
122 Xue et al. / Front Inform Technol Electron Eng 2017 18(1):122-138

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Avision-centeredmulti-sensor fusing approach to

self-localization and obstacle perception for robotic cars∗

Jian-ru XUE†, Di WANG, Shao-yi DU, Di-xiao CUI, Yong HUANG, Nan-ning ZHENG

(Lab of Visual Cognitive Computing and Intelligent Vehicle, Xi’an Jiaotong University, Xi’an 710049, China)

†E-mail: jrxue@xjtu.edu.cn

Received Dec. 29, 2016; Revision accepted Jan. 8, 2017; Crosschecked Jan. 10, 2017

Abstract: Most state-of-the-art robotic cars’ perception systems are quite different from the way a human driver

understands traffic environments. First, humans assimilate information from the traffic scene mainly through visual

perception, while the machine perception of traffic environments needs to fuse information from several different kinds

of sensors to meet safety-critical requirements. Second, a robotic car requires nearly 100% correct perception results

for its autonomous driving, while an experienced human driver works well with dynamic traffic environments, in

which machine perception could easily produce noisy perception results. In this paper, we propose a vision-centered

multi-sensor fusing framework for a traffic environment perception approach to autonomous driving, which fuses

camera, LIDAR, and GIS information consistently via both geometrical and semantic constraints for efficient self-

localization and obstacle perception. We also discuss robust machine vision algorithms that have been successfully

integrated with the framework and address multiple levels of machine vision techniques, from collecting training

data, efficiently processing sensor data, and extracting low-level features, to higher-level object and environment

mapping. The proposed framework has been tested extensively in actual urban scenes with our self-developed robotic

cars for eight years. The empirical results validate its robustness and efficiency.
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1 Introduction

Rapid integration of artificial intelligence with

applications has provided some notable break-

throughs in recent years (Pan, 2016). The robotic car

is one such disruptive technology that may enter real

life in the near future, and this is also a good example

of a hybrid artificial intelligence system (Zheng et al.,

2017). A robotic car needs to answer three questions

during all the time of its driving: where it is, where

it is going, and how to go. To answer these ques-

tions, the robotic car needs to integrate three cou-

pled consequential tasks: self-localization, decision
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making and motion planning, and motion control.

Among these tasks, the ability to understand the

robot’s surroundings lies at the core, and the robotic

car’s performance heavily depends on the accuracy

and reliability of its environment perception tech-

nologies including self-localization and perception of

obstacles.

Almost all relevant information required for au-

tonomous driving can be acquired through vision

sensors. This includes but goes well beyond lane

geometry, drivable road segments, traffic signs, traf-

fic lights, obstacle positions and velocity, and obsta-

cle class. However, exploiting this potential of vision

sensors imposes more difficulties than LIDAR, radar,

or ultrasonic sensors. The sensing data of LIDAR,

radar, or ultrasonic sensors involve distance and/or
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velocity, i.e., information necessary for vehicle con-

trol. Nevertheless, camera-based driver assistance

systems have entered the automotive markets (Ul-

rich, 2016). However, the computer vision based ap-

proach for autonomous driving in urban environment

is still an open research issue, since these state-of-the-

art vision technologies are still incapable of providing

the high rate of success demanded by autonomous

driving. Fortunately, recent approaches to scene un-

derstanding using deep learning technologies suggest

a promising future of vision-centered approach for

robotic cars (Hoiem et al., 2015).

In this paper, we propose a vision-centered

multi-sensor fusing framework for the robotic cars’

perception problem, which fuses camera, LIDAR,

and GIS information consistently via geometrical

constraints and driving knowledge. The framework

consists of self-localization and processing of obsta-

cles surrounding the robotic car. At first glance these

two problems seem to have been well studied, and

early works in this field were quickly rewarded with

promising results. However, the large variety of sce-

narios and the high rates of success demanded by

autonomous driving have kept this research alive.

Specifically, integrating computer vision algorithms

within a compact and consistent machine perception

system is still a challenging problem in the field of

robotic cars.

Self-localization is the first critical problem of

the aforementioned challenges. The capability of a

robot to accurately and efficiently determine its po-

sition at all times is one of the fundamental tasks es-

sential for a robotic car to interact with the environ-

ment. Different accuracies and update frequencies of

self-localization are required by various applications

of a robotic car. Taking parking as an example, the

accuracy needed is at the centimeter level, and the

update frequency is about 100 Hz. In contrast, for

routing and guidance, the required accuracy is re-

duced to 10–100 m level and the update frequency

is about 0.01 Hz. To address GPS measurements’

critical problems of low accuracy and being easily

affected, the map-based method becomes one of the

most popular methods for robotic cars, in which one

map is used to improve upon GPS measurements and

to fill in when signals are unavailable or degraded.

In the line of the map-based localization method, an

ideal map should provide not only a geometrical rep-

resentation of the traffic environment, but also some

kinds of sensor-based descriptions of the environment

to alleviate the difficulty of self-localization as well

as of motion planning (Fuentes-Pacheco et al., 2015).

However, traditional road maps for a human driver

cannot be used directly for a robotic car, since it is

composed of evenly sampled spatial points connected

via polylines, with low accuracy, especially in urban

areas, over about 5–20 m. Inevitably, building a high

definition map becomes one of the core competencies

of robotic cars.

Mapping approaches build geometric represen-

tations of environments. They adopt sensor-based

environment description models, which integrate vi-

sual and geometric features and have been designed

in conjunction with Bayesian filters so that the

sensor-based description can be updated over time

(Douillard et al., 2009). Mapping for robotic cars

through local perception information is a challenging

problem for a number of reasons. Firstly, maps are

defined over a continuous space; the solution space of

map estimation has infinitely many dimensions. Sec-

ondly, learning a map is a ‘chicken-and-egg’ problem,

for which reason it is often referred to as the simulta-

neous localization and mapping (SLAM) or concur-

rent mapping and localization problem (Thrun and

Leonard, 2008). More specifically, the difficulty of

the mapping problem can be increased by a collection

of factors including map size, noise in perception and

actuation, perceptual ambiguity, and alignment of

spatial-temporal sensing data acquisition from differ-

ent types of sensors running asynchronously. With a

given map of the traffic environment, self-localization

becomes the problem of determining its pose in the

map.

Another critical problem is the need for high

reliability in processing obstacles surrounding the

robotic car. This guarantees the robotic car’s safety

in driving through real traffic. The robotic car needs

to know positions, sizes, and velocities of the sur-

rounding obstacles to make high-level driving de-

cisions. However, real-time detection and tracking

algorithms relying on a single sensor often suffer

from low accuracy and poor robustness when con-

fronted with difficult, real-world data (Xue et al.,

2008). For example, most state-of-the-art object

trackers present noisy estimates of velocities of obsta-

cles, and are difficult to track due to heavy occlusion

and viewpoint changes in the real traffic environment

(Ess et al., 2010; Mertz et al., 2013). Additionally,
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without robust estimates of velocities of nearby ob-

stacles, merging onto or off highways or changing

lanes becomes a formidable task. Similar issues

will be encountered by any robot that must act au-

tonomously in crowded, dynamic environments.

Fusing multiple LIDARs and radars is an essen-

tial module of a robotic car and of advanced driver

assistance systems. With the improvement of vision-

based object detection and tracking technologies, in-

tegrating vision technologies with LIDAR and radars

makes it possible to make a higher level of driving

decision than previous methods which fuse only LI-

DARs with radars.

In this paper, we summarize our 8-year effort

on a vision-centered multi-sensor fusing approach

to the aforementioned problems, as well as lessons

we have learned through the long-term and exten-

sive test of the proposed approach with our robotic

car autonomously driving in real urban traffic (Xue

et al., 2008; Du et al., 2010; Cui et al., 2014; 2016).

Fig. 1 illustrates the timeline of the robotic cars we

developed for the test of the vision-centered multi-

sensor fusing approach.

2013-201520112009

201620122010

Fig. 1 The timeline of the robotic cars for the long-

term test of the vision-centered multi-sensor fusing

approach

2 Related works

In this section, we present a brief survey of re-

cent works on self-localization, and obstacle detec-

tion and tracking.

2.1 Self-localization

The core problem of self-localization is mapping,

and mapping and localization were initially stud-

ied independently. More specifically, mapping for

robotic cars is realized as a procedure of integrat-

ing local, partial, and sequential measurements of

the car’s surroundings into a consistent representa-

tion, which forms the basis for further navigation.

The key to the integration lies in the joint alignment

of spatial-temporal sensing data from multiple het-

erogenous sensors equipping the robotic car, which

is usually performed off-line.

With a given map, one needs to establish corre-

spondence between the map and its local percep-

tion, and then determines the transformation be-

tween the map coordinate system and the local per-

ception coordinate system based on these correspon-

dences. Knowing this transformation enables the

robotic car to locate the surrounding obstacles of in-

terest within its own coordinate frame—a necessary

prerequisite for the robotic car to navigate through

the obstacles. This means that the localization is ac-

tually a registration problem (Du et al., 2010), and

can be solved via map-matching technologies (Cui

et al., 2014). With its localization in the global map,

the robot can obtain navigation information from

the map. Additionally, the navigation information

can be further used as a prior in verifying the local

perception results, for the purpose of increasing the

accuracy and reliability of the local perception (Cui

et al., 2014; 2016).

Mapping and localization were eventually

known as SLAM (Dissanayake et al., 2001). SLAM

methods are able to reduce the accumulative drift

relative to the initial position of the robotic car by

using landmarks and jointly optimizing over all or

a selection of poses and landmarks. Efficient opti-

mization strategies using incremental sparse matrix

factorization (Montemerlo et al., 2002) or relative

structure representation (Grisetti et al., 2010) have

been proposed to make these algorithms tractable

and scalable. Thus, at a theoretical and concep-

tual level, SLAM is now considered a solved prob-

lem in the case that LIDARs are used to build 2D

maps of small static indoor environments (Thrun and

Leonard, 2008). Comprehensive surveys and tuto-

rial papers on SLAM can be found in the literature

(Durrant-Whyte and Bailey, 2006).

For large-scale localization and mapping,

metric-topological mapping constructs maps that

navigate between places which can be recognized

perceptually (Blanco et al., 2007). A popular rep-

resentation is to use sub-maps that are metrically

consistent, and connect them with topological con-

straints. Generating such a metric-topological map

is based on the reconstruction of the robot path in a
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hybrid discrete-continuous state space, which natu-

rally combines metric and topological maps (Blanco

et al., 2008). The topological graph is usually built

on top of a graph SLAM system, which can be ef-

ficiently optimized even for very large environments

(Konolige et al., 2011). For a robotic car with a

metric-topological map, it navigates locally using lo-

cal metric maps, while the overall planning is formed

on the topological graph. As a consequence, the

metric-topological map can be created and updated

incrementally, and this avoids the computation and

storage burdens of building the whole global metric

map. However, several substantial issues remain in

realizing SLAM solutions practically for large scale,

dynamic, and complex traffic environments and no-

tably in building and using perceptually rich maps

for robotic cars.

To address these aforementioned issues, incor-

porating visual information into the mapping sys-

tems has been attempted. Many such research

efforts are described in a recent survey (Fuentes-

Pacheco et al., 2015). One milestone work, involv-

ing real time SLAM using only monocular vision,

has been achieved, but only for small indoor envi-

ronments with fewer than 100 landmarks (Davison

et al., 2007). Even maps provided by these works

are often in a relative sense, and they make a bidi-

rectional map matching procedure possible, which

not only produces a position and trajectory consis-

tent with the road network but also feeds back in-

formation from the map matching to camera sensor

fusing (Cui et al., 2014). There are many good ex-

amples in this line of thinking. Although significant

improvements have been achieved (Brubaker et al.,

2016), there are still some problems. For example,

many visual SLAM systems still suffer from large ac-

cumulated errors when a large scale environment is

being explored. This leads to inconsistent estimates

of maps as well as map-based localization. Further-

more, the most common assumption of visual SLAM

systems, i.e., the environments to explore are static,

may become invalid since traffic environments usu-

ally contain people and vehicles in motion. Last

but not least, a traffic scene is visually repetitive.

There are many similar textures, such as repeated

architectural elements, green belts, and walls. This

makes it difficult to recognize a previously explored

area.

2.2 Processing obstacles surrounding

Safe autonomous driving needs to know accu-

rate obstacle velocities as well as positions. Remark-

able progress has been achieved in highway traffic sit-

uations and other largely pedestrian-free traffic sce-

narios (Aeberhard et al., 2015). However, an urban

traffic scene with a large number of moving obstacles,

in particular with many pedestrians, bicyclists, and

vehicles, still poses significant challenges for reliable

obstacle detection and tracking. Processing of sur-

rounding obstacles in such scenarios is a largely un-

solved problem, and the problem becomes even worse

in cases where obstacles’ future states required for

high-level decision making and path planning need

to be predicted.

Multi-sensor fusing approaches have become

widely adopted in robotic cars, since no single sen-

sor exists that fulfills the requirements for reliable

obstacle detection and tracking in urban environ-

ments. In most current robotic cars, cameras, LI-

DAR, GPS/INS, and conventional odometry have

been used to integrate as much as possible location

and/or geometric information for the purpose of im-

proving the performance of obstacle detection and

tracking (Cho et al., 2014). Unfortunately, using

multiple heterogeneous sensors increases the com-

plexity of the sensor fusion task, since each sensor

has different characteristics that need to be consid-

ered to combine their results effectively. Since vision

sensors at the moment do not reach the geometric

accuracy of LIDAR, several successful LIDAR based

systems for detection and tracking of moving ob-

stacles have been built for robotic cars, and these

systems work robustly and reliably with several dif-

ferent kinds and configurations of two- and three-

dimensional LIDARs, and demonstrate impressive

performance (Mertz et al., 2013; Darms et al., 2008;

Buehler et al., 2009).

Mertz et al. (2013) presented an elegant formu-

lation of the multi-sensor fusion for obstacle detec-

tion and tracking, and they classified multiple sensor

fusion into three levels, i.e., point level, segment-to-

object level, and object level. The object level treats

each sensor as a standalone system and different sen-

sor systems are combined into one object list. Darms

et al. (2009) proposed an architecture which encap-

sulates all sensor-specific algorithms into a sensor

layer and a fusion layer. For each dynamic object
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hypothesis in the fusion layer, two tracking mod-

els, i.e., the point model and the box model, were

completed according to votes from multiple sensors

detecting the objects. The false alarms and missing

detections are thus dramatically reduced. Unfortu-

nately, almost all robotic cars reported in the liter-

ature still frequently encounter a noisy estimate of

the velocity of obstacles and inadequately anticipate

the motion of the dynamic obstacles. This makes

decision-making and motion planning challenging,

and leads to a large gap between the obstacle avoid-

ance capabilities of human drivers and autonomous

driving.

Vision sensors provide the advantage that in ad-

dition to the scene geometry they deliver rich appear-

ance information as well as obstacle semantics. Ben-

efiting from recent significant improvement in visual

tracking technologies, isolated obstacles or a small

number of obstacles with transient occlusions can be

tracked with acceptable reliability (Ess et al., 2010).

Fusing vision sensors with LIDAR for detection and

tracking of obstacles is proven efficient in improv-

ing the accuracy of estimating the obstacle’s motion

paths and future locations (Held et al., 2016), since

the vision module provides classification and shape

information for the fusion layer, and thus the quality

for model selection, data association, and movement

classification is improved. Cho et al. (2014) extended

and improved the system in Darms et al. (2009) by

incorporating a vision module into the sensor layer.

To address problems of false alarms and wrong as-

sociations, Schueler et al. (2012) represented traffic

environments as model-based objects and an occu-

pancy map. The occupancy map was used to classify

raw data from multiple sensors into a static or dy-

namic state, and the model-based objects were used

to compensate for the position of dynamic objects

on the occupancy map. Even so, several challeng-

ing issues remain, including temporal inconsisten-

cies in appearance and occlusions of obstacles, re-

initialization of tracking, and using minimum prior

knowledge about the tracked obstacle.

3 Self-localization

In this section, we present the building of a hy-

brid metric-topological map in lane-level via fusion

of camera, LIDAR, and GPS trajectory, and then use

the map constructed for self-localization. The work

presented in this section is an extension of our previ-

ous work on self-localization (Cui et al., 2016). The

architecture of the proposed self-localization system

is illustrated in Fig. 2, which is similar to that of

our previous work. The inputs of the system include

a forward-looking camera, an inertial measurement

unit (IMU), a standard GPS receiver, and a digital

map. The system outputs lane detection and a global

localization of the vehicle at the centimeter level. We

first present the map generation method, and then

the implementation of self-localization at the cen-

timeter level. We have made several modifications,

especially in the generation of the road boundary

map, and achieved a more accurate and robust map

compared with that of our previous work (Cui et al.,

2016).

GPS localization

Visual localization

Lane marking 

detection

Map matching

Cross validation

Shape 

registration

Localization 

refining

Road 

shape 

prior

Validated lanes

Vehicle position

Camera

IMU

Digital map

GPS/INS

Fig. 2 Architecture of the proposed self-localization

system

3.1 Generation of road boundary map

Our road boundary map is in a simple, compact,

and point-by-point format, which stores the GPS po-

sitions of both the leftmost and rightmost boundaries

of the road. Map data is stored in the east-north-

upper (ENU) coordinate system. The road shape

prior can then be presented by a sequence of GPS

points after map matching. Additionally, we embed-

ded localization of road intersections, as well as traf-

fic regulation information of lanemarkings including

dashed, solid, yellow, and double yellow, into the

road boundary map for high-level driving decision

making and path planning. Considering the simple

format of our road boundary map, we use a three-

step map generation method.

3.1.1 Step 1: data acquisition and preprocessing

The data used to build a road boundary map

comes mainly from the GPS based vehicle trajec-

tory and the vision-based detection of lanemarkings

collected while the vehicle is driving. The vehicle
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trajectory data was sampled using differential GPS

(DGPS). In practice, as the GPS measurements are

easily affected by trees, buildings, etc., the vehicle

trajectory sampled by DGPS is thus not smooth

enough, and one needs to remove the outliers by us-

ing a road shape model. However, since road shapes

are usually complicated, a high-order complex road

shape model may not be a good choice. We instead

use a piecewise linear model as the road shape model,

and solve it via the classic least-squares algorithm.

Suppose that the GPS based vehicle trajectory

point set is denoted as S = {si}
N
i=1, where si =

(xi, yi). To fit a set of new trajectory data points S

to a line which connects with the previous fitted line

with parameters {a0, b0}, we should make sure the

fitted line crosses the last point (denoted as (x0, y0))

of the prior fitted line when applying the classic least-

squares algorithm. Therefore, the objective function

of the least-squares algorithm for the new line with

parameters {a, b} can be defined as follows:

min
a,b

N
∑

i=1

[yi − (axi + b)]2

s.t. y0 = ax0 + b.

(1)

The optimal parameters of the fitted line model

can be obtained by minimizing the objective function

in Eq. (1), and we have

⎧

⎨

⎩

â =

∑

yixi − x0

∑

yi − y0
∑

xi+y0x0N
∑

x2
i − 2x0

∑

xi+x2
0N

,

b̂ = y0 − ax0.
(2)

With this method, we can remove some outliers of

the GPS point measurements, and obtain a smooth

trajectory.

The lane marking is obtained via a vision based

lane marking detection algorithm we proposed in

Cui et al. (2014). Lanemarking detection has been

greatly covered in the literature of autonomous driv-

ing and in the automotive industry (commercial lane

detection systems). Our lane marking detection sys-

tem integrates the vision based detection of lane

markings and camera pose estimation with a self-

built IMU. The lane markings are modeled as white

bars of a particular width against a darker back-

ground in an input image. Image regions which sat-

isfy this intensity profile can be identified through a

template matching procedure over the inverse per-

spective mapping (IPM) of the input image. A tri-

linear camera calibration method (Li et al., 2004) is

used to guarantee the accurate IPM transformation.

An IMU composed of a fiber optic gyroscope (FOG)

and a speed sensor is then used to associate the lane

marking detections in consecutive time steps.

3.1.2 Step 2: extracting road boundaries

As the width of the road along the vehicle trajec-

tory varies, the estimated rightmost boundary and

leftmost boundary of the road based on the fitted

GPS trajectory may be noisy. To obtain the precise

road boundary, we directly perform a registration be-

tween the fitted vehicle trajectory with the detected

lane markings. First, we divide the vehicle trajec-

tory into different segments according to the points

in the actual intersection, and then use the iterative

closest point (ICP) algorithm (Du et al., 2010) to

register these segments to the corresponding vision

based lane marking detection. Finally, we link the

transformed segments to form a more accurate road

boundary.

More specifically, the vehicle trajectory is trans-

formed to match the lane marking detection with a

rigid transformation. The ICP algorithm is applied

to obtain the rigid transformation, i.e., the rotation

matrix and translation vector that make the vehi-

cle trajectory and the detected lane markings best

matched in terms of the Euclidean distance.

We take the following: two point sets in R
d (d

is the dimension of points and often equals 2 or 3), a

data set of the vehicle trajectory X ≡ {xi}
Nx

i=1, and a

model set of the detected lane marking Y ≡ {yi}
Ny

i=1.

The goal of the rigid registration is to find a rotation

matrix R and a translation vector t, with which the

data setX best aligns with the model set Y . This can

be well formulated as a least-squares (LS) problem

based on the Euclidean distance described as follows:

min
R,t,c(i)∈{1,2,...,Ny}

Nx
∑

i=1

||(Rxi + t)− yc(i)||
2
2

s.t. RTR = Id, det(R) = 1.

(3)

The ICP algorithm iteratively calculates R and

t, and each iteration consists mainly of two steps.

In the first step, correspondence needs to be found

between the data point set and the model set:

min
c(i)∈{1,2,...,Ny}

||(Rk−1xi + tk−1)− yc(i)||
2
2,

i = 1, 2, . . . , Nx,
(4)

where Rk−1 and tk−1 are the solutions of R and t at

the (k − 1)th iteration step, respectively.
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In the second step, the rotation matrix and

translation vector are updated by minimizing the

following function:

min
R,t

Nx
∑

i=1

||Rxi + t− yck(i)||
2
2

s.t. RTR = Id, det(R) = 1.

(5)

The algorithm runs iteratively until the registra-

tion error is small enough or the maximum number

of iterations is reached.

3.1.3 Step 3: generating a multi-lane map

After obtaining the accurate road boundary, we

need to interpolate the road data to make the bound-

ary points point pairs. According to the detected

lane markings, we can estimate the lane width. Ac-

cording to each point pair of the leftmost and right-

most boundaries, we can obtain the number of the

lane by dividing the road width to the lane width.

Finally, we can obtain the global multi-lane map via

the GraphSlam algorithm (Grisetti et al., 2010). The

semantic information of each lane marking is also in-

tegrated into the multi-lane map. With the afore-

mentioned steps, we finally obtain a multi-lane map

illustrated in Fig. 3.

3.2 Self-localization at the centimeter level

The self-localization procedure consists of three

modules: (1) visual localization, (2) GPS localiza-

tion, and (3) cross validation. Both accuracy and

robustness of the final localization are improved

by cross validation of visual localization and GPS

localization.

Visual localization is implemented by integrat-

ing lane marking detection with the camera pose

measurements from an IMU. Based on lane marking

localization in images output by the lane marking de-

tection algorithm, along with camera pose measure-

ments from the IMU, the visual localization module

recovers the position and orientation of the vehicle

within the lane. The road in front of the vehicle is

modeled as a flat surface, which implies that there

is a simple projective relationship between the im-

age plane and the ground plane. The lane detection

is then reduced to the localization of lane markings

painted on the road surface. Varying illumination,

shadow, and occlusions caused by other vehicles on

the lane are three problems addressed in the lane

marking detection algorithm.

The GPS localization outputs filtered GPS po-

sition fixes, which alone cannot recover the posi-

tion of a vehicle with sufficient accuracy to perform

autonomous driving. In this module, we use the

GPS position fixes as an initialization to start a map

matching algorithm (Hillel et al., 2014), which finds

the localization of the vehicle in the digital map.

After the map matching procedure, we obtain a se-

quence of GPS position fixes to represent the shape

of the road on which the vehicle is traveling, which

is denoted as the road shape prior in this study. For

convenience, the road shape prior is simply repre-

sented as two sets of spatially sampled GPS points

corresponding to the two boundaries of the road,

while clothoids have been used widely in the litera-

ture (Buehler et al., 2009). Alternatively, the road

shape prior can be obtained from mobile mapping

data.

The cross-validation module is responsible for

fusing road shape prior, visual localization, and GPS

localization by a shape registration algorithm. The

final localization provides a vehicle position esti-

mate at the centimeter level. This module con-

sists of a shape registration algorithm and a position

Intersection point Intersection point

Road segments between intersections

Segment 1Segment 2Segment 3Segment 4

No lane change Extended lane Turnoff

Fig. 3 The multi-lane map generated via the proposed method
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refining procedure. The shape registration algorithm

validates the detected lanes since the lane mark-

ings detected may contain noisy results. We intro-

duce the road shape prior to address this problem.

More specifically, shape registration is achieved by

an efficient iterative closest point algorithm (ICP),

which measures the similarity between the lane shape

formed by the detected lane markings and the road

shape prior. The position refining procedure can

then correct the GPS position fixes according to

translation output by ICP based shape registration.

The basis of the proposed self-localization

method lies in the fact that the errors in GPS lo-

calization and visual localization are complementary

in nature. On the one hand, GPS position fixes

are inaccurate and at times may be unavailable al-

together. However, the errors in GPS positioning

fixes are bounded. On the other hand, visual lo-

calization technologies generally cannot be used to

localize a vehicle accurately for indefinitely long pe-

riods of time because they do not measure absolute

position. Without an occasional measurement of the

absolute position, the error in localization estimate

using vision technologies alone grows without bound.

Using visual localization in conjunction with GPS lo-

calization can then enhance the overall performance

of the proposed positioning technology.

4 Multi-sensor fusing for obstacle de-
tection and tracking

In this section, we present our vision-centered

multi-sensor fusing approach to the processing of

surrounding obstacles of a robotic car. We first in-

troduce the sensor configuration of our robotic car,

KUAFU-1 (Fig. 4). We then present our pedes-

trian detection via fusion of camera and LIDAR, and

our further considerations of the multi-sensor fusing

approach.

4.1 Sensor configuration and obstacle repre-

sentation model

KUAFU-1 is the robotic car we used for testing

our vision-centered fusing approach. Fig. 4a illus-

trates the robotic car and its sensors. It is equipped

with five LIDARs: two 8-laser IBEO LUX-8Ls in

the front and rear bumpers, two Hokuyo UTMs in

the left and right sides of the rear, and one 64-laser

Velodyne HDL-64E on the roof. KUAFU-1 is also

(a)
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Fig. 4 The robotic car KUAFU-1 (a) and the cov-

erage of each sensor equipped with KUAFU-1 (b)

(References to color refer to the online version of this

figure)

equipped with three millimeter-wave radars: one is

installed in the front bumper, and the other two in

the left and right sides of the rear. The coverage of

each sensor is as illustrated in Fig. 4b. With accu-

rate calibration and temporal alignment, the multi-

sensor system can provide a 360-degree panoramic

view covering the surroundings of the robotic car.

We define three coordinate systems including

camera coordinate system Cc, LIDAR coordinate

systemCl, and vehicle coordinate systemCv (Fig. 5).

Xc and Yc of the camera coordinate system deter-

mine the 2D image coordinate system. During in-

stallation, the transformation between the LIDAR

coordinate system and vehicle coordinate system can

be adjusted to be a pure translation without rota-

tion, which is easily measured and is convenient for

calibration with other sensors. Thus, the 3D LIDAR

data can be readily translated into the vehicle coordi-

nate system. For simplicity, we denote a 3D point in

the vehicle coordinate system as X in the following.

The obstacle representation models are various
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Fig. 5 Three coordinate systems defined for sensors

and the vehicle of KUAFU-1

across sensors. For LIDARs, a detected obsta-

cle is represented as a bounding box denoted as

Obox = (R, v, a, c), where R ≡ (xc, yc, θ,W,L) rep-

resents an oriented rectangular box, (xc, yc) is the

center point of the box, θ is the obstacle’s heading,

W andH are the width and length of the box, respec-

tively, v is velocity, and a is acceleration. In radars, a

detected obstacle is represented as a single point de-

noted as Opoint = (P , v, a, c), where P ≡ (xc, yc, θ)

is an orientation vector, and c is the obstacle’s class

label, taking its value as traffic cone, pedestrian,

truck, motorcyclist, bicyclist, or unknown.

4.2 Calibrating LIDAR with camera

The successful fusion of LIDAR and camera de-

pends heavily on the accuracy of their calibration.

However, accurate camera calibration itself is a dif-

ficult problem in real mobile applications. We come

up with a simple but effective semi-automatic cali-

bration method. Different from the common method

that projects all sensing data into the vehicle coordi-

nate system for further fusion, our vision-centered

approach projects all sensing data into an image

to provide more accurate and robust detection and

tracking, as well as augment the detected obsta-

cles with semantic labels. The proposed calibration

method can estimate both intrinsic and extrinsic pa-

rameters, and this forms a solid foundation for fur-

ther fusion of LIDAR data and image data.

In the vision-centered setting, one hopes to find

a mapping P which can find a given 3D point X with

its corresponding pixel’s location x̃ in the image.

The mapping P can then be represented as

x̃ = αPX , (6)

where x̃ and X are homogeneous representations of

x̃(u, v) and X(x, y, z), respectively, P denotes a 3×4

matrix, and α is a normalization coefficient which

makes the third element of x̃ be 1.

For each pair of Xi and x̃i, PX and x̃ are co-

linear and their cross product equals zero. Thus,

Eq. (6) is written as
⎛

⎝

0
T −XT

i viX
T
i

XT
i 0

T −uiX
T
i

−viX
T
i uiX

T
i 0

T

⎞

⎠

⎛

⎝

p1

p2

p3

⎞

⎠ = 0, (7)

where P = [p1 p2 p3]
T and pi is a 4 × 1 vec-

tor. Since the three rows of the coefficient matrix

in Eq. (7) are in linear correlation, Eq. (7) can be

further simplified as

(

0
T −XT

i viX
T
i

XT
i 0

T −uiX
T
i

)

⎛

⎝

p1

p2

p3

⎞

⎠ = Aip = 0.

(8)

Using several pairs of Xi and x̃i, we can com-

pose a 2n × 12 matrix A. By solving the following

equation with a singular value decomposition (SVD)

algorithm, we can obtain P :

Ap = 0 s.t. ||p|| = 1. (9)

The problem now becomes how to find the corre-

sponding pairs Xi and x̃i. It is quite difficult to find

the corresponding x̃(u, v) with a given X(x, y, z).

We simplify it by assuming z = 0; the mapping now

becomes a homography mapping. We use several

traffic cones as our calibration tool. The calibration

procedure is shown in Fig. 6. First, we put several

traffic cones on a flat ground plane (z = 0) uni-

formly. We then label each cone’s central position

on the ground and its peak in the image, as the yel-

low and green ‘+’ illustrated in Fig. 6a, and record

these coordinates x̃i and x̃j , respectively. The sym-

bol ‘*’ in Fig. 6b indicates the corresponding LIDAR

points, and the symbol ‘◦’ is for the clustering results.

With this setting, each cone has one ‘◦’ label and its

coordinates (x, y) in the vehicle coordinate system.

Since the height of a standard traffic cone is about

0.65 m, we can determine two corresponding sets of

X and x̃ manually. One set is x̃i and Xi(x, y, 0),

and the other is x̃j and Xj(x, y, 0.65). According to

Eq. (8), we denote them as A1 and A2 to compose

A as [AT
1 AT

2 ]
T, and we then obtain Eq. (9). The

green symbol ‘+’ in Fig. 6a is the mapping result of

LIDAR data Xj .

In general, we cannot recover the 3D geomet-

rical structure with a single image alone. However,
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Fig. 6 The calibration setting for fusing camera and

LIDAR with traffic cones: (a) manually labeled points

‘+’ in the image; (b) corresponding LIDAR data

points and clustering results (References to color re-

fer to the online version of this figure)

a special case occurs with all points on a ground

plane. For a point on the ground plane X(x, y, 0, 1),

the third column of P is useless, and the mapping in

Eq. (6) can be simplified as

⎛

⎝

u

v

1

⎞

⎠ = αH

⎛

⎝

x

y

1

⎞

⎠ , (10)

where H is a full rank matrix, which is composed by

the first, second, and fourth columns of P .

4.3 Pedestrian detection via fusing LIDARs

and cameras

In this section, we present the method which

fuses LIDARs and cameras to improve the accuracy

of pedestrian detection. The pedestrian detector we

chose in this study is based on the object detection

method proposed in Dollár et al. (2014), since it pro-

vides an efficient image feature computation mecha-

nism, and the pedestrian detector is reported as be-

ing successful in several public pedestrian data sets.

However, we found false detections frequently when

using it in a real urban traffic environment.

4.3.1 Geometrical verification

We reduce the false alarm rate of the pedestrian

detector via fusion due to two observations: (1) The

ground is flat, and pedestrians are on the ground.

(2) The location, especially the bottom edge of the

bounding box of the pedestrian, is usually accurate.

Thus, we can use the prior knowledge of a pedes-

trian’s height to remove some false detection from

visual detection. We denote the center of the bot-

tom edge of the bounding box as (ug, vg), and the

distance of the detection can be easily calculated ac-

cording to H−1 and (ug, vg). Since the pitch angle

of the camera is θz = 0.58◦ ≈ 0◦, we can estimate

the height H of the pedestrian according to pinhole

imaging theory:

H =
hx

f/mx

, (11)

where h is the height estimated in the image, x the

x-axis component for the pedestrian’s position in the

camera coordinate system, f the focal length of the

camera, and mx the pixel size. If the estimated H

does not fall into the height range predefined, the

detection can be discarded as a false detection. How-

ever, sometimes H may be wrongly calculated due

to inaccurate detection of x.

To improve the robustness, we use LIDAR mea-

surements instead to estimate x, i.e., x = X − ∆d

(the rotation matrix between camera coordinate and

LIDAR coordinate is almost an identity matrix), and

∆d = 1.7 m. As illustrated in Fig. 7, the symbol ‘+’

indicates the LIDAR data mapped onto the image,

the red and yellow boxes are the original detections,

and the red box is the false detection found by this

method. The pedestrian’s LIDAR data is searched

as follows: for a box (x, y, w, h), the search region

of the image is also a rectangle (x, y + h − δ, w, 2δ),

where δ is the height threshold for a search rectangle.

We use (ug, vg) to search the nearest LIDAR data,

and take the data as the pedestrian’s data.

Fig. 7b illustrates the non-maximum suppres-

sion (NMS) of the original detection results. Fig. 7c

shows the results of false alarm filtering via height

constraints. Fig. 7d shows the NMS of the detection

results after removal of false detections.

4.3.2 False alarm removal by overlapped area

The most frequently used NMS approach

chooses the bounding box with the highest score as
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(a) (b)

(c) (d)

Fig. 7 Pedestrian detection results: (a) original de-

tections; (b) NMS (nonmaximal suppression) with-

out false alarm removal; (c) false alarm filtering via

height constraints; (d) NMS with false detection re-

moval. The boxes in yellow indicate the detections,

and boxes in red indicate the false detection which can

be removed via geometric cues (References to color

refer to the online version of this figure)

the detection result if multiple boxes are overlapped.

However, we find that a false alarm occurs due to

small regions of a pedestrian, as the yellow boxes

shown in Fig. 7b. The geometrical verification rule

for removing false alarms is under an assumption

that the small boxes are false alarms if they overlap

with a large box. The rule can be expressed as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

α =
area(Rs ∩Rl)

area(Rs)
,

β =
area(Rs ∩Rl)

area(Rl)
,

(12)

where Rs and Rl are the small box and the large

box, respectively, and area(·) denotes the area. We

use α > 0.9 && β < 0.6 as a criterion for taking a

small box as a false detection.

4.3.3 Reducing the search region

Most of the pedestrian detection methods spend

too much time on feature extraction, which needs to

calculate a multi-resolution representation of the im-

age to meet scale invariance. The pedestrian detec-

tor proposed in Dollár et al. (2014) needs 322 ms to

detect a 1292× 964 image, in which 285 ms is spent

on feature extraction. To meet the real-time require-

ment, we need to reduce the search region so that

only pixels belonging to obstacles are left by finding

the pixels corresponding to LIDAR data.

We can make a general assumption that a LI-

DAR data X = (x, y, 0) belongs to an obstacle in

the front of the robotic car, and in this case y = 0.

For a given x, the true value of y falls into an interval

defined as (y − x tan(θ/2), y + x tan(θ/2)), where θ

denotes the LIDAR’s angle resolution (0.8◦ for the

LIDAR used in the experiments). By taking this un-

certainty into account, the pixels corresponding to

LIDAR data (Fig. 8a) are determined via Eq. (10).

They can be extended to those as shown in Fig. 8c.

The image resolution on the x-axis is nonlinear with

respect to a given y (Fig. 8b). We can approximately

learn this nonlinear mapping off-line empirically, and

implement it with a lookup table. The image resolu-

tion on the y-axis is very small, and thus we do not

need to consider it.

In practice, by assuming that the highest pedes-

trian is 2.1 m tall, we can obtain corresponding h

pixels in the image according to Eq. (11). As shown

in Fig. 8a, the green bars are points with a height of

2.1 m in the image. Considering the inaccuracy of

calibration and slight up and downs of the ground, we

add margins to these bars according to the learned

lookup table. A search region generated with this

method is illustrated in Fig. 8c. To further speed

up feature calculation, connected component analy-

sis is performed, and the resulting regions with their

bounding box are illustrated in Fig. 8d. With such

a simple process, the detection can be sped up by

several times.

4.4 Further considerations for multi-sensor

fusion

In addition to pedestrian detection, KUAFU-

1 is capable of perceiving other traffic participants

which include, but are not limited to, traffic cones,

vehicles, and bicyclists. We summarize some com-

mon considerations in the following.

4.4.1 Fused obstacle representation

A unified representation model regardless of sen-

sors forms the basis for multi-sensor fusion, and it

should consist of essential information such as shape,

kinematic, and semantic information, and it is con-

veniently represented as F = (Ofusion, s, c). Ofusion

can be the following types: (a) box obstacle Obox,

(b) box-pair obstacle Oboxpair as explained in Sec-

tion 4.4.3, and (c) point obstacle Opoint. s is the
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Fig. 8 The result of detection area reduction: (a)

LIDAR points are projected onto the image with a

height of a pedestrian (blue and yellow points are

from the second and the third layers of LIDAR, re-

spectively); (b) image resolution for different range

LIDAR points (from green to red, the curves corre-

spond to fixed y-component of LIDAR points with

y = {−10,−5, 0, 5, 10}); (c) the results after adding

the margins; (d) results after connected component

analysis (References to color refer to the online ver-

sion of this figure)

state vector which indicates the state of detection

for each sensor. For front obstacles, the state vector

is defined as s ≡ [slux shdl sradar scam]
T. For ex-

ample, slux = 1 means the obstacle is detectable by

LUX, slux = 0 means the obstacle cannot be detected

by LUX. The state vector is important for determin-

ing the existence of an obstacle. c is the obstacle’s

class label, taking its value as traffic cone, pedestrian,

truck, motorcyclist, bicyclist, or unknown.

4.4.2 Spatial and temporal alignment

To detect an obstacle via multi-sensor fu-

sion, the spatial-temporal alignment of sensing data

should be considered first. With calibration param-

eters tuned at raw sensing data (LIDAR points or

image pixels), the obstacle measurements from dif-

ferent sensors are transformed into the vehicle coor-

dinate system. For each individual sensor, an obsta-

cle detection and tracking algorithm is implemented

subsequently to formulate a track list. The temporal

alignment is used to compensate for the motion of

obstacles due to sensors running asynchronously.

4.4.3 Data association

There exist two kinds of data association, i.e.,

box-to-box association for obstacles from different

LIDARs, and point-to-box association for obstacles

from LIDAR and radar respectively. For simplifica-

tion, box-to-box association is performed first, and

the output is a box/box-pair obstacle. The box/box-

pair obstacle is subsequently associated with point

obstacle from radar.

For two box obstacles O0 = (R0, v0, a0) and

O1 = (R1, v1, a1) from different LIDARs (R0

and R1 are oriented rectangular boxes from two

LIDARs, respectively), the intersection-over-union

(IOU) measure is defined as

IOU(R0,R1) =
area(R0 ∩R1)

area(R0 ∪R1)
. (13)

The IOU measures the similarity of the two boxes:

value 1 means perfect match, value 0 means that two

boxes are either not overlapped or matched. The

association rule here is simple: IOU(R0,R1) ≥ δ,

where δ is the threshold empirically determined (in

our experiments, it is set as 1.0). If two boxes are

associated successfully, they comprise a box-pair ob-

stacle denoted as Oboxpair = {O0,O1,R}, where

R ≡ R0 ∪ R1 is the bounding box containing R0

and R1. R is useful for ROI generation for obstacle

classification.

For box obstacle O0 = (R0, v0, a0) and point

obstacle O1 = (P1, v1, a1), the distance between box

obstacle and point obstacle is calculated as

d =

⎧

⎨

⎩

0, P1 ∈ R0,

min
i=1,2,3,4

(‖P1, li‖), P1 /∈ R0,
(14)

where P1 ∈ R0 denotes that the radar point is

within the box, and vice versa. li is one of the

four edges of the box R0. For a box-pair obstacle

Op = {O0,O1,R}, the distance d is calculated in
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the same way except that R0 is replaced by R. The

association rule is d ≥ τ , where τ is a threshold

and determined empirically (it is set as 1.0 in our

experiments).

The radar can measure the velocity of a dynamic

obstacle accurately. Thus, the velocity and acceler-

ation of a box/box-pair obstacle should be replaced

with that of the point obstacle in the case that the

point obstacle is associated with the box/box-pair

obstacle.

4.4.4 State estimation

Finally, we use a multi-hypothesis-tracker (Xue

et al., 2008) to estimate the state of the fused

obstacle.

In our setting, obstacles from different sensors

are treated as obstacle measurements. Obstacles in

the real traffic road environment are sparse, and thus

the multi-object tracking problem can be well di-

vided into single-object tracking problems. With the

data association rules aforementioned, the fused ob-

stacle state can be easily estimated via a Bayesian

filter.

5 Experiments and discussions

In the following, we demonstrate the effective-

ness of the vision-centered mapping and obstacle de-

tection method.

5.1 Mapping and localization

To demonstrate the performance of our method,

we test our algorithms on the robotic car KUAFU-1

driving in a real road environment. First, we evenly

sample a sequence of GPS positions from a vehicle

trajectory (Fig. 9a). The sampled data is then fitted

into many continuous line segments via the piecewise

linear model presented in Section 3.1.1.

Second, we use the ICP algorithm to register the

vehicle trajectory to the detected lane markings, and

the results are shown in Fig. 9b. It shows that the

traveling track points are perfectly aligned with the

detected lane data.

Finally, by mapping the road boundary and the

lane markings, we obtain a global map of all the lane

as well as lane markings. Figs. 10a and 10b present a

map of the real road environment using our method.

To validate the performance of our mapping method,
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Fig. 9 The fitting result of the vehicle trajectory (a)

and the registration result of the vehicle trajectory

and detected lane (b)

the corresponding Google Earth map of the road is

presented in Fig. 10c for comparison.

5.2 Calibration

Based on Eq. (9) and SVD decomposition, we

obtain

P =

⎛

⎝

−340.20 1366.47 −2.56 −6.46

−166.25 52.95 1338.32 −2087.32

−0.6267 0.04 0.011 1.00

⎞

⎠ .

According to the method in Hartley and Zisserman

(2004), P = K[R| −RC̃ ], where R and RC̃ denote

rotation and translation of the camera coordinate

system with respect to the vehicle coordinate system,

respectively, and K denotes the intrinsic parameters

of the camera, and these form an upper triangular

matrix:

K =

⎛

⎝

αz sd z0
0 αy y0
0 0 1

⎞

⎠ , (15)

where αz and αy are the scale factors in the Zc and

Yc directions, respectively (Fig. 4b), sd the distortion
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parameter, and (z0, y0)
T the principal point. Using

RQ decomposition, we obtain

K =

⎛

⎝

2135.7 51.39 679.46

0 2126.51 307.20

0 0 1

⎞

⎠ ,

C̃ =(1.65 0.42 1.75),

θx = 3.44◦, θy = 2.28◦, θz = 0.58◦,

where θi denotes the rotation angle turning around

the i-axis. The camera we used has a focal length

f = 8 mm and a pixel size mx = 3.75 µm,

and we can estimate the intrinsic parameters as

αz = αy = f/mx = 2133. The translation vec-

tor C̃ = (1.63, 0.45, 1.74) can be measured directly.

The rotation angles are difficult to measure directly,

can be estimated only by visual inspection, and are

all almost 0◦. The calibration result is presented in

Table 1. We can find that the calibration parameters

estimated are almost as accurate as those from the

camera calibration method in Zhang (2000).

5.3 Pedestrian detection

We collected a short video using our robotic car

and label pedestrians manually per frame, and use

it as the ground truth. To validate the robustness of

the fusion method, we test it in a real road environ-

ment with uneven ground.

There are 427 labeled pedestrians appearing in

the video. The thresholds are set as in Table 2. The

precision-recall curves with different pedestrian de-

tection methods are plotted as shown in Fig. 11a.

The ORG denotes the original detection results,

GEO for the fusing results in which only image is

used, and LDR for fusing results which using both

LIDAR data and image. It shows that LDR can in-

crease the precision up to 10% in case of recall > 0.7,

compared with ORG. In Fig. 11b, the OLP denotes

the results when using an overlapped area to filter

out the false alarm. Obviously, LDR plus OLP in-

creases precision slightly, while GEO plus OLP de-

creases precision heavily. This is because OLP can-

not cope with an uphill road environment.
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Fig. 10 The results of the multi-lane mapping: (a)

global multi-lane map obtained by our method; (b)

magnification of the local multi-lane map; (c) corre-

sponding road in Google Earth, where the red points

are robotic car’s trajectory for generating the global

multi-lane map in (a) and the yellow circle indicates

a coarse position of the local multi-lane map in (b)

(References to color refer to the online version of this

figure)

Table 1 Calibration results of different methods

Method αz s Z0 y0 C̃ θ

Measured 2133 0 *** *** (1.63, 0.45, 1.74) (0.00, 0.00, 0.00)

Zhang (2000) 2303 0 673 622 *** ***

Ours 2135 51.39 679 307 (1.65, 0.42, 1.75) (3.44, 2.28, 0.58)

‘***’ means that the parameter cannot be estimated via the corresponding method
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Table 2 Threshold setting of mentioned methods

Method Threshold

Pedestrian’s height interval [0.8, 2.1] m

LIDAR’s search region δ = 40

False alarm reduction α > 0.9 && β < 0.6

(a)

(b)

LDR
LDR+OLP
GEO
GEO+OLP

LDR

GEO

ORG

0.55
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.60 0.65 0.70

Precision

Precision

0.75 0.80 0.85 0.90

0.55 0.60 0.65 0.70 0.75 0.80 0.900.85 0.95

R
e

c
a

ll
R

e
c
a

ll

Fig. 11 Precision-recall curves for LDR, GEO, and

ORG (a) and precision-recall curves after adding the

OLP method (b) (References to color refer to the

online version of this figure)

The proposed method may not work as expected

under some extreme situations. Fig. 12 presents a

failure of our method. The inaccurate mapping of

LIDAR data is caused by uphill. In the case that

there is a steep uphill, pedestrian detection may be

discarded completely, just as illustrated in Fig. 12.

5.4 Multi-sensor fusion

To test the effectiveness of the multi-sensor fu-

sion algorithm, KUAFU-1 was autonomously driving

in the campus of Xi’an Jiaotong University, China,

to collect data. The fusion results in Fig. 13 show

that two pedestrians and a car are correctly detected

by fusion of camera, LIDAR, and radar. The two

small images in the second row of Fig. 13 show that

multiple obstacles (from either LIDAR or radar) are

Fig. 12 A scenario in which the pedestrian in the

front was discarded incorrectly because the road is

uphill, which causes an incorrect mapping of LIDAR

data to the image (References to color refer to the

online version of this figure)

Fig. 13 The effect of the multi-sensor fusion algorithm

on a campus environment. The yellow and cyan boxes

are pedestrians and the car detected via camera and

LIDAR/radar, respectively, the red circle is a point

obstacle returned by radar, and the blue box is a

box obstacle returned by LIDAR (References to color

refer to the online version of this figure)

projected into the same region of the image. Our

multi-sensor fusion method successfully dealt with it

by using prior information including: (1) the size of

the bounding box of the obstacle is bounded, and (2)

range information and class information are assigned

only to the nearest obstacle.

6 Conclusions

In this paper, we presented a vision-centered

environment perception framework for robotic cars

driving in urban environments. We applied machine
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vision algorithms as the core of the environment per-

ception system, and proposed algorithms including

vision-centered mapping and localization, as well as

vision-centered obstacles detection and recognition.

We found that the proposed vision-centered

multi-sensor fusing method works well through a

long-term test based on the robotic car KUAFU-1

autonomously driving in various real urban traffic

environments. We showed the performance of the

environment perception by integrating machine vi-

sion technologies with LIDAR and radar, as well as

our efforts in making most of the camera system in

robotic cars. We believe that the camera is the ideal

sensor for a robotic car.

We demonstrated the performance of the vision-

centered multi-sensor fusing approach from two as-

pects. The first aspect is vision-centered multi-

sensor fusing for self-localization. We successfully

constructed the hybrid map by a vision-centered

mapping method. The hybrid map indeed improves

the accuracy of self-localization from the meter level

to the centimeter level in a real urban traffic envi-

ronment. It also shows that using the constructed

hybrid map can greatly improve the perception of

lane markings, road shapes, traffic lights, and ob-

stacles. The second aspect is vision-centered multi-

sensor fusing for processing of obstacles surround-

ing the robotic car. Experimental results showed

that both accuracy and robustness of obstacle detec-

tion and tracking have been improved greatly by our

method.
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