems natural to modify

their loss function as a way to measure the quality of the

2D representations.

Lastly, we want to evaluate how well integrated the

two data sets are in low dimensions. We say that inte-

gration is the average, minimum distance between a data

point in Y1 and any data point in Y2. The integration is

defined as:

Integration =
1
n1

n1

∑
i=1

min
j

Di j +
1
n2

n2

∑
j=1

min
i

Di j. (10)

4.2.2. Persistent homology

Persistent homology [42, 43] is used to evaluate

the conservation of local geometries of the synthetic

datasets. On a point cloud, a filtration of a simplicial

complex K such that /0 = K0 ⊂ K1 ⊂ ·· · ⊂ Km = K is

constructed based on certain rules such as the Vietoris-

Rips filtration, which we employ here. For each sim-

plicial complex Ki, the rank of the kth homology group

Hk(Ki) represents the kth Betti number of Ki. For the

examples here, we focus on the 1st homology group

which represents the 1-dimensional holes in the data

such as loops and rings. Along the filtration, the ap-

pearance and disappearance of these homology groups

are tracked by computing the p-persistent kth homol-

ogy group of Ki, H p
k (K

i) which records the homology

classes of Ki that persist at least until Ki+p. Each ho-

mology class is then represented by a pair of filtra-

tion values at which the class appears and disappears,

usually called the birth and death values. These out-

puts of persistent homology can be visualized as per-

sistence diagrams by taking the birth and death values

as 2D coordinates. A more persistent homology class

(with a large difference between death and birth val-

ues or equivalently farther away from the diagonal in
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the persistence diagram plots) is considered a signifi-

cant feature. For the examples here, we are interested in

the significant 1-dimensional loops which are captured

as significant off-diagonal points in the H1 persistence

diagram. We refer interested readers to [47] for com-

plete details of persistent homology. Here, the package

Dionysus 2 [48] was used for persistent homology com-

putation with Vietoris-Rips filtration on Euclidean dis-

tance.

4.2.3. Parameters

The default perplexity value in most standard imple-

mentations of t-SNE is 30. However, depending on the

dataset, the perplexity value may need to be adjusted.

Table 2 shows the perplexity value choices for each ex-

periment presented in Section 2. In addition to perplex-

ity, another important parameter is ε in Equation 1. For

all of our experiments, ε was set to be 5×10−3 but de-

pending on the dataset could be adjusted.

4.2.4. Hardware

We ran the experiments on an Intel i7-10750H CPU

(base frequency 2.60GHz) with 8GB memory.

4.3. Datasets

For our analysis, we introduced two synthetic

datasets: the dumbbell dataset and distant rings dataset.

The dumbbell dataset consists of two sub-datasets,

X (d,1),X (d,2) ⊂ R2 with 200 datapoints each. For all

0≤ i≤ 200,

X (d,1)
i,1 ∼ 50U(0,1)

X (d,1)
i,2 ∼ N(0,1)

where U(0,1) is the uniform distribution and N(0,1)

is the normal distribution. This essentially constructs

X (d,1) as a line in 2D with a little bit of noise. To con-

struct the two rings in X (d,2), we consider θ ∼U(0,2π)

and r ∼ N(3,0.5), then use it in our construction.

X (d,2)
i,1 ∼ r cos(θ), 1≤ i≤ 50

X (d,2)
i,2 ∼ r sin(θ), 1≤ i≤ 50

X (d,2)
i,1 ∼ r cos(θ)+14, 50 < i≤ 100

X (d,2)
i,2 ∼ r sin(θ), 50 < i≤ 100

The first 50 points in X (2) are a slightly noisy circle cen-

tered at 0, where the next 50 points in the dataset are the

same slightly noisy circle centered instead at 14. These

two rings are then connected by a line.

X (d,2)
i,1 ∼U(3,10), 100 < i≤ 200

X (d,2)
i,2 ∼ N(0,0.2), 100 < i≤ 200

This line is the last 100 points and also has small noise

across one dimension.

The distant rings dataset also contains two sub-

datasets, X (c,1),X (c,2) ⊂ R. Again, we let θ ∼U(0,2π)

and now we define r1 ∼ N(5,1) and r2 ∼ N(5,0.1) and

define two different rings.

X (c,1)
:,1 ∼ r1 cos(θ)

X (c,1)
:,2 ∼ r1 sin(θ)

X (c,2)
:,1 ∼ r2 cos(θ)+100

X (c,2)
:,2 ∼ r2 sin(θ)+100

Essentially for each dataset, we construct two rings

where the distance between them dwarfs the radius of

each ring. To make these two rings distinct, we con-

structed one ring to have much less noise than the other.
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Dataset Bifurcated Tree Circular Frustrum Dumbbell Distant Rings sc-GEM scNMT-seq

Perplexity Value 30 60 30 30 50 100

Table 2: Perplexity choices for each dataset.

5. Data Availability

The synthetic data distant rings and dumbbell dataset

are available at https://github.com/kat-dover/

AVIDA/tree/main/data and the bifurcated tree and

circular frustum were downloaded from the SCOT

repository https://rsinghlab.github.io/SCOT/

data/. The sc-GEM data from [44] was down-

loaded from the SCOT repository given at https://

rsinghlab.github.io/SCOT/data/. The scNMT-

seq data from [45] were downloaded from the Pa-

mona repository given at https://github.com/

caokai1073/Pamona.

6. Code Availability

The AVIDA implementation with t-SNE as the di-

mension reduction module and Gromov-Wasserstein

optimal transport as the alignment module is available

at https://github.com/kat-dover/AVIDA which

will be made publically available on Github upon pub-

lication.
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Appendix A. Using Alternate Dimensionality Re-

duction Techniques

We introduce AVIDA as a framework that allows for

different methods for dimension reduction (or visual-

ization) and alignment can be used depending on the

dataset and applications. UMAP is another common

dimensionality reduction technique utilized in compu-

tational biology. Here, we demonstrate AVIDA using

UMAP for the dimension reduction module and GW-

OT for the alignment module. The purpose of these

brief experiments is to demonstrate AVIDA’s viability

as a framework. The experiments here essentially repli-

cate a small subset of the experiments presented in the

main section of our paper with the main difference be-

ing the utilization of UMAP for dimension reduction in-

stead of t-SNE. To create 2D representations for SCOT

and Pamona, we also used UMAP.

In Figure A.6, we apply AVIDA(X1,X2;UMAP,GW)

to the sc-GEM dataset, a dataset from [44] which con-

tains both gene expression and DNA methylation at

multiple loci on human somatic cell samples under cov-

ersion to induced pluripotent stem cells. We can see

comparing Figure A.6 (which uses UMAP for dimen-

sion reduction) with Figure 4 (which uses t-SNE for di-

mension reduction), using UMAP produces nearly the

same clusters, but here we see a more distinct separation

between the two point clouds, both for AVIDA and for

Pamona. This shows that there may be datasets where

another dimensionality reduction technique might be

superior over other choices. However, the reverse can
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also be true.

In Figure A.7 we apply AVIDA(X1,X2;UMAP,GW)

to the rings data set described in Section 4.3 and see that

using UMAP does not preserve the local structure as

well as using t-SNE, as shown in Figure 3, for all three

of the data integration methods. It is not surprising dif-

ferent dimensionality reduction techniques for the same

dataaset will produce different representations and we

encourage any users of AVIDA to incorporate the di-

mensionality reduction technique that works best on the

dataset they are working with.

18



Figure A.6: AVIDA, SCOT, and Pamona representation of the scGEM dataset. In this experiment, UMAP was applied to SCOT and Pamona’s

output and UMAP’s gradient was incorporated into AVIDA for the dimension reduction module.
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Figure A.7: UMAP, AVIDA, SCOT and Pamona representation of the distant rings dataset. In this experiment, UMAP was applied to SCOT and

Pamona’s output and UMAP’s gradient was incorporated into AVIDA for the dimension reduction module.

20


	1 Introduction
	2 Results
	2.1 Overview of AVIDA
	2.2 AVIDA accurately reproduces the intra-dataset structures in integration of synthetic data
	2.3 AVIDA achieves a balance between structure representation and multimodal dataset alignment

	3 Discussion
	4 Methods
	4.1 AVIDA with t-SNE and GW-OT
	4.2 Metrics, parameters, hardware
	4.2.1 Metrics
	4.2.2 Persistent homology
	4.2.3 Parameters
	4.2.4 Hardware

	4.3 Datasets

	5 Data Availability
	6 Code Availability
	Appendix  A Using Alternate Dimensionality Reduction Techniques

