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Abstract

The human epigenome has been experimentally characterized by thousands of measurements for every basepair in

the human genome. We propose a deep neural network tensor factorization method, Avocado, that compresses this

epigenomic data into a dense, information-rich representation. We use this learned representation to impute

epigenomic data more accurately than previous methods, and we show that machine learning models that exploit

this representation outperform those trained directly on epigenomic data on a variety of genomics tasks. These tasks

include predicting gene expression, promoter-enhancer interactions, replication timing, and an element of 3D

chromatin architecture.

Background
The Human Genome Project, at its completion in 2003,

yielded an accurate description of the nucleotide sequence

of the human genome but an incomplete picture of how

that sequence operates within each cell. Characteriz-

ing each basepair of the genome with just two bits of

information—its nucleotide identity—yielded many criti-

cal insights into genome biology but also left open a host

of questions about how this static view of the genome

gives rise to a diversity of cell types. Clearly, answering

these questions required gathering more data.

In the ensuing 15 years, driven by advances in next-

generation sequencing, the research community has

developed many assays for characterizing the human

epigenome. These include bisulfite sequencing for mea-

suring methylation status, DNase-seq and ATAC-seq for

measuring local chromatin accessibility, ChIP-seq for

measuring protein binding and histone modifications,

RNA-seq for measuring RNA expression, and Hi-C for
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measuring the 3D structure of the genome. These assays

can quantify variation in important biological phenom-

ena across cell types. Accordingly, large consortia, such

as ENCODE, Roadmap Epigenomics, IHEC, and GTEx,

have run many types of assays in many human cell types

and cell lines, yielding thousands of epigenomic measure-

ments for each basepair in the human genome. For exam-

ple, as of May 1, 2018, the ENCODE project (http://www.

encodeproject.org) hosts >10, 000 assays of the human

genome.

Although these data have deepened our understanding

of genome biology, we are still far from fully understand-

ing it. Gene annotation compendia such as GENCODE

are now quite mature, but cell-type-specific annotations

of chromatin state remain only partially interpretable [1–

3]. Other areas of active research include predictive mod-

els of gene expression, promoter-enhancer interactions,

polymorphism impact, replication timing, and 3D confor-

mation (reviewed in [4]).

One part of the analytical challenge arises from the

complexity of the genome and its interactions with other

physical entities in the cell, but another part stems from

biases and noise in the epigenomic data itself. For exam-

ple, many such data sets exhibit position-specific biases,
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reflecting variation in local chromatin architecture or GC

bias in the sequencer. Furthermore, no high-throughput

assay is perfectly reproducible, and run-to-run differences

in the same experiment may reflect either biological vari-

ation in the cells being assayed or experimental variance

arising from sample preparation or downstream steps in

the protocol. Finally, many epigenomic assays are highly

redundant with one another, and many cell types are

closely related to each other, leading to highly redundant

measurements.

To address these challenges, we aim to produce a rep-

resentation of the human epigenome that is dense and

information-rich. Ideally, this representation will reduce

redundancy, noise, and bias, so that variance in the rep-

resentation corresponds to meaningful biological differ-

ences rather than technical artifacts. Computationally,

this goal can be framed as an embedding task, in which

we project the observed collection of thousands of epige-

nomic measurements per genomic position down to a

low-dimensional “latent space.” Our aim is to induce a

latent representation of the genome that can be used in

place of epigenomic measurements as input to machine

learning models trained to perform a variety of genomic

predictive modeling tasks.

To solve this embedding task, we combine two mathe-

matical techniques—tensor factorization and deep neural

networks. Epigenomic data sets can be represented as a

tensor with three orthogonal axes: genomic position, cell

type, and assay type. Tensor factorization is thus a natu-

ral framework for distilling this data into an informative

latent representation [5]. The deep neural network aug-

ments this process with the ability to encode nonlinear

relationships among the factors and to capture dependen-

cies along the genomic axis at various scales.

In order to learn a latent representation of human epigeno-

mics, we train our model, which we call “Avocado,” to per-

form epigenomic imputation. This task involves computa-

tionally “filling in”gaps in a tensor of epigenomic data, where

gaps correspond to experiments that have not yet been

run. Using data from the Roadmap Epigenomics Con-

sortium, we demonstrate that Avocado yields imputed

values that are more accurate than those produced by

either ChromImpute [6] or PREDICTD [5], as measured

by multiple performance measures based on MSE. Avo-

cado’s imputed data also captures relationships between

pairs of histone marks more accurately than these previ-

ous approaches. For example, Avocado accurately predicts

that activating marks in a promoter region are typically

mutually exclusive with repressive marks and are coupled

with a higher transcription rate of the associated gene.

Our primary hypothesis is that Avocado’s learned repre-

sentation will be generally useful in the context of a variety

of predictive modeling tasks. The idea that representa-

tions can be learned in one setting and then used as input

for other settings is similar to that of word2vec [7] and

is an example of transfer learning. To test this hypothe-

sis, we consider the tasks of predicting gene expression,

promoter-enhancer interaction [8], replication timing,

and elements known as “frequently interacting regions”

(FIREs), defined on the basis of Hi-C data [9]. For each

task, we train a supervised machine learning model on

each of seven alternate sets of features—experimentally

collected epigenomic measurements for the cell type of

interest, the three sets of imputed epigenomic assays for

the cell type of interest, the latent representation learned

by PREDICTD, the latent representation learned by Avo-

cado, or the experimentally collected epigenomic mea-

surements from all cell types and assays contained within

the Roadmap compendium.We include the entirety of the

Roadmap compendium as a baseline because, while com-

putationally expensive to train machine learning models

on, it contains the full set of information used to learn

the Avocado latent representation. In almost every case,

we observe that models trained using Avocado’s learned

latent representation outperform models trained directly

on either the primary or the imputed data for the cell type

of interest. In those remaining cases, the performance of

models trained using Avocado’s learned latent representa-

tion is similar to models trained using either the primary

or the imputed data for the cell type of interest. Notably,

the models that utilize the Avocado latent representation

outperform those that utilize the PREDICTD latent repre-

sentation in every cell type for predicting gene expression

and FIREs. However, we notice that the use of the full

Roadmap compendium proves to be a surprisingly diffi-

cult baseline to beat and that it also consistently outper-

forms using either the primary or the imputed data from a

cell type of interest. When models trained using the Avo-

cado latent factors are compared to those trained using

the full Roadmap compendium, there are some contexts in

which models trained on the Avocado latent factors per-

form best and some cases where models trained on the

Roadmap compendium perform best. These results sug-

gest the broad utility of Avocado’s approach to learning

a latent representation of the genome and that this util-

ity is derived in part from compressing epigenomic assay

measurements from all cell types at each genomic posi-

tion, instead of only a single cell type. Additionally, our

results suggest that the process used to learn a latent rep-

resentation can affect their utility and that our approach

yields a more informative representation than the simpler

approach adopted by PREDICTD.

Lastly, we use feature attribution methods to under-

stand the Avocado model. We find that the genomic

latent factors encode most of the “peak-like” structure

of epigenomic data, while the cell type and assay latent

factors serve mostly to sharpen or silence these peaks

for a specific track. This observation suggests that the
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latent representation encodes a rich representation of the

functional landscape of the human epigenome.

Results
Avocado employs multi-scale deep tensor factorization

To produce a latent representation of the genome, we

began with the tensor factorization model employed by

PREDICTD. In this model, the 3D data tensor is mod-

eled by three 2D matrices of latent factors, corresponding

to cell types, assay types, and genomic positions (Fig. 1a).

PREDICTD combines these latent factors in a straight-

forward way by extracting, for each imputed value, the

corresponding rows from each of the three latent fac-

tor matrices and linearly combining them via general-

ized dot product operations. Avocado improves upon this

approach in two significant ways.

First, Avocado generalizes PREDICTD so that the rela-

tionship between the data and the latent factors is non-

linear, by inserting a deep neural network (DNN) into

the architecture in place of the generalized dot product

operation (Fig. 1b). Note that similar “deep factorization”

methods have been proposed previously [10, 11]; how-

ever, Avocado differs from these methods in an important

way: rather than point-multiplying the three pairs of latent

factors and putting the resulting vectors through a DNN,

Avocado instead concatenates the three latent factor vec-

tors for direct input to the DNN. This more general

approach enables Avocado to embed information about

cell types, assay types, and genomic positions into latent

spaces with different dimensionalities.

The concatenation also enables Avocado’s second

improvement relative to PREDICTD, namely, that the

model adopts a multi-scale view of the genome. Avo-

cado employs three sets of latent factors to represent the

genome at different scales: one set of factors are learned

for each of the 115,241,319 genomic coordinates at 25-bp

resolution, another set are learned at 250-bp resolution,

and a final set are learned at 5-kbp resolution. These

three length scales represent prior knowledge that impor-

tant epigenomic phenomena operate at fine scale (e.g.,

transcription factor binding), at the scale of individual

nucleosomes, and at a broader “domain” scale. Further-

more, by learning the genomic representations at multiple

scales, Avocado’s genomic latent space can employ far

fewer parameters than PREDICTD, requiring only ∼ 3.4

billion parameters instead of ∼ 11.5 billion to model each

position along the genome. In total, Avocado requires only

∼ 3.7 percent of the ∼ 92.2 billion parameters employed

by PREDICTD’s full ensemble of eight tensor factorization

models.

Acritical step indeveloping amodel like Avocado involves

selecting an appropriate model topology. Avocado’s model

(see the “Methods” section) has seven structural hyper-

parameters: the number of latent factors representing cell

types, assay types, and the three scales of genomic posi-

tions, as well as two parameters (number of layers and

Fig. 1 The Avocado deep tensor factorization approach. a A collection of epigenomic data can be visualized as a 3D tensor (blue), in which some

experiments (white cells) have not yet been performed. Avocado models the tensor along three orthogonal axes, learning latent factors (gray) that

represent the cell types (in orange, with 32 factors each), the assay types (in purple, with 256 factors each), and the genomic axis (in red, with 25, 40,

and 45 factors at each of the three resolutions). b During the training process, the respective slices from these three axes corresponding to the

location of the training sample in the tensor are concatenated together and fed into a neural network comprised of two hidden dense layers each

with 2048 neurons to produce the final prediction (in green)
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number of nodes per layer) for the deep neural network.

To select these values, we used random search over a

grid of hyperparameters, selecting the set that performs

best according to the MSE on a validation set when con-

sidering the ENCODE Pilot Regions, a selected 1% of

the positions in the human genome (Additional file 1).

The results of this analysis suggest that, among the seven

hyperparameters, the two that control the size of the

deep neural network are the most important, with Avo-

cado performing best with 2 layers and 2048 neurons

per layer (Additional file 1: Fig. S2). We also found that

using “drop-out,” a form of regularization that involves

randomly skipping over some model parameters at each

training iteration, significantly boosts Avocado’s perfor-

mance (Additional file 2: Fig. S1).

Avocado imputes epigenomic tracks more accurately than

prior methods

We began our analysis of the Avocado latent represen-

tation by measuring its ability to impute epigenomic

assays, comparing the overall accuracy of Avocado, as

measured by mean squared error (MSE), to that of

ChromImpute and PREDICTD. To this end, we evalu-

ated all three methods on 1014 tracks of epigenomic

data from the Roadmap Epigenomics project. Imputa-

tions from Avocado and PREDICTD were made using a

fivefold cross-validation approach where the folds used

for Avocado were the same as those used for PRE-

DICTD. ChromImpute used leave-one-out validation. In

each case, signal values across the entire genome were

used either for training or for testing. When considering

the full genome, we first evaluated the three approaches

using three performance measures originally defined by

Durham et al. [5]: MSEglobal measures the MSE on the

full set of positions; MSE1obs measures the MSE on the

top 1% of the positions according to ChIP-seq signal; and

MSE1imp measures the MSE on the top 1% of the posi-

tions according to the imputed signal. While Avocado

and PREDICTD do equally well according to MSEglobal

(unadjusted two-sided paired t test p value = 0.451),

Avocado outperforms PREDICTD on both MSE1obs (p

value = 9.13e−6) and MSE1imp (p value = 2.60e−10)

(Table 1). This observation is consistent with the observa-

tion by Durham et al. that PREDICTD may systematically

underpredict signal values, allowing it to score well on

regions of low signal but achieving lower accuracy on

peaks. Conversely, ChromImpute performs the best on

MSE1obs (Avocado/ChromImpute p value = 2.37e−22,

PREDICTD/ChromImpute p value = 2.85e−12) but the

worst onMSE1imp, suggesting that it may over-call peaks.

Additionally, Ernst and Kellis proposed six other evalu-

ation performance measures, which show similar trends

as the MSE1obs metric (Additional file 2: Fig. S2). We

then focused our evaluation on regions of particular

Table 1 Evaluation of ChromImpute, PREDICTD, and Avocado

MSE- Global 1obs 1imp Prom Gene Enh

ChromImpute 0.113 0.941 1.09 0.325 0.149 0.316

PREDICTD 0.100 1.76 0.897 0.258 0.129 0.267

Avocado 0.100 1.66 0.845 0.249 0.130 0.260

Six performance measures are reported, reflecting MSE of different subsets of

genomic positions. The best result for each metric is in boldface and corresponds to

an adjusted two-sided paired t test p value < 0.01 when compared to both other

approaches. For MSE-global and MSE-Gene, both PREDICTD and Avocado are

bolded because the difference between the two is not statistically significant, i.e.,

has a p value > 0.01

biological interest by implementing three more perfor-

mance measures: MSEProm, MSEGene, and MSEEnh,

which measure the MSE of the imputed tracks across all

promoter regions, gene bodies, and enhancers, respec-

tively (Table 1). We found that Avocado outperforms the

other two methods at MSEProm (Avocado/ChromImpute

p value = 3.98e−32, Avocado/PREDICTD p value =

8.73e−05) and MSEEnh (Avocado/ChromImpute p value =

1.72e−30, Avocado/PREDICTD p value = 1.50e−04),

while yielding similar performance to PREDICTD on

MSEGene (p value = 0.875). Taken together, these perfor-

mance measures suggest that Avocado is able to impute

signal well both across the full genome and also at biologi-

cally relevant areas (Additional file 2: Table S1, Additional

file 3).

All six of the performance measures listed in Table 1

consider each epigenomic assay independently at each

genomic position. Empirically, however, many of these

assays exhibit predictable pairwise relationships. For

example, the activating mark H3K4me3 and the repres-

sive mark H3K27me3 tend not to co-localize within

a single promoter region. To measure how well the

imputation methods capture such pairwise relationships,

we quantitatively evaluated three specific pairwise rela-

tionships: negative correlation between H3K4me3 and

H3K27me3 in promoter regions, positive correlation

between H3K36me3 and RNA-seq in gene bodies, and

lack of correlation between H3K4me1 and H3K27me3 in

promoter regions. In addition, we considered two pair-

wise relationships between assays that occur in a pro-

moter and the corresponding gene body: positive corre-

lation between H3K4me3 in promoters and H3K36me3

in the corresponding gene bodies, and the opposite for

H3K27me3 and H3K36me3. For each pair of assays, we

evaluated how consistent the imputed tracks are with

the empirical relationship between the assays (Additional

file 4). Across all these evaluations, we found that Avo-

cado performed the best at reconstructing the pairwise

relationship by between 2.73 and 39.6% when compared

to ChromImpute and between 2.89 and 6.64% when com-

pared to PREDICTD, with PREDICTD typically coming

in second and ChromImpute coming in last.
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We hypothesized that a primary source of error for all

three imputation methods comes from the difficulty in

predicting peaks that occur in some cell types but not oth-

ers. Accordingly, for each assay, we segregated genomic

positions into those for which a peak never occurs, those

in which a peak always occurs (“constitutive peaks”), and

those for which a peak occurs in some but not all cell

types (“facultative peaks”). Intuitively, we expect an algo-

rithm to be able to predict non-peaks or constitutive peaks

more easily than predicting facultative peaks. We test this

hypothesis by evaluating the performance of each of the

three imputation techniques at genomic positions in chro-

mosome 20 that vary in the number of cell types for

which a peak is observed (see the “Methods” section). This

evaluation consists of calculating theMSE, the recall (pro-

portion of true peaks that are imputed), and the precision

(proportion of imputed peaks that are true peaks). The

recall and precision are calculated by thresholding either

the primary or the imputed signal at a value of 1.44, cor-

responding to a signal p value of 0.01, and evaluating the

recovery of MACS2 peak calls. We can determine if a

method over- or under-calls peaks based on the balance

between precision and recall.

We find that evaluating the three imputation approa-

ches in this manner explains the discrepancy we observed

between the MSE1obs and MSE1imp performance mea-

sures. Specifically, we find that ChromImpute rou-

tinely achieves the highest recall (measured indirectly

by MSE1obs) and that Avocado typically achieves the

highest precision (measured indirectly by MSE1imp) in

regions that are the most variable (Fig. 2, Additional file 2:

Fig. S3). Interestingly, ChromImpute shows a higher recall

but lower precision than thresholding the ChIP-seq sig-

nal directly in positions that exhibit a peak in many cell

types. This observation suggests that ChromImpute may

impute wider peaks that, when thresholded, encompass

Fig. 2 Evaluation of the three imputation approaches at genomic positions that show variation in signal across cell types. a A schematic describing

how genomic loci are segregated on an example of four cell types. MACS2 peak calls (in gray) are summed over each of the cell type. Genomic loci

are then evaluated separately based on the number of cell types in which a peak occurs. b Each panel plots a specified performance measure (y-axis)

across varying sets of genomic positions (x-axis) for the H3K4me3 assay. For each point, genomic positions are selected based on the number of cell

types in which a peak is called at that position, up to a maximum of 127. MSE is calculated between H3K4me3 ChIP-seq signal and the corresponding

imputed signal. Precision and recall are computed by thresholding the imputations at 1.44 and comparing to MACS2 narrow peak calls on the

corresponding experimental signal. In the plots, the series labeled “Roadmap” use the experimental Roadmap data likewise thresholded at 1.44 and

compared to MACS2 narrow peak calls. c Similar to b, but using DNAse-seq instead of H3K4me3. All analyses are restricted to chromosome 20
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the entirety of the called peak by MACS2. ChromImpute’s

high recall and low precision confirm the hypothesis that

ChromImpute is over-calling peaks and specifically that it

is likely to predict a peak at a position that is a peak in

another cell type. These results also indicate that Avocado

and PREDICTD capture different trends in the model, as

Avocado typically has higher recall in facultative peaks

and PREDICTD has higher recall in constitutive peaks.

This finding suggests that one could consider ensembling

the imputations from these approaches to yield even more

accurate measurements. Overall, Avocado obtains a bal-

ance between precision and recall that frequently allows it

to achieve the best MSE.

Avocado’s latent representation encodes orthogonal views

of the data

Having demonstrated that Avocado’s imputed tracks are

of high quality, we next investigated Avocado’s learned

latent representation. This representation consists of sep-

arate embeddings for the cell types, the assays, and

the genomic coordinates. Because these embeddings are

orthogonal to each other, e.g., the cell type embedding

does not depend on a particular assay or set of genomic

positions, we anticipated that they would each capture a

different aspect of the data.

First, we visualized Avocado’s representation of pro-

moters, using annotations from GENCODE v19, and

enhancers, using the FANTOM5 “robust enhancers” set,

by running UMAP [12] on their respective genomic

embeddings (Fig. 3a). Because each functional element

spans several loci, we average the factor values ± 250

bp from either the TSS of the gene or the middle of the

enhancer. In the figure, we observe three main clusters—

one of mostly promoters, one of mostly enhancers, and

one that is mixed between the two. Next, we characterized

these clusters by their epigenomic signatures. We calcu-

lated the average activity of H3K4me3, a mark associated

with active promoters, and H3K27ac, a mark associated

with active enhancers, in a window ±2 kbp around each

locus across all cell types for which experimental data

were available. We then averaged these profiles across all

enhancers in each cluster and then across all promoters in

each cluster (Fig. 3b). This ± 2-kbp window is larger than

the ± 250-bp window used for the genomic embedding

projection in order to give additional epigenomic context,

but we found that projecting genomic embeddings using

a ± 2-kbp window gave similar results (Additional file 2:

Fig. S4). We observe that the promoter cluster consists of

loci with high levels of both H3K4me3 and H3K27ac, that

the enhancer cluster loci exhibit high levels of H3K27ac

but low levels of H3K4me3, and that the mixed cluster

has low average levels of both marks. To investigate the

loci that compose the mixed cluster more thoroughly, we

then clustered the epigenomic signal of these loci across

all cell types into “high” signal and “low” signal examples

and examined the number of cell types that were deemed

high signal (Additional file 5). We found that the mixed

cluster was made up of some loci that exhibited high sig-

nal in a very cell-type-specific manner and other loci that

exhibited low signal across all cell types. These results

confirm that the Avocado genomic embeddings are cap-

turing biologically relevant trends across cell types and

assays.

Next, we investigated the structure of the assay embed-

dings. Although histone modifications play diverse roles

in regulating gene transcription [13–16], we found that

a UMAP projection of the assay embeddings was able

to recapitulate several high-level trends (Fig. 3c). For

example, the transcription-associated marks H3K36me3,

H3K79me2, H3K79me1, and H4K20me1 are all near one

another. Similarly, many marks associated with active

gene expression, such as mono-, di-, and tri-methylations

of H3K4, are close together. Further, H3K27me3 and

H3K9me3, which are both repressive marks, cluster

together away from the activating marks. These trends,

though admittedly based on projection of a relatively small

number of points, suggest that the Avocado latent factors

successfully encode some important aspects of histone

modification biology.

Lastly, we ran UMAP on the cell type embedding and

annotated each cell type with its “anatomy type” as defined

in the Roadmap compendium (Fig. 3d). We observe a dis-

tinct clustering of cell types by anatomy. Furthermore,

related cell types such as iPSCs and ESCs lie nearby in

the embedded space. Interestingly, despite both residing

in the bone marrow, hematopoietic stem cells (HSC) lie

near blood cells in the projection but mesenchymal stem

cells do not. Interestingly, pluripotent stem cells reside on

one side of the projection while differentiated cells clus-

ter away from them, suggesting that our embedding may

also be capturing some aspects of cellular differentiation.

These results are supported by a direct inspection of the

Euclidean distances used to make the plot, which show

similar clusterings by anatomy type (Additional file 2:

Fig. S5).

Avocado’s latent representation facilitates a variety of

prediction tasks

Having shown that high-level trends are captured in Avo-

cado’s learned latent representation, we next evaluated its

utility as input to machine learning models for tasks for

which the representation was not explicitly trained for

(Fig. 4). This “transfer learning” approach has been used

successfully in other domains, such as natural language

processing [17] and computer vision [18], and has been

more generally described by Pan and Yang [19]. While

many techniques can be described as transfer learning,

we use the term to refer to training a model for one task
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Fig. 3 A visualization of Avocado’s learned latent representations. a A UMAP projection of the genome embeddings found at promoter (blue) and

enhancer (orange) regions. Half of all promoter regions are shown along with an equal number of enhancers, which made up roughly one-fourth of

total enhancers. Three manual partitions are shown, one with mainly promoters (85.5%), one with mainly enhancers (85.9%), and one that is mixed

(44.9% promoters and 55.1% enhancers). b Average epigenomic profiles of H3K4me3 (red) and H3K27ac (blue) in promoters and enhancers in each

of the three partitions, with the profiles extended out ± 2 kb to show additional context. c A UMAP projection of the assay embeddings, annotated

with their name. Marks are colored to indicate enrichment in transcribed regions (green), association with active expression (pink), or association

with repressing expression (orange). Marks that are not well characterized are colored in gray. d A UMAP projection of the cell type embeddings,

where each cell type has been colored according to its anatomy type

Fig. 4 The evaluation procedure for each task. For each cell type and feature set combination, 20-fold cross-validation is performed and the MAP

across all 20 folds is returned. At each evaluation, a gradient boosted decision tree classifier is trained on 18 of the folds, convergence is monitored

based on performance on a 19th fold, and the performance of the resulting model is evaluated on the 20th fold
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and then applying the model (or components thereof) to

some other tasks. Specifically, we hypothesize that Avo-

cado’s latent representation can serve as a replacement for

epigenomic data as the input for machine learning models

across a variety of genomic prediction tasks. One rea-

son that transfer learning may be beneficial in this case is

that many genomic phenomena are associated with epige-

nomic signals, and so a representation trained to predict

these signals is also likely to be associated with these

phenomena.

We then investigated whether Avocado’s latent repre-

sentation has implicitly encoded four different types of

important biological activity: gene expression, promoter-

enhancer interactions, replication timing, and frequently

interacting regions (FIREs). These tasks span a diversity

of biological phenomena and data sources to ensure that

our findings are robust. For each task, we train a super-

vised machine learning model (see the “Methods” section)

using one of the seven feature sets: (1) all available ChIP-

seq assays for the cell types being considered, (2–4) the

set of 24 assays imputed by each of the three methods,

(5) the genomic position factors from the single model

of PREDICTD’s ensemble that is highlighted in Figure 3

of Durham et al. [5], (6) the genomic position factors in

Avocado’s latent representation, or (7) the full set of 1014

ChIP-seq and DNase-seq assays available in the Roadmap

compendium (Fig. 4). We include the full set of assays

from the Roadmap compendium as a baseline feature set

because the Avocado latent representation is learned from

this full set, allowing us to test our hypothesis that the

learned representation preserves cellular variation while

removing redundancy and technical noise. Additionally,

we include PREDICTD’s learned latent representation to

investigate its utility relative to the Avocado latent repre-

sentation. Lastly, we compare these models to a majority

baseline where our prediction for each sample is simply

the most prevalent label. We hypothesize that, should the

latent representation encode these phenomena well, the

models trained using the latent representation as input

will outperform those trained using the other feature sets.

Note that the Avocado latent representation is extracted

from a model that is trained on the full Roadmap data set.

For the prediction of gene expression, replication timing,

and FIREs, we use a gradient boosting classifier due to this

technique’s widespread success in machine learning com-

petitions [20, 21], with a partial list of top performance on

Kaggle competitions available at https://bit.ly/2k7W3Jh.

Gene expression

The composition of histone modifications present in the

promoter region of a gene can be predictive of whether

that gene is expressed as measured by RNA-seq or CAGE

assays. Accordingly, several prior studies have shown that

machine learning models can learn associations between

these histone marks and gene expression. Because RNA-

seq experiments are cheap enough to be performed in

any cell type of interest, the typical goal of building a

machine learning model is not to replace RNA-seq but

to better understand the mechanism behind gene expres-

sion. While it may be difficult to explain this mechanism

through the interaction of complex latent factors, per-

forming well at this task indicates that complex regulatory

information comprised of multiple epigenomic marks is

being encoded in the latent factors. Furthermore, a gene

expression predictor may be useful in hypothesis gener-

ation settings, to assist in prioritizing potential RNA-seq

experiments or in investigation of the expression behav-

ior of a small number of genes across many cell types for

which epigenomic data has been generated. These stud-

ies have approached the problem either as a classification

task, where the goal is to predict a thresholded RNA-

seq or CAGE-seq signal [22, 23], or as a regression task,

where the goal is to predict RNA-seq or CAGE-seq signal

directly [24].

We approach the prediction of gene expression as a

classification task and evaluate the ability of the different

feature sets derived from the promoter region of a gene to

predict whether or not that gene is expressed. This eval-

uation is carried out in a 20-fold cross-validation setting

in each cell type individually, and we report the mean

average precision (MAP), which is one technique for cal-

culating the area under a precision-recall curve, across all

20 folds. Genes are considered to be active in a cell if the

average normalized read-count value from an RNA-seq

experiment across the gene body is greater than 0.5 (see

the “Methods” section).

We find that the Avocado latent factors yield the best

models in 34 of 47 cell types (Fig. 5a, Additional file 2:

Fig. S6 and Table S2). In 11 of the 13 remaining cell

types (out of the 47 in total), models trained using the

Avocado latent factors are only beaten by those trained

using the full Roadmap compendium, and in two cell

types (E053 and E054; Cortex-derived and ganglionic

eminence-derived neurosphere cultured cells), Avocado

is also beaten by models trained using ChromImpute’s

imputed epigenomic marks. In no cell type do mod-

els trained using the primary data, the typical input

for this prediction task, outperform those trained using

the Avocado latent representation (unadjusted two-sided

paired t test p value of 4.62e−153), performing worse by

between 0.005 and 0.148 MAP. Additionally, models built

using Avocado’s latent representation outperform those

built using PREDICTD’s latent representation in every

cell type, ranging from an improvement of 0.002 to an

improvement of 0.087 (p value of 3.86e−101). Overall,

the models built using the Avocado latent factors perform

0.006 MAP better than those built using the full Roadmap

compendium (p value of 9.75e−21) and only perform

https://bit.ly/2k7W3Jh
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Fig. 5 The performance of each feature set when used for genomic prediction tasks. In each task, a supervised machine learning model is evaluated

separately for each cell type using a 20-fold cross-validation strategy, with the mean average precision reported and standard error of the mean

shown in the error bars. Each task considers only genomic loci in chromosomes 1 through 22. The tasks are predicting (a) expressed genes, (b)

promoter-enhancer interactions, (c) replication timing, and (d) FIREs. In panel a, the coloring corresponds to the standard error with the mean

average precision lying in the middle, whereas in the other panels the mean average precision is shown as the colored bar with standard error

shown in black error bars. The statistical significances of differences observed in this figure are assessed in Additional file 2: Tables S2-5

0.001 MAP worse, on average, in those 13 cell types

where they perform worse. While this improvement ini-

tially appears to beminor, we note that all feature sets yield

models that perform extremely well in most cell types,

suggesting that there are cell types where gene expres-

sion prediction is simple and those in which it is difficult.

Accordingly, when focusing on cell types where prediction

is more difficult, we notice that the difference in per-

formance between the feature sets is more pronounced.

Indeed, when we consider the seven cell types where the

majority baseline is the lowest, we find that those models

trained using the Avocado latent factors outperform those

trained using the full Roadmap compendium on average

by 0.026 MAP and those built using only Roadmap mea-

surements for a specific cell type by 0.107 MAP. These

results show that models built using the Avocado latent

representation outperform or are comparable to any other

feature set considered.

To confirm these results, we reformulated the problem

tobea regression taskby removing the threshold on the RNA-

seq values used to generate binary labels. We observed

similar trends as the classification task, with the Avo-

cado latent factors yielding the best model in 27 of the 47

cell types, the full Roadmap compendium yielding the

best model in 19 of the 47 cell types, and ChromImpute

yielding the best model in one cell type (Additional file 2:

Fig. S7). In each cell type, the Avocado latent factors outper-

formed using the cell-type-specific epigenomic data alone.

Promoter-enhancer interactions

One of the many ways that gene expression is regulated

in human cell lines is through the potentially long-range
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interactions of promoters with enhancer elements. Phys-

ical promoter-enhancer interactions (PEIs) can be exper-

imentally identified by 3C-based methods such as Hi-C

or ChIA-PET. However, the resolution of genome-wide

3C methods can be problematic because high-resolution

contact maps are expensive to acquire. Consequently, pre-

dicting PEIs frommore widely available and less expensive

data types would be immensely valuable. Accordingly, a

wide variety of methods for predicting PEIs have been

proposed (reviewed by Mora et al. [25]), including those

that pair enhancers with promoters using distance along

the genome [26], that use correlations between epigenetic

signals in the promoter and enhancer regions [27–29], and

that use machine learning approaches based on epigenetic

features extracted from both the promoter and enhancer

regions [8].

We consider the task of predicting physical PEIs as

a supervised machine learning problem using features

derived from both the promoter and enhancer regions.

We employ a set of PEIs that were originally created

for training TargetFinder [8], a machine learning model

that predicted whether given promoter-enhancer pairs

interact with each other using epigenomic measure-

ments derived from both regions. These PEIs correspond

to ChIA-PET interactions from each of four cell types

(HeLa-S3, IMR90, K562, and GM12878) in chromosomes

1 through 22. We further process this data set to remove a

source of bias that has been found since the publication of

the original data set [30] (Additional file 6). TargetFinder

was not developed to predict interactions in cell types for

which contact maps have not been collected, but rather

to better understand the connections within existing con-

tact maps. Likewise, we train our classifier to predict PEIs

within each cell type, evaluating a regularized logistic

regression model in a cross-validation setting. For com-

parison, we use the same collection of real and imputed

data types that we used for the gene expression prediction

task.

We find that models trained to predict PEIs using the

Avocado latent factors perform better than any other fea-

ture set that we considered (Fig. 5b) in IMR-90, GM12878,

and HeLa-S3. In K562, using the Avocado latent factors is

second only to using the PREDICTD latent factors. These

improvements in average precision over the full Roadmap

compendium range from 0.007 in K562 to 0.035 in HeLa-

S3 (p values ranging from 6.97 × 10−18 to 9.45 × 10−32,

Additional file 2: Table S3). Interestingly, the PREDICTD

latent representation also outperforms the full Roadmap

compendium in every cell type (p value of 2.43 × 10−22).

Replication timing

The human genome replicates in an orderly replication

timing program, in a process that is associated with gene

expression and closely linked to the three-dimensional

structure of the genome [31, 32]. Patterns of replication

timing along the genome can be quantified using experi-

mental assays such as Repli-Seq [33], which can be used

to segregate loci into early- and late-replicating regions.

Because of the slowly varying nature of replication timing

along the genome, we choose tomake predictions of early-

and late-stage replication at 40-kbp resolution.

Consistent with previous tasks, the Avocado latent rep-

resentation outperforms both primary and imputed epige-

nomic data from the cell type of interest (Fig. 5c). How-

ever, in contrast to the previous tasks, the Avocado and

PREDICTD latent representations perform similarly to

each other.While the Avocado latent representation yields

models whose improvement over the PREDICTD latent

representation is statistically significant (p value of 0.004,

Additional file 2: Table S4), the effect is small (average

precision of 0.9453 vs 0.9442). Further, models that use

the full Roadmap compendum yield the best performing

models. Taken together, these results suggest that using

epigenomic measurements across several cell types can be

informative for making predictions even for a single cell

type. Additionally, it appears that aggregating these latent

spaces to amuch coarser resolution (from 25 bp to 40 kbp)

may sacrifice valuable information.

Frequently interacting regions

The three-dimensional structure of the genome can be

characterized by experimental techniques that identify

contacts between pairs of loci in the genome in a high-

throughput manner. In particular, the Hi-C assay [34]

produces a contact map that encodes the strength of inter-

actions between all pairs of loci in the genome. Within

a typical contact map, blocks of increased pairwise con-

tacts called “topologically associating domains” (TADs)

segment the genome into large functional units, where

the boundaries are enriched for house-keeping genes and

certain epigenetic marks such as the CTCF transcription

factor [35]. Recently, a related phenomenon, called “fre-

quently interacting regions” (FIREs), has been identified

[9]. These regions are enriched for contacts with nearby

loci after computationally accounting for many known

forms of bias in experimental contact maps. FIREs are

typically found within TADs and are hypothesized to be

enriched in super-enhancers [9].

Accordingly, we investigate the utility of the Avocado

latent representation in predicting FIREs. Our gold stan-

dard is derived from Hi-C measurements in seven human

cell types at 40-kbp resolution [9]. We frame each task as

a binary prediction task, classifying each genomic locus

as a FIRE or not. Note that any state-of-the-art predictive

model for elements of chromatin architecture would likely

include CTCF data, because this mark is highly enriched

at structural elements. However, we do not include this

factor in our feature set because transcription factors were
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not included in the Roadmap compendium and thus not

used to train the Avocado model. Further, our goal is not

to train a state-of-the-art model for predicting FIREs, but

to evaluate the relative usefulness of these feature sets.

The results for predicting FIREs are similar to the results

from the replication timing task, with models trained

using the Avocado latent factors outperforming both

those trained using cell-type-specific epigenomic data (p

value of 6.13× 10−8) and the PREDICTD latent factors (p

value of 2.4×10−4) (Fig. 5d andAdditional file 2: Table S5).

The models trained using the full Roadmap compendium

outperform those that use the Avocado latent factors in

every cell type except H1 (p value of 1.85 × 10−33). This

observation suggests that the inclusion of epigenomic

measurements across cell types is important when pre-

dicting elements of chromatin architecture, as it was for

replication timing, but further suggests that aggregations

of these factor values across large genomic loci is not as

informative as it was for predicting gene expression or

promoter-enhancer interactions.

Avocado’s genomic representation encodes most peaks

We next aim to understand why the Avocado latent rep-

resentation is such an informative feature set across a

diversity of tasks. A well-known downside of neural net-

works is that they are not as easily interpretable as simpler

models due to the larger number of parameters and non-

linearities involved in the model. In order to understand

these models better, feature attribution methods have

recently emerged as a means to understand predictions

from complex predictive models. These methods, such

as LIME [36], DeepLIFT [37], SHAP [38], and integrated

gradients [39], attempt to quantify how important each

feature is to a specific prediction by attributing to it a

portion of the prediction. A useful property of these attri-

butions is that they sum to the resulting prediction, or

the difference between the prediction and some reference

value.

We chose to inspect the Avocado model using the inte-

grated gradients method, due to its simplicity, in order to

understand the role that the various factors play in mak-

ing predictions. When we run integrated gradients, the

input is the set of concatenated latent factors that would

be used to make a prediction at a specific position, and

the output is the attribution to each factor for that predic-

tion, specifically, the imputed signal at a genomic position

for an assay in a cell type. However, the individual factors

are unlikely to correspond directly to a distinct biological

phenomena. Conveniently, since the attributions sum to

the final prediction (minus a reference value), we can sum

these attributions over all factors belonging to each com-

ponent of the model. This aggregation allows us to divide

the imputed signals into the cell type, assay, and the three

scales of genome attributions.

Upon inspection of many genomic loci, most peaks are

encoded in the genomic latent factors, while the cell type

and assay factors serve primarily to sharpen or silence

peaks. An illustrative example of the role each compo-

nent plays is to consider a pair of nearby regions in

chromosome 20 where a H3K4me3 peak with high sig-

nal is imputed near a much weaker peak for GM12878

with a very narrow spike between them (Fig. 6a). Within

the imputed peaks, the genome factors predominantly

increase the signal, whereas the assay factors appear to

increase the signal at the cores of both peaks but dampen

the signal on the flanks, effectively sharpening the peaks.

Interestingly, the weaker peak appears to have a more

prominent signal from the genomic latent factors that is

Fig. 6 The predicted H3K4me3 signal and corresponding attributions for two cell types in the same region of chromosome 20. a The prediction and

attributions for GM12878, where a tall peak on the right is paired with two much smaller peaks to the left. Many short regions have a positive

genomic attribution but a negative cell type attribution that masks them. b The prediction and attributions for the duodenum smooth muscle. A

prominent peak is now predicted on the left, corresponding with a swap from a negative cell type attribution to a positive one. The same short

regions that previously were masked by the cell type attributions now have positive cell type attributions and exhibit peaks in the imputed signal
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mitigated by a large negative signal from the cell type axis.

This indicates to us that this region exhibits a peak in some

cell types but is being silenced in GM12878. To confirm

that this region engages in a peak in some cell types, we

looked at the same region in duodenum smooth muscle

cells (E078, Fig. 6b) and observed a strong peak (maximum

value 3.70 compared to 1.05 in GM12878) that is bol-

stered by the cell type factors. In addition, there are many

smaller peaks that exist in the duodenum signal that are

masked by a negative cell type attribution. This suggests

that, while the cell type and assay factors can have positive

attributions, they do not fully encode peaks themselves.

We next systematically evaluate the attributions of each

component of the model to better understand how Avo-

cado works. Our approach for this analysis is similar to

that of analyzing the accuracy of the imputation meth-

ods at regions of cellular variability. Specifically, we first

segregate positions into bins based on the number of cell

types that exhibit a peak at that location; then for each

bin, we calculate the average attribution in those cell types

for which a peak does or does not occur (Additional file 2:

Fig. S8). In this manner, we can analyze each of the five

components of the model in each assay. What we find is

that, when peaks are not present in the signal, the aver-

age cell type attributions are uniformly negative across

assays and the variability of signal at a position. Addi-

tionally, these average attributions typically have a larger

magnitude at those variable loci in cell types for which

a peak is not present, suggesting that the cell type fac-

tors are involved in silencing these peaks in the resulting

imputations. The only context in which average cell type

attributions are positive are when peaks are present at

loci that infrequently exhibit peaks suggesting that the cell

type factors may encode infrequent peaks. In contrast,

the genomic factors typically have positive values when

peaks are present, with negative values correspondingly

occurring in infrequent peaks and when peaks are not

present. If these rare peaks are a result of technical noise

rather than real biology, then this suggests one reason

that the genomic factors frequently yield better machine

learning models than experimental data. However, this

also suggests that the genomic factors may not be useful

at identifying biological phenomena that are indicated by

these rare peaks. Interestingly, while the assay attribution

values can be either positive or negative, these attributions

are higher when peaks are not exhibited rather than when

they are. It is unclear why this phenomenon occurs, but

it further indicates that the genomic components of the

model are a critical driver of Avocado predicting a peak.

Discussion
Avocado is a multi-scale deep tensor factorization

model that learns a latent representation of the human

epigenome. We find that, when used as input to

machine learning models, Avocado’s latent representa-

tion improves performance across a variety of genomics

tasks relative to models trained using either experimen-

tally collected epigenomic measurements or the full set

of imputed measurements. This representation is more

informative than the one learned through the linear fac-

torization approach taken by PREDICTD, suggesting that

latent representations can vary in utility and that more

work will need to be done to understand them fully. Addi-

tionally, in the context of replication timing and FIRE pre-

diction, we found that aggregating both the PREDICTD

and the Avocado latent spaces to much lower resolutions

by averaging factor values appeared to diminish their util-

ity, suggesting that perhaps these latent spaces are not

linearly interpolatable. We have made the Avocado latent

representation available for download from https://noble.

gs.washington.edu/proj/avocado/.

We hypothesized that a primary reason that this latent

representation is so informative is that it distills epige-

nomic data from all available cell types, rather than repre-

senting measurements for only a single cell type. Indeed,

feature attribution methods suggest that the genomic

latent factors encode information about peaks from all cell

types and assays. However, while verifying this hypothe-

sis, we also found that, contrary to common usage, models

that exploit the full Roadmap compendium consistently

outperform those that use only measurements available in

a single cell type. One explanation for this observation is

that cellular context can serve as an implicit regularizer

for machine learning models, in the sense that the model

can learn to discount peaks that appear in exactly one cell

type due to experimental noise or technical error. On the

other hand, when the discounted peaks correspond to real

biology that is simply very cell-type-specific, this tendency

may be a source of error.

Although the Avocado latent representation does not

outperform using the Roadmap compendium on all tasks,

Avocado is much more practical to use. Avocado’s repre-

sentation consists of only 110 features, whereas the full

Roadmap compendium has 1014 experiments. Accord-

ingly, we observed that models could be trained fromAvo-

cado’s learned genomic representation five to ten times

faster than those trained using the full Roadmap com-

pendium. This speedup becomes especially important

when the input to a machine learning model is not a single

genomic window, but multiple adjacent windows of mea-

surements, as is frequently the case when modeling gene

expression. For example, if one were to describe a pro-

moter as eight adjacent 250-bp windows spanning± 2 kbp

from a transcription start site, then the Avocado represen-

tation would have only 565 features due to its multi-scale

nature, whereas the Roadmap compendium would com-

prise 8112 features. We anticipate that the benefits of a

low-dimensional representation will become even more

https://noble.gs.washington.edu/proj/avocado/
https://noble.gs.washington.edu/proj/avocado/
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important once this strategy is applied to even richer data

sets, such as the ENCODE compendium, which is com-

posed of >10,000 measurements. This number of mea-

surements would make building machine learning models

very difficult.

A natural desire is to inspect the Avocado latent rep-

resentation in order to better understand the genome.

Unfortunately, we found that such inspection was diffi-

cult, in part because the latent factors do not individ-

ually correspond to meaningful biological phenomena.

An avenue for future studies is to better understand

these latent factors through methods that aim to con-

nect learned latent spaces to interpretable concepts [40].

Potentially, one might apply a semi-automated genome

annotation method like ChromHMM [1] or Segway [41]

to the latent representation directly, with the goal of pro-

ducing amodel that can translate the latent representation

into a cell type-independent annotation of the genome.

This is not the first time that latent representations have

been trained on one task with the goal of being broadly

useful for other tasks. For example, word embeddings

have been used extensively in the domain of natural lan-

guage processing. These embeddings can be calculated in

a variety of manners, but two popular approaches, GLoVE

[42] and word2vec [7], involve learning word representa-

tions jointly with a machine learning model that is trained

to model natural language. In this respect, these embed-

ding approaches are similar to ours because the Avocado

latent representation is learned as a result of a machine

learningmodel being trained to impute epigenomic exper-

iments.

Our approach is not the only approach one could take

to reducing the dimensionality of the data. Potentially,

one could use a technique like principal component anal-

ysis or an autoencoder to project the 1014 measurements

down to 110 dimensions. Alternatively, one might con-

sider using a model similar to DeepSEA [43] or Basset [44]

that trains an embedding of the genome jointly with a neu-

ral network. However, these types of approaches would

not easily allow for transfer learning between cell types,

would not allow for the imputation of epigenomic experi-

ments, and would not incorporate information about local

genomic context through the use of multiple scales of

genomic factors. Furthermore, generalizing an unsuper-

vised embedding approach to make cross-cell type predic-

tions would be difficult, whereas Avocado’s genomic and

cell type factors can be combined in a straightforward way

to address such tasks.

In this work, we have only explored the Avocado

hyperparameter space with respect to the single data set

employed here; thus, generalizing to a new data set will

require repeating this search. Furthermore, in cases where

computational efficiency is critical, our results (Addi-

tional file 1: Fig. S3) suggest that models with fewer latent

factors might perform nearly as well as the full Avo-

cado model. In such settings, it may be sensible to design

an objective function for the hyperparameter search that

trades off the predictive accuracy of the model versus the

model complexity.

We have emphasized the utility of Avocado’s latent

genome representation, but the model also solves

the primary task on which it is trained—epigenomic

imputation—extremely well. In particular, we found that

Avocado produced the best imputations when compared

with ChromImpute and PREDICTD as measured by five

of six performance measures based on MSE for individ-

ual tracks and that these imputed measurements captured

pairwise relationships between histone modifications bet-

ter than either of the other approaches. While investigat-

ing why Avocado performed worse than ChromImpute on

one of the performance measures, we found that, for all

three imputation approaches, much of the empirical error

derives from regions where peaks are exhibited in some,

but not all, cell types. In the context of identifying which

cell types exhibit peaks at these regions of high variability,

ChromImpute had the highest recall but the lowest preci-

sion, suggesting that it over-calls peaks at a specific region

by predicting peaks in more cell types than they actu-

ally occur in. In contrast, both Avocado and PREDICTD

had lower recall but higher precision, with Avocado fre-

quently managing to balance the two to produce the

lowest MSE. Given that these regions are likely the most

important for explaining cell type variability, these results

suggest that future evaluations of imputation methods

should stratify results, as we have done, according to the

cell-type specificity of the observed signals. Such investi-

gations might suggest different Avocado hyperparameter

settings, focusing on either improved precision or recall,

depending upon the end user’s needs.

Finally, we anticipate that researchers may wish to

extend the imputation abilities of Avocado to a new cell

type or assay using their own experimental data but lack

the computational resources to retrain Avocado from

scratch. In follow-up work, we describe a simple transfer

learning approach for adding in new cell types or assays to

a pretrained Avocado model [45]. This approach involves

freezing the parameters of a pretrained model and fit-

ting only the new cell type or assay factors. Our analysis

suggests that one can achieve good quality imputations

with as little as a single track of training data in a given

biosample. Further, because very few parameters need to

be trained, this process can be done without relying on a

GPU.

Conclusion
Avocado employs a multi-scale deep tensor factorization

approach to compress large compendia of epigenomics

experiments into a low-dimensional latent representation.
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This latent representation is trained to impute genome-

wide epigenomics experiments, and we find that the

resulting model outperforms prior methods at that task

based on MSE. We further demonstrate that the result-

ing latent representation captures important aspects of

the three orthogonal axes of the data—the cell types, the

assays, and the genomic loci. Accordingly, when we use

the genomic latent factors directly as input into machine

learning models, we find that they yield models that

are much more accurate than the traditional setting of

using cell-type-specific epigenomic data across a variety

of predictive tasks. We anticipate that this model and its

associated latent factors will serve as valuable tools for

researchers studying human epigenomics.

Methods
Data sets

The Roadmap ChIP-seq and DNase-seq epigenomic data

was downloaded from http://egg2.wustl.edu/roadmap/

data/byFileType/signal/consolidated/macs2signal/pval/.

Only cell types that had at least five experiments done,

and assays that had been run in at least five cell types,

were used. These criteria resulted in 1014 histone mod-

ification ChIP-seq tracks spanning 127 cell types and

24 assays. The assays included 23 histone modifications

and DNase sensitivity. RNA-seq bigwigs containing

unstranded normalized read counts across the entire

genome for 47 cell types were also downloaded for

the purpose of downstream analyses, rather than for

inclusion in the imputation task. The full set of 24

assays imputed by ChromImpute were downloaded from

http://egg2.wustl.edu/roadmap/data/byFileType/signal/

consolidatedImputed/, and the full set of 24 assays from

PREDICTD were downloaded from the ENCODE portal

at https://www.encodeproject.org/.

The specific ChIP-seq measurements downloaded were

the − log10 p values. These measurements correspond

to the statistical significance of an enrichment at each

genomic position, with a low-signal value meaning that

there is unlikely to be a meaningful enrichment at that

position. Tracks that encode statistical significance, such

as the − log10 p value of the signal compared to a con-

trol track, typically have a higher signal-to-noise ratio than

using fold enrichment. Furthermore, to reduce the effect

of outliers, we use the arcsinh-transformed signal

sinh−1 x = ln
(

x +

√

1 + x2
)

for both training of the Avocado model and all evalua-

tions presented here. Other models, such as PREDICTD

[5] and Segway [41], also use this transformation, because

it sharpens the effect of the shape of the signal while

diminishing the effect of large values.

Gene bodies were defined as GENCODE v19 gene ele-

ments (https://www.gencodegenes.org/releases/19.html)

from chromosomes 1 through 22 that had one of their

transcripts annotated as the primary transcript for that

gene. This resulted in 16,724 gene bodies.

Promoter regions were defined at the transcription start

site for each of the GENCODE v19 gene elements that

gene bodies were identified for, accounting for the strand

of the gene. For the purpose of the MSEProm metric and

for the gene expression prediction task, the span of the

promoter was defined as 2 kbp upstream from the tran-

scription start site. For the purpose of the visualization

of promoters and enhancers, promoters were defined as

± 250 bp from the transcription start site.

Enhancer elements were defined using two sets of

enhancers defined by the FANTOM5 consortium. For the

purpose of the MSEEnh metric, the set of “permissive”

enhancers was used, in order to get a wider view of poten-

tial enhancer activity. For the purpose of visualization of

promoters and enhancers, enhancers were defined using

± 250 bp from themiddle of each enhancer in the “robust”

enhancer set. Both enhancer sets are available at http://

slidebase.binf.ku.dk/human_enhancers/presets.

Anatomy types for each cell type were down-

loaded from https://docs.google.com/spreadsheets/

d/1yikGx4MsO9Ei36b64yOy9Vb6oPC5IBGlFbYEt-

N6gOM/edit#gid=15.

Promoter-enhancer interactions were obtained from

the public GitHub repository for [8], available at https://

github.com/shwhalen/targetfinder/tree/master/paper/

targetfinder/combined/output-epw. This data set

includes promoter-enhancer interactions as defined by

ChIA-PET interactions for four cell lines—GM12878,

HeLa-S3, IMR90, and K562. To correct a recently identi-

fied bias in this particular benchmark [30], the data set

was further processed as described in Additional file 6.

Replication timing data was downloaded from http://

www.replicationdomain.org. The resulting tracks encode

early- and late-stage timing as continuous values, which

are subsequently binarized using a threshold of 0.

FIRE scores were obtained from the supplementary

material of [9] for the seven cell lines TRO, H1, NPC,

GM12878, MES, IMR90, and MSC. These measurements

are composed of binary indicators at 40-kbp resolution,

resulting in 72,036 loci for each cell type.

Network topology

Avocado is a deep tensor factorization model, i.e., a ten-

sor factorization model that uses a neural network instead

of a scalar product to combine factors into a predic-

tion. The tensor factorization component is comprised of

five matrices of latent factors, also known as embedding

matrices, that encode the cell type, assay, 25-bp genome,

250-bp genome, and 5-kbp genome factors. These matri-

ces represent each element as a set of latent factors, with

32 factors per cell type, 256 factors per assay, 25 fac-

http://egg2.wustl.edu/roadmap/data/byFileType/signal/consolidated/macs2signal/pval/
http://egg2.wustl.edu/roadmap/data/byFileType/signal/consolidated/macs2signal/pval/
http://egg2.wustl.edu/roadmap/data/byFileType/signal/consolidatedImputed/
http://egg2.wustl.edu/roadmap/data/byFileType/signal/consolidatedImputed/
https://www.encodeproject.org/
https://www.gencodegenes.org/releases/19.html
http://slidebase.binf.ku.dk/human_enhancers/presets
http://slidebase.binf.ku.dk/human_enhancers/presets
https://docs.google.com/spreadsheets/d/1yikGx4MsO9Ei36b64yOy9Vb6oPC5IBGlFbYEt-N6gOM/edit#gid=15
https://docs.google.com/spreadsheets/d/1yikGx4MsO9Ei36b64yOy9Vb6oPC5IBGlFbYEt-N6gOM/edit#gid=15
https://docs.google.com/spreadsheets/d/1yikGx4MsO9Ei36b64yOy9Vb6oPC5IBGlFbYEt-N6gOM/edit#gid=15
https://github.com/shwhalen/targetfinder/tree/master/paper/targetfinder/combined/output-epw
https://github.com/shwhalen/targetfinder/tree/master/paper/targetfinder/combined/output-epw
https://github.com/shwhalen/targetfinder/tree/master/paper/targetfinder/combined/output-epw
http://www.replicationdomain.org
http://www.replicationdomain.org
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tors per 25-bp genomic position, 40 factors per 250-bp

genomic position, and 45 factors per 5-kbp genomic posi-

tion. For a specific prediction, the factors corresponding

to the respective cell type, assay, and genomic position are

concatenated together and fed into a simple feed-forward

neural network. This network has two intermediate dense

hidden layers that each have 2048 neurons before the

regression output, for a total of three weightmatrices to be

learned. The network uses the ReLU activation function,

ReLU(x) = max(0, x), on the hidden layers and no acti-

vation function on the prediction. The training process

jointly optimizes the latent factors in the tensor factoriza-

tion model and the neural network, rather than switching

between optimizing each.

The model was implemented using Keras [46] with the

Theano backend [47], and experiments were run using

Tesla K40c and GTX 1080 GPUs. For further background

on neural network models, we recommend the compre-

hensive review by J. Schmidhuber [48].

Inputs and outputs

Avocado takes as input the indices corresponding to a

genomic position, assay, and cell type, and outputs an

imputed data value. The indices for each dimension are a

set of sequential values that uniquely represent each of the

possibilities for that dimension, e.g., a specific cell type,

assay, or genomic position. Any data value in the Roadmap

compendium can thus be uniquely represented by a triplet

of indices, specifying the cell type, index, and assay.

Training

Avocado is trained using standard neural network opti-

mization techniques. The model was fit using the ADAM

optimizer due to its widespread adoption and success

across several fields [49]. Avocado’s loss function is the

global mean squared error (MSE). Most training hyperpa-

rameters are set to their default values in the Keras toolkit.

For the ADAM optimizer, this corresponds to an initial

learning rate of 0.01, beta1 of 0.9, beta2 of 0.999, epsilon

of 10−8, and a decay factor of 1–10−8. The embedding

matrices are initialized with random uniform weights in

the range [− 0.5, 0.5]. Dense layers are initialized using

the “glorot uniform” setting [50]. Using these settings,

our experiments show that performance, as measured by

MSE, was similar across different model initializations.

Avocado does not fit a single model to the full genome

because the genome latent factors could not fit in mem-

ory. Instead, training is performed in two steps. First, the

model is trained on the selected training tracks but with

the genomic positions restricted to those in the ENCODE

Pilot Regions [51]. Second, the weights of the cell type

factors, assay factors, and neural network parameters are

frozen, and the genome factors are trained for each chro-

mosome individually. This training strategy allows the

model to fit in memory while also ensuring consistent

parameters for the non-genomic aspects of the model

across chromosomes, and for the latent factors learned on

the genomic axis to be comparable across cell types. Both

of the stages involve the same set of training experiments.

During cross-validation, this procedure is repeated sepa-

ratedly for each fold. We did not find that this procedure

was sensitive to using other equally sized regions for the

initial training step (Additional file 7).

The two steps of training have the same initial hyper-

parameters for the ADAM optimizer but are run for

different numbers of epochs. Each epoch corresponds to a

single pass through the genomic axis such that each 25-bp

position is seen exactly once, with cell type and assays cho-

sen randomly for each position. This definition of “epoch”

ensures that the entire genome is seen the same num-

ber of times during training. Training is carried out for

800 epochs on the ENCODE Pilot regions and 200 epochs

on each chromosome. No early stopping criterion is set,

because models converge in terms of validation set perfor-

mance for all chromosomes in fewer than 200 epochs but

do not show evidence of over-fitting if given extra time to

train.

Evaluation of variable genomic loci

For each assay, we evaluated the performance of Avocado,

PREDICTD, and ChromImpute, at genomic positions seg-

regated by the number of cell types in which that genomic

locus was called a peak by MACS2. We first calculated

the number of cell types that each genomic locus was

called a peak by summing together MACS2 narrow peak

calls across chromosome 20 and discarded those positions

that were never a peak. This resulted in a vector where

each genomic locus was represented by the number of cell

types in which it was a peak, ranging between 1 and the

number of cell types in which that assay was performed.

For each value in that range, we calculated the MSE, the

recall, and the precision, for each technique. Because pre-

cision and recall require binarized inputs, the predictions

for each approach were binarized using a threshold on the

-log10 p value of 2, corresponding to the same threshold

that Ernst and Kellis used to binarize signals as input for

ChromHMM.

Supervised machine learning model training

We performed three tasks that involved training a gradi-

ent boosted decision tree model to predict some genomic

phenomenon across cell types. In each task, we used a

20-fold cross-validation procedure, where the data from a

single cell type is split into 20 folds, 19 are used for train-

ing and 1 is used formodel evaluation. This procedure was

performed for each cell type, feature set, and task. These

models were trained using XGBoost [52] with a maximum

of 5000 estimators, a maximum depth of 6, and an early
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stopping criterion that stopped training if performance

on a held out validation set, one of the 19 folds used for

training, did not improve after 20 epochs. No other reg-

ularization was used, and the remaining hyperparameters

were kept at their default values.

For the task of predicting promoter-enhancer interac-

tions, we used logistic regression as an additional safe-

guard against the bias issue described in Additional file 6.

Rather than performing 20-fold cross-validation, we per-

formed 5-fold cross-validation 20 times, shuffling the data

set after each cross-validation. We adopted this approach

due to the small number of positive samples in each cell

type, such that there would be fewer than 10 positive sam-

ples in each fold of a 20-fold cross-validation. Additionally,

we tuned the regularization strength in the default man-

ner for scikit-learn, which considers 10 regularization

strengths evenly spaced logarithmically between 10−4 and

104 and choosing the strength that performs best on an

internal 3-fold cross-validation on the training set.

We evaluate each model in each task according to the

average precision (AP) on the test set, which summarizes

a precision-recall curve in a single score. The score is

calculated as

AP =

∑

n

(Recalln − Recalln−1)Precisionn

where Recalln and Precisionn are the recall and the pre-

cision at the nth calculated threshold, with one threshold

for each data point.
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