
Hanwell et al. Journal of Cheminformatics 2012, 4:17

http://www.jcheminf.com/content/4/1/17

SOFTWARE Open Access

Avogadro: an advanced semantic chemical
editor, visualization, and analysis platform
Marcus D Hanwell1,2*, Donald E Curtis3, David C Lonie4, Tim Vandermeersch5,

Eva Zurek4 and Geoffrey R Hutchison1

Abstract

Background: The Avogadro project has developed an advanced molecule editor and visualizer designed for

cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related

areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building

molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry

packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic

accessibility of chemical data types.

Results: The work presented here details the Avogadro library, which is a framework providing a code library and

application programming interface (API) with three-dimensional visualization capabilities; and has direct applications

to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application

provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and

library can each be extended by implementing a plugin module in C++ or Python to explore different visualization

techniques, build/manipulate molecular structures, and interact with other programs. We describe some example

extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the

PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of

Avogadro is the main focus of the results discussed here.

Conclusions: Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it

offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the

Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output,

and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful plugin

mechanism to support new features in organic chemistry, inorganic complexes, drug design, materials, biomolecules,

and simulations. Avogadro is freely available under an open-source license from http://avogadro.openmolecules.net.

Background
Many fields such as chemistry, materials science, physics,

and biology, need efficient computer programs to both

build and visualize molecular structures. The field of

molecular graphics is dominated by viewers with lit-

tle or no editing capabilities, such as RasMol [1], Jmol

[2], PyMOL [3], VMD [4], QuteMol [5], BALLView [6],

VESTA [7], and XCrySDen [8,9], amongmany others. The

*Correspondence: marcus.hanwell@kitware.com
1Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue,

Pittsburgh, PA, 15260, USA
2Department of Scientific Computing, Kitware, Inc., 28 Corporate Drive, Clifton

Park, NY, 12065, USA

Full list of author information is available at the end of the article

aforementioned viewers are all freely available, and most

of them are available under open-source licenses and work

on the most common operating systems (Linux, Apple

Mac OS X, Microsoft Windows, and BSD).

The choice of software capable of building chemical

structures in three dimensions is far smaller. There are

existing commercial packages, such as CAChe/Scigress

[10], ChemBio3D [11], GaussView [12], HyperChem [13],

CrystalMaker [14], Materials Studio [15], and Spartan

[16], which are polished and capable of constructing many

different types of molecular structures. They are, however,

not available for all operating systems (most of them only

run on Microsoft Windows), and are not easily extensi-

ble, customized, or integrated into automated workflows.

© 2012 Hanwell et al.; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://avogadro.openmolecules.net

Hanwell et al. Journal of Cheminformatics 2012, 4:17 Page 2 of 17

http://www.jcheminf.com/content/4/1/17

Licensing costs can be prohibitive. If the company were to

change its direction or focus, this can lead to a loss of a

significant research investment in a commercial product.

Furthermore, in most cases, these programs use custom,

proprietary file formats, and semantic and chemical data

can be lost in conversion to other data formats.

The selection of free, open-source, cross-platform,

three-dimensional, molecular builders was quite limited

when the Avogadro project was founded in late 2006.

Ghemical [17] was one of the only projects satisfying these

needs at the time. Two of the authors (Hutchison and

Curtis) contributed to Ghemical previously, but had found

that it was not easily extensible. This led them to found

a new project to address the issues they had observed in

Ghemical and other packages. The Molden [18] applica-

tion was also available, able to build up small molecules

and analyze output from several quantum codes. How-

ever, it suffers from a restrictive license and it uses an

antiquated graphical toolkit, which is not native on most

modern operating systems.

Broad goals for the design of a molecular editor were

identified following a case study of the available appli-

cations. One of the main issues with both commercial

and open-source applications is a lack of extensibility;

many of the applications also only work on one or two

operating systems. The creation of an open and exten-

sible framework that implements many of the necessary

foundations for a molecular builder and visualizer would

facilitate more effective research in this area. Further, the

open, standardized Chemical Markup Language (CML)

file format [19,20] would be used, to secure semantic and

chemical data and allow easy interoperability with other

chemistry software.

At the time of writing, it is apparent that other

researchers have perceived similar needs. Several new

applications are available today that focus on both build-

ing and visualizing molecular structure. These include

CCP1GUI [21], Gabedit [22] and some highly specific edi-

tors such as MacMolPlt [23] which focus on particular

computational packages (i.e., GAMESS-US for MacMol-

Plt). Whilst offering many interesting and useful fea-

tures, these projects suffer from the same issues centering

around effective reuse of existing code, well commented

and documented code, and easy extension to add new

features and adapt for specialized areas.

Implementation
The Avogadro project was started in earnest in 2007, and

over the first 5 years of development has been downloaded

over 270,000 times [24], been translated into over 20 lan-

guages [25], and has over 20 contributors [26]. So far, it

has been cited over 100 times [27], including applications

in spectroscopy, catalysis, materials chemistry, theoretical

chemistry, biochemistry, and molecular dynamics, among

many others [28-47].

From the beginning, the project has strived to make a

robust, flexible framework for both building and visual-

izing molecular structures. Much of the initial focus has

been placed on preparing input and analyzing output from

quantum calculations. Other applications such as prepar-

ing input for MD simulations and visualizing periodic

structures will also be presented, demonstrating the flex-

ibility of the Avogadro platform. The development team

has also beenmembers of the BlueObeliskmovement, fol-

lowing the three pillars outlined by the group: Open Data,

Open Standards, and Open Source [48,49].

Software architecture

One area that seems to suffer in many code bases in

chemistry is software architecture. This can lead to less

maintainable code, poor code reuse, and a much higher

barrier to entry. Problems were identified in other projects

with a view to minimize their impact when developing

Avogadro. Modern software design processes were used

in the initial planning stages of Avogadro, along with the

choice of modern programming languages and libraries.

Avogadro has close ties to several other free, cross-

platform, open-source projects to reuse as much code

as is practical. These projects include Qt [50] to pro-

vide a free, cross-platform graphical toolkit; Open Babel

[51] for chemical file input/output, geometry optimiza-

tion, and other chemical perception; Eigen [52] for matrix

and vector mathematics; OpenGL/GLSL for real-time,

three-dimensional rendering; and POV-Ray for ray-traced

rendering.

Based on the previous experience of the authors and

a review of available programs at the time, several fun-

damental choices were made. The C++ programming

language; the Qt graphical toolkit; OpenGL for 3D visu-

alization; CMake as the build system; and Open Babel as

the chemical library. Using this combination of languages

and libraries requires the project to be licensed under the

GNU GPLv2 [53] license and made openly available to all.

The core of Avogadro is written in portable C++ code

with platform-specific differences abstracted away by Qt,

OpenGL, and Open Babel. The CMake build system

makes the build process relatively simple on all supported

platforms. Avogadro has been successfully built and tested

on Linux, Apple Mac OS X, and Microsoft Windows in

common 32 and 64 bit hardware architectures.

The Avogadro framework uses the model, view, con-

troller paradigm. The model is comprised of the core data

classes such as Molecule, Atom, and Bond, views are

made up of the engine/display plugins, and controllers

are the tools (interactive mouse) and extensions (non-

interactive, form based/menu based). Every plugin has full

access to the core data model, but view and controller

Hanwell et al. Journal of Cheminformatics 2012, 4:17 Page 3 of 17

http://www.jcheminf.com/content/4/1/17

plugins are conceptually different; views are responsible

for displaying data and controllers are responsible for

modifying/changing data.

Plugins rely on Avogadro’s set of programming inter-

faces and almost all functionality is implemented in self

contained plugins that are loaded at runtime. The major-

ity of plugins distributed with Avogadro are written in

C++, but the API is also available in the Python script-

ing language. This allows for a great deal of choice in how

plugins are implemented. Each plugin is a singleton class

that implements a particular set of functions–depending

on the type of plugin–which allows for features to be

implemented in a very modular way.

Over the last few years Avogadro development has

started to use nightly builds of the latest version of the

code in order to automatically flag issues introduced in

new commits. Code review was also introduced in order

to add a review step before new code is merged, along with

softening the line between someone with commit rights

and someone without (anyone can propose and upload a

patch, but a small group can choose if/when the patch will

be merged). Some automated testing has been added, but

coverage at this point remains relatively low. API docu-

mentation is automatically generated from comments in

the code using Doxygen.

Plugin interface

Avogadro plugins are divided into four different types

corresponding to four main classes that derive from this

common base class, specializing their interface for specific

activities (Figure 1). The Avogadro::Color base class

defines the virtual interface for applying colors to atoms,

bonds, and other properties. Avogadro::Engine

defines the common interface for all display types

in Avogadro: simple ball and stick, Van der Waals

visualizations, surfaces, and force visualizations. The

Avogadro::Tool base class provides the interface for

all interactive tools, focusing principally on mouse and

keyboard interaction with Avogadro. Examples of tool

plugins include the draw tool used to draw molecules

atom by atom, and the navigation tool used to pan, rotate,

and scale the view of the molecule. There are also several

specialized tools such as the alignment tool.

Finally there is the Avogadro::Extension class,

which defines the interface for dialog based plugins.

These extensions can interact with the molecule, and

are used for a variety of purposes from molecule prop-

erties dialogs to input file generation dialogs for many

quantum codes including NWChem, Gaussian, GAMESS,

and others. This class of plugin is also applied to

file import, and network aware extensions querying

web databases for structures given their common name

for example.

At start up, several standard directories, which may

be customized, are searched for plugins. The Qt plugin

framework is used to check that the plugins have a recent

enough version to be loaded, and the plugin type can be

deduced once loaded. The user interface is then populated

with appropriate entries; tools are added to the main tool-

bar using their embedded icons, display types are added

Extensions

ToolsPainters

Engines

Open Babel Qt Eigen

Force

Fields

Manipulate
Tool

Balls &

Sticks

POV-RayOpenGL

Scripting

Python

Tools

Colors

Elements

Figure 1 General code architecture of Avogadro. General code architecture of Avogadro, indicating major plugin interfaces for colors, display

engines, tools, and extensions. Red boxes indicate code dependencies of Avogadro, blue boxes indicate plugin API classes, and green boxes

inidicate examples of each plugin type.

Hanwell et al. Journal of Cheminformatics 2012, 4:17 Page 4 of 17

http://www.jcheminf.com/content/4/1/17

to the display type list, and menu entries are added for all

loaded extensions.

The tool and display type plugins can both (option-

ally) provide a dialog for configuring the plugin. Dialogs

are specific to each plugin and integrated into the user

interface.

Display types

Display plugins are referred to as “engines” internally.

Their primary focus is rendering graphics to the screen.

As is the case with most molecular graphics, a large por-

tion of the geometric primitives are spheres and cylinders,

typically used to represent atoms and bonds. There are

many other properties that can be rendered using the dis-

play type plugins, for example, some of the engines also

convey information about the underlying data the geomet-

ric primitives represent to allow for the molecule to be

edited. Table 1 shows a summary of the display plugins

distributed with Avogadro.

Engines are performance critical as the render functions

are called each time a frame is requested for display. Effi-

cient rendering is also critical since multiple display types

Table 1 List of default display type (engine) plugins

Name Description

Axes Renders x, y, z Cartesian axes from the origin

Ball and Stick Standard ball and stick representation

Cartoon Secondary biological structure (α helix and β sheet)

Dipole Render direction/magnitude of dipole

moment if present

Force Renders arrows showing forces on atoms from

force field

Hydrogen Bond Renders hydrogen bonds as dotted lines

Label Shows labels on atoms and bonds, configurable

Overlay Overlay of color gradient used for electrostatic

properties

Polygon Renders closed polygons of metallic centers

Ribbon Basic secondary structure ribbon rendering

Ring Renders rings in structure, different colors

depending on ring size

Simple Wireframe Very simple wireframe display

Sticks Stick or liquorice rendering style for atoms

and bonds

Surface Renders triangular isosurface meshes

Van der Waals Van der Waals sphere rendering (no bonds,

Spheres space-filling)

Wireframe Wireframe with more features such as bond order

rendering

can be combined to form a composite display. For exam-

ple, ball and stick display overlaid with a transparent Van

derWaals space-filling display and ring rendering to high-

light all rings in the structure. Figure 2 (d) and (f) show

two such combinations of multiple display types.

Tools

The tools are responsible for virtually all mouse and key-

board interaction with the molecule. A list of all tools is

given in Table 2.

The navigation tool provides basic scene navigation,

implementing rotation,panning, tilting, and zooming sup-

port. The initial point of interaction (where the click

occurs) changes the anchor point for navigation; navi-

gation takes place about the center of molecule when

clicking in empty space or about the center of any clicked

atom. During interaction, the navigation tool provides

visual cues to show what type of navigation is taking place.

The navigation tool is also used as the default tool if the

currently active tool does not handle the mouse event

passed to it.

One of the other central tools is the draw tool, which

implements a free-hand molecule drawing input method

supporting keyboard shortcuts, combo boxes, and a peri-

odic table view to select elements. The user can use the left

mouse button to add new atoms or bonds, or click on the

bonds to change their order. The right mouse button can

be used to delete atoms or bonds, and the directional keys

can be used in combination with the mouse to quickly

rotate/pan the molecule.

There are also two tools for adjustment of structures

(atom or bond centric), a selection tool supporting stan-

dard selection interactions, and an auto-rotate tool that

allows users to set the speed and angles about which

to rotate the molecule. The interactive auto-optimization

tool provides a sculpting interaction, where the user can

begin a continuous geometry optimization and switch

back to the draw or adjustment tools and change the shape

and structure of the molecule while observing the new

structure being optimized. This can also be combined

with the measurement tool to interactively observe bond

lengths and angles evolve as the structure is updated and

the geometryminimized. If the optimization tool is turned

off, the measurement tool also allows the user to precisely

adjust bond lengths and/or angles using the adjustment

tools.

Extensions

Extensions represent quite a diverse range of plugins

including input generation dialogs for various quantum

chemistry codes such as GAMESS, Molpro, NWChem,

etc., animation of the molecule, and visualization of

molecular orbitals and electron density. Network aware

extensions allow the user to click on a menu item to fetch

Hanwell et al. Journal of Cheminformatics 2012, 4:17 Page 5 of 17

http://www.jcheminf.com/content/4/1/17

Figure 2 Standard molecular structure representations. Several molecular representations of thiophene, (a) wireframe, (b) stick/licorice, (c) ball

and stick, (d) ball and stick with ring, (e) Van der Waals/CPK and (f) transparent Van der Waal’s with stick.

by chemical name and search for “tnt” or “propanol” and

have structures returned by the NIH CACTUS Chem-

ical Structure Resolver service [54]. A summary of the

extensions distributed with Avogadro is shown in Table 3.

Other extensions translate the entire scene to POV-

Ray input, and call POV-Ray to render the molecule

using ray tracing techniques to provide higher quality

renderings for publication. Various molecular property

dialogs are also implemented as plugins, drawing largely

on Open Babel functionality to provide an overview of

the molecule. Cartesian editors, addition and removal

of hydrogens, fragment, SMILES, and peptide insertion

Table 2 List of default mouse tool plugins

Name Description

Draw Tool Build and edit atoms

Navigate Tool Move the camera, rotate, pan, and zoom

Bond Centric Alter bond lengths, angles, and torsions

Manipulate Tool Move atoms and selected fragments

Select Tool Select individual atoms, bonds, or fragments

Auto Rotate Tool Continuously rotate a molecule for presentations

Auto Optimize Tool Continuously optimize molecular geometry using

molecular mechanics

Measure Tool Determine bond lengths, angles, and dihedrals

Align Tool Rotate and translate to a specified frame of

reference

are all implemented as extensions showing up in Avo-

gadro menus. More recently a crystallography extension

was added, giving access to a much wider range to func-

tionality useful to practitioners in that area, including

Miller Plane visualization, slab and surface generation.

New builders for nanotubes, nanoparticles, and DNA are

also planned for upcoming releases.

Colors

The color plugins primarily take either double precision

numbers or integer values and return an RGB value.

The plugins range from the standard color plugin that

takes atomic number and returns the standard RGB value

for that element through to mapping things like partial

change and index to more easily view various aspects of

the molecule’s structure.

By defining a plugin interface for coloring atoms, bonds,

or residues, developers can easily offer flexible render-

ing options to highlight important information without

requiring a user to tediously set colors on specific atoms

or functional groups. Default color plugins are listed in

Table 4, illustrating the variety of options. Each plugin is

usually only 40-50 lines of C++ code.

Python scripting

Python bindings are provided for all of the core API.

Python code can be used in two ways: the first is the inter-

active Python terminal, and the second is to write Python

plugins; extensions, tools, or display types. Writing a

Hanwell et al. Journal of Cheminformatics 2012, 4:17 Page 6 of 17

http://www.jcheminf.com/content/4/1/17

Table 3 List of default extension commands

Name Description

Create Surfaces Create surface meshes from molecular orbital/

electron density data

GAMESS Prepare input files for GAMESS-US, featuring

syntax highlighting, advanced properties

Insert Fragment Insert molecular fragments from a library of

common fragments

Insert Peptide Build up and insert peptide fragments

Molecular Mechanics Use Open Babel’s force fields for geometry

optimization and conformer searches

MOPAC Prepare input for and run MOPAC200x

POV-Ray Ray-trace the displayed structure using POV-Ray

Properties

Angle Properties Table of all bond angles (editable)

Atom Properties Table of all atoms with common properties

Bond Properties Table of all bonds with common properties

Molecule Properties Common properties of the molecule (including

molecular weight, etc.)

Torsion Properties Table of all dihedral angles (editable)

Spectra Visualize spectra from output files

Super Cell Builder Expand atoms with space group, replicate

specified repeats and perform simple bonding

Unit Cell Change crystallographic unit cell display and

parameters

Vibrations Show and animate molecular vibrations

Python plugin requires the same functionality to be imple-

mented as a native C++ plugin [55]. The advantage of

Python plugins is that it’s easier to make prototypes since

no compilation is required. Python plugins can also easily

be shared with other users.

The Python bindings interface with the PyQt python

bindings for the Qt toolkit, which enables Python code to

use all of Qt’s features when writing a plugin. For example,

a short Python script can present a window using Qt and

render molecules using Avogadro [56-58].

Avogadro also includes an interactive Python console

(Figure 3, which allows users to directly script and manip-

ulate the Avogadro environment [59].

Results and discussion
The graphical user interface

The first thing most people will see is the main Avo-

gadro application window, as shown in Figure 4. Binary

installers are provided for Apple Mac OS X andMicrosoft

Windows, along with packages for all of the major Linux

distributions. This means that Avogadro can be installed

quite easily on most operating systems. Easy to follow

instructions on how to compile the latest source code are

also provided on the main Avogadro web site [60,61] for

the more adventurous, or those using an operating system

that is not yet supported.

The Qt toolkit gives Avogadro a native look and feel

on the three major supported operating systems—Linux,

Apple Mac OS X, and Microsoft Windows. The basic

functionality expected in a molecular builder and viewer

has been implemented, along with several less common

features. It is very easy for new users to install Avogadro

and build their first molecules within minutes. Thanks to

the Open Babel library [51], Avogadro supports a large

portion of the chemical file formats that are in common

use. The vast majority of this functionality has been writ-

ten using the interface made available to plugin writers,

and is loaded at runtime. We will discuss these plugin

interfaces and descriptions of the plugin types later.

Semantic chemistry

Avogadro has used CML [19,20] as its default file format

from a very early stage; this was chosen over other file

formats because of the extensible, semantic structure pro-

vided by CML, and the support available in Open Babel

[51]. The CML format offers a number of advantages over

others in common use, including the ability to extend the

format. This allows Avogadro and other programs to be

future-proof, adding new information and features neces-

sary for an advanced semantically-aware editor at a later

time, while still remaining readable in older versions of

Avogadro.

Through the use of Open Babel [51], a large array of

file formats can be interpreted.When extending Avogadro

to read in larger amounts of the output from quantum

codes, it was necessary to devote significant develop-

ment resources to understanding and adding semantic

meaning to the quantum code output. This work was

developed in a plugin, which was later split out into

Table 4 List of default color plugins

Name Description

Atom Index Color Color based on atom ID (from atom 1, 2, etc.)

Charge Color Color based on predicted electrostatic partial charge

Custom Color Color all atoms a specific, custom color

Distance Color Color based on distance from one end of the

molecule

Element Color Standard color scheme, giving each atom a color

(Default) defined by its element

Residue Color Color based on amino acid or nucleic acid residue

(i.e., glycine, histidine, etc.)

SMARTS Color Color atoms matching a specific SMARTS pattern

with a custom color

Hanwell et al. Journal of Cheminformatics 2012, 4:17 Page 7 of 17

http://www.jcheminf.com/content/4/1/17

Figure 3 Python scripting terminal, printing atomic numbers.

a small independent library called OpenQube [62,63].

More recently a large amount of work has been done

by the Quixote project [64], JUMBO-Converters, and the

Semantic Physical Science workshop to augment quantum

codes to output more of this data directly from the code.

Since CML can be extended, it is possible to reuse exist-

ing conventions for molecular structure data, and add new

conventions for the additional quantum data.

Building a molecule: atom by atom

After opening Avogadro a window such as that shown in

Figure 4 is presented. By default, the draw tool is selected.

Simply left-clicking on the black part of the display allows

the user to draw a carbon atom. If the user pushes the left

mouse button down and drags, a bonded carbon atom is

drawn between the start point and the final position where

the mouse is released.

A large amount of effort has been expended to create

an intuitive tool for drawing small molecules. Common

chemical elements can be selected from a drop down list,

or a periodic table can be displayed to select less com-

mon elements. Clicking on an existing atom changes it

to the currently selected element, dragging changes the

atom back to its previous element and draws a new atom

Figure 4 The Avogadro graphical user interface. Taken on Mac OS X, showing the editing interface for a molecule.

Hanwell et al. Journal of Cheminformatics 2012, 4:17 Page 8 of 17

http://www.jcheminf.com/content/4/1/17

bonded to the original. If the bonds are left-clicked then

the bond order cycles between single, double, and triple.

Shortcut keys are also available, e.g., typing the atomic

symbol (e.g., “C-o” for cobalt) changes the selected ele-

ment, or typing the numbers “1,” “2,” and “3” changes the

bond order.

Right clicking on atoms or bonds deletes them. If the

“Adjust Hydrogens” box is checked, the number of hydro-

gens bonded to each atom is automatically adjusted to

satisfy valency. Alternatively, this can also be done at the

end of an editing session by using the “Add hydrogens”

extension in the build menu.

In addition to the draw tool, there are two tools for

adjusting the position of atoms in existing molecules. The

“atom centric manipulate” tool can be used to move an

atom or a group of selected atoms. The “bond centric

manipulate” tool can be used to select a bond, and then

adjust all atoms positions relative to the selected bond in

various ways (e.g., altering the bond length, bond angles,

or dihedral angles). These three tools allow for a great

deal of flexibility in building small molecules interactively

on screen.

Once the molecular structure is complete, the force

field extension can be used to perform a geometry opti-

mization. By clicking on “Extensions” and “Optimize

Geometry” a fast geometry optimization is performed on

the molecule. The force field and calculation parameters

can be adjusted, but the defaults are adequate for most

molecules. This workflow is typical when building up a

small molecular structures for use as input to quantum

calculations, or publication quality figures.

An alternative is to combine the “Auto Optimization”

tool with the drawing tool. This presents a unique way of

sculpting the molecule while the geometry is constantly

minimized in the background. The geometry optimiza-

tion is animated, and the effect of changing bond orders,

adding new groups, or removing groups can be observed

interactively.

Several dialogs are implemented to provide information

on molecule properties and to precisely change parame-

ters, such as the cartesian coordinates of the atoms in the

molecule.

Building a molecule: from fragments

In addition to building molecules atom-by-atom, users

can insert pre-built fragments of common molecules,

ligands, or amino-acid sequences, as shown in Figure 5. In

all cases, after inserting the fragment, the atom-centered

manipulate tool is selected, allowing the fragment to be

moved or rotated into position easily.

Users can also insert a SMILES [65,66] string for a

molecule. In this case, a rough 3D geometry is generated

using Open Babel and a quick force field optimization.

Preparing input for quantum codes

Several extensions were developed for Avogadro that

assist the user in preparing input files for popular

quantum codes such as GAMESS-US, [67] NWChem,

[68] Gaussian, [69] Q-Chem, [70] Molpro, [71] and

MOPAC200x [72]. The graphical dialogs present the fea-

tures required to run basic quantum calculations; some

examples are shown in Figure 6.

The preview of the input file at the bottom of each

dialog is updated as options are changed. This approach

helps new users of quantum codes to learn the syntax of

input files for different codes, and to quickly generate use-

ful input files as they learn. The input can also be edited

by hand in the dialog before the file is saved and sub-

mitted to the quantum code. The MOPAC extension can

also run the MOPAC200x program directly if it is avail-

able on the user’s computer, and then reload the output

Figure 5 Dialogs for inserting pre-built fragments. The left shows molecules, and the right amino-acid sequences.

Hanwell et al. Journal of Cheminformatics 2012, 4:17 Page 9 of 17

http://www.jcheminf.com/content/4/1/17

Figure 6 Dialog for generating input for quantum codes. Dialogs for generating input for Q-Chem, NWChem, Molpro and MOPAC200x. Note

that the dialogs are similar in interface, allowing users to use multiple computational chemistry packages.

file into Avogadro once the calculation is complete. This

feature will be extended to other quantum codes in future

versions of Avogadro.

The GAMESS-US plugin is one of the most highly

developed, featuring a basic dialog present in most of the

other input deck generators, as well as an advanced dialog

exposing many of the more unusual and complex calcula-

tion types. In addition to the advanced dialog, the input

deck can be edited inline and features syntax highlight-

ing (Figure 7) as used in many popular editors aimed

at software developers. This can indicate simple typing

errors in keywords, as well as harder to spot whitespace

errors that would otherwise cause the hand-edited input

deck to fail when being read by GAMESS-US.

Alignment andmeasurements

One of the specialized tools included in the standard Avo-

gadro distribution is the alignment tool. This mouse tool

facilitates the alignment of a molecular structure with

the coordinate origin if one atom is selected, and along

the specified axis if two atoms are selected. The align-

ment tool can be combined with the measure, select,

and manipulate tools to create inputs for quantum codes

where the position and orientation of the molecule is

important. One example of this is calculations where an

external electric field is applied to the molecule. In these

types of calculations, the alignment of the molecule can

have a large effect. Figure 8 shows themeasurement tool in

action with the alignment tool configuration dialog visible

in the lower-left corner.

More complex alignment tools for specific tasks could

be created. The alignment tool was created in just a few

hours for a specific research project. This is a prime exam-

ple where extensibility was very important for performing

research using a graphical computational chemistry tool.

It would not be worth the investment to create a new

application just to align molecular structures to an axis,

but creating a plugin for an extensible project is not

unreasonable.

Hanwell et al. Journal of Cheminformatics 2012, 4:17 Page 10 of 17

http://www.jcheminf.com/content/4/1/17

Figure 7 The GAMESS-US input deck generator. This input generator has an advanced panel and syntax highlighting.

Visualization

The Avogadro application uses OpenGL to render molec-

ular representations to the screen interactively. OpenGL

offers a high-level, cross-platform API for rendering

three-dimensional images using hardware accelerated

graphics. OpenGL 1.1 and below is used in most of the

rendering code, and so Avogadro can be used even on

older computer systems, or those without more modern

accelerated graphics. It is capable of taking advantage of

some of the newer features available in OpenGL 2.0 as

described below, but this has been kept as an optional

extra feature when working on novel visualizations of

molecular structure.

Standard representations

In chemistry, there are several standard representations of

molecular structure, originally based upon those possible

with physical models. The Avogadro application imple-

ments each of these representations shown in Figure 2 as

a plugin. These range from the simple wireframe repre-

sentation, stick/licorice, ball and stick, and Van der Waals

spheres.

It is also possible to combine several representations,

such as ball and stick with ring rendering (Figure 2 (d)),

and a semi-transparent Van der Waals space-filling repre-

sentation with a stick representation to elucidate molecu-

lar backbone (Figure 2 (f)).

Quantum calculations and electronic structure

Quantum codes were originally developed for line print-

ers, and unfortunately little has changed since then in the

standard log files. There are several formats developed for

use in other codes and specifically for visualization and

analysis, but there is little agreement on any standard file

format in the computational quantum chemistry commu-

nity. A plugin was developed in Avogadro to visualize the

output of various quantum codes, and get the data into the

right format for further visualization and analysis.

Initially support was added and extended in Open Babel

for Gaussian cube files. This format provides atomic coor-

dinates and one or more regularly spaced grids of scalar

values. This can be read in, and techniques such as the

marching cubes algorithm can be used to compute trian-

gular meshes of isosurfaces at values of electron density

for example. Once the code has been developed to visu-

alize these isosurfaces, it became clear that it would be

useful to be able to calculate these cubes on the fly, and at

different levels of detail depending upon the intended use.

The first format, which was somewhat documented at

the time it was developed, is the Gaussian formatted

checkpoint format. This format is much easier to parse

than the log files generated as the program runs, and

provides all of the detail needed to calculate scalar val-

ues of the molecular orbital or electron density at any

point in space. Once a class structure had been developed

Hanwell et al. Journal of Cheminformatics 2012, 4:17 Page 11 of 17

http://www.jcheminf.com/content/4/1/17

Figure 8 The measurement tool. The measurement tool being used to measure bond angles and lengths (on Linux with KDE 4).

for Gaussian type orbitals, the approach was extended

to read in several other popular output file formats

including Q-Chem, GAMESS-US, NWChem, and Mol-

pro. MOPAC200x support was added later, along with

support for the AUX format and Slater type orbitals used

in that code. All of these codes output their final config-

urations using the standard linear combination of atomic

orbitals, meaning that parallelization is extremely simple.

The plugin was developed to take advantage of the map-

reduce approach offered by QtConcurrent in order to

use all available processor cores. This offers almost lin-

ear scaling as each point in the grid can be calculated

independently of all other points, the results of which can

be seen in Figure 9. An alternate approach to calculating

the molecular orbitals was developed in a second plu-

gin that has since been split off into a separate project

named “OpenQube”. The “OpenQube” library has also

been added as an optional backend in VTK during the

2011 Google Summer of Code, bringing support for sev-

eral output file formats and calculation of cube files that

can later be fed into more advanced data pipelines.

A class hierarchy with a standard API is provided for

quantum output. Adding support for new codes involved

developing a new parser and ensuring the Gaussian or

Figure 9Molecular orbitals and surfaces. Rendering of a molecular orbital isosurface (left) and an electrostatic surface potential mapped onto

the electron density (right).

Hanwell et al. Journal of Cheminformatics 2012, 4:17 Page 12 of 17

http://www.jcheminf.com/content/4/1/17

Slater set is populated with the correct ordering and the

expected normalization scheme. The s, p, and d-type

Gaussian orbitals are supported, with f and g support

planned in order to support the increasing number of

calculations using these higher-order orbitals. The Basis

Set Exchange hosted by EMSL provides access to the

basis sets in common use, although at present these basis

sets are normally read in directly from the output files.

There are several related projects for adding semantic

meaning to this type of output, including the JUMBO-

Converters project and Quixote. It is hoped that more

codes will adopt semantic output in the future, using a

common format so that data exchange, validation, and

analysis become easier across several codes. This was

the subject of a recent meeting with several computa-

tional chemistry codes beginning to use FoX in order to

output CML. Development has begun on code to read

in CML output, either directly from the codes or from

conversion of other formats using Open Babel or the

JUMBO-Converters. If enough semantic structure can

be added to CML, and the converters support a large

enough range of the output, this could replace most of

the parsing code present in OpenQube. Semantic mean-

ing is one of the most difficult to extract from log files,

and coming together as a community will help projects

like Avogadro to derive more meaning from the outputs of

these codes.

Secondary biological structure

Avogadro uses the PDB reader from Open Babel to read

in the secondary biological structure. Two plugins exist

to process and render this information. The first is a plu-

gin which renders a simple tube between the biomolecule

backbone atoms. A second more advanced plugin calcu-

lates meshes for the alpha helices and beta sheets. While

the first plugin is much faster, the advanced plugin more

accurately produces output expected in the field. This

allows users flexibility for rendering secondary biological

structures.

GLSL, novel visualization

GLSL, or OpenGL Shader Language, is a C-like syntax

that can be used to develop code that will run on graphics

cards and included in the OpenGL 2.0 specification. It has

been used to great effect by the games industry, as well as

in many areas of data visualization. Several recent papers

highlight the potential in chemistry, such as QuteMol [5]

in adding support for features such as ambient occlusion

to add depth to images.

Avogadro has support for vertex and fragment shader

programs, and several examples are bundled with the

package. If the user’s graphics card is capable, these pro-

grams can be loaded at runtime and used to great effect

to visualize structure. Some of these include summariza-

tion techniques such as isosurface rendering where only

the edges orthogonal to the view plane are visible, giv-

ing a much better rendering of both the molecular and

electronic structure (Figure 10).

Ray tracing

Avogadro uses a painter abstraction that makes it much

easier for developers to add new display types. It also

abstracts away the renderer, making it possible to add

support for alternative backends. Currently only OpenGL

and POV-Ray are supported. Due to the abstraction, we

are able to use the implicit surfaces available in ray trac-

ers to render molecular structure at very high levels of

clarity and with none of the triangle artifacts present in

standard OpenGL rendered images. Much higher quality

transparency and reflection also allow for the images to be

used in poster and oral presentations as well as research

articles (Figure 11).

This feature is implemented in an extension, with an

additional painter class deriving from the base class and

a dialog allowing the user to edit the basic rendering

controls. The POV-Ray input file can also be retained

and edited to produce more complex images, or to

allow for much finer control of the rendering process if

desired.

Figure 10Molecular orbitals rendering using GLSL shaders. Rendering of a molecular orbital isosurface using two GLSL shaders to highlight the

edges of the surfaces. The X-ray effect (left) and red and blue (right) showing the positive and negative molecular orbital shapes.

Hanwell et al. Journal of Cheminformatics 2012, 4:17 Page 13 of 17

http://www.jcheminf.com/content/4/1/17

Figure 11 Ray-traced HOMO isosurfaces of varying cube density. Rendering of a molecular orbital isosurface using POV-Ray with cubes of low

(left) and high (right) density.

Avogadro library in use

The Avogadro library’s first use was the Avogadro appli-

cation, closely followed by the Kalzium periodic table

program that is part of the KDE software collection. This

initial work was funded in part by the Google Summer

of Code program in 2007, and also resulted in the addi-

tion of several other features in the Avogadro library to

support Kalzium and general visualization and editing of

molecular structure (Figure 12).

The Q-Chem package [70] has developed “QUI - The

Q-Chem User Interface” [73] around Avogadro, originally

as an Avogadro extension. This is a more advanced ver-

sion of the input generator developed in Avogadro, with

much tighter integration. Molpro [71] has also published

some results from their development of aMolpro interface

using the Avogadro library [74].

Packmol

Packmol is a third-party package designed to create ini-

tial “packed” configurations of molecules for molecular

dynamics or other simulations [75,76]. Examples include

surrounding a protein with solvent, solvent mixtures, lipid

bilayers, spherical micelles, placing counterions, adding

ligands to nanoparticles, etc. Typically, users may have

equilibrated “solvent boxes” which have been run for long

simulations to ensure proper density, and both short and

long-range interactions between solvent molecules. Using

such solvent boxes allows placing solute molecules, such

Figure 12 The Kalzium application in KDE using Avogadro to render molecular structures.

Hanwell et al. Journal of Cheminformatics 2012, 4:17 Page 14 of 17

http://www.jcheminf.com/content/4/1/17

Figure 13 The PackMol lipid layer as produced by the PackMol extension.

as proteins, in an approximately correct initial structure,

such as that shown in Figure 13. The solute is added into

the box, and solvent molecules with overlapping atoms are

removed. While these utilities are often enough, creating

complex input files is not always easy. For more compli-

cated systems, Packmol can create an initial configuration

based on defined densities, geometries (e.g., sphere, box,

etc.), and the molecules to be placed. An Avogadro devel-

oper wrote an external plugin to facilitate use of Packmol,

including estimating the number of molecules in a given

volume.

The plugin is not currently distributed with Avogadro as

a standard feature, although it is planned for some future

version. It serves as an example of howAvogadro can facil-

itate a workflow with a text-oriented package (Packmol),

including saving files in the PDB format required by Pack-

mol, generating an input file, and reading the output for

visualization, analysis, and further simulations.

Figure 14 The XtalOpt extension. XtalOpt extension showing a plot of stability vs. search progress for a TiO2 supercell.

Hanwell et al. Journal of Cheminformatics 2012, 4:17 Page 15 of 17

http://www.jcheminf.com/content/4/1/17

XtalOpt

The XtalOpt [77,78] software package is implemented as a

third-party C++ extension to Avogadro and makes heavy

use of the libavogadro API. The extension implements

an evolutionary algorithm tailored for crystal structure

prediction. The XtalOpt development team chose Avo-

gadro as a platform because of its open-source license,

well-designed API, powerful visualization tools, and intu-

itive user-interface. XtalOpt exists as a dialog window

(Figure 14) and uses the main Avogadro window for visu-

alizing candidate structures as they evolve. The API is well

suited for XtalOpt’s needs, providing a simple mechanism

to allow the user to view, edit, and export the struc-

tures generated during the search. Taking advantage of the

cross-platform capabilities of Avogadro and its dependen-

cies, XtalOpt is available for Linux, Windows, and Mac.

Conclusions
Avogadro has grown over its first six years to become an

important tool for building, editing, visualizing, and ana-

lyzing chemical and molecular data. With over 270,000

downloads, language translations and localizations, and

over 100 citations, it has become an integral part of the

chemical software toolbox. Through use of the native

CML file format and a wide variety of chemical data

import, Avogadro can provide semantic chemical data

editing and conversion. We seek to provide an inte-

grated environment in the simulation and cheminfor-

matics workflow. While more must be done, particularly

in regards to documentation, tutorials, ease-of-use, and

automation, we aim to improve the quality and feature set

with each new release.

Currently, two upcoming versions of Avogadro are

under development. The first is Avogadro version 1.1,

which adds additional features and refinement, par-

ticularly including crystallography support developed

through the XtalOpt project. The second is a more sub-

stantial development for Avogadro version 2.0, where

many of the core data structures are being rewritten

in order to offer greater flexibility and scalability. Our

goal is to support an increasing scope of chemical sys-

tems, including biomolecules (DNA, RNA, saccarides,

etc.), materials (crystallography, polymers, surfaces),

nanoscience (nanoparticles, nanotubes, graphene, etc.)

with improved speed, intuitive ease-of-use and simpler

non-reciprocal licensing terms.

Avogadro is freely available from http://avogadro.

openmolecules.net/, and new contributors are welcome in

all areas (users, developers, testers, translators, educators,

students, researchers, dreamers).

Availability and requirements
Project Name: Avogadro

Project homepage: http://avogadro.openmolecules.net/

Operating system(s): Cross-platform

Programming language: C++, bindings to Python

Other requirements (if compiling): CMake 2.6+, Open

Babel, Qt 4.6+, Eigen 2

License: GNU GPL v2

Any restrictions to use by non-academics: None addi-

tional

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

GRH and DEC are the founders of the Avogadro project. MDH is the current

lead developer and maintainer of Avogadro. GRH, DL and TV are active

developers. DL and EZ are founders of the XtalOpt project which is discussed

in this work. TV developed the PackMol plugin. All authors read and approved

the final manuscript.

Acknowledgements

We wish to thank the many contributors to the Avogadro project, including

developers, testers, translators, and users. We thank SourceForge for providing

resources for issue tracking and managing releases, Launchpad for hosting

language translations, and Kitware for additional dashboard resources. MDH

and GRH thank the University of Pittsburgh for support. DEC would like to

thank Jan Halborg Jensen for designing the GAMESS-US interface and

supporting Avogadro in its infancy; believing Avogadro could be better than

what was available. MDH acknowledges the Engineering Research

Development Center (W912HZ-11-P-0019) for financial support. EZ and DL

acknowledge the NSF (DMR-1005413) for financial support.

Author details
1Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue,

Pittsburgh, PA, 15260, USA. 2Department of Scientific Computing, Kitware, Inc.,

28 Corporate Drive, Clifton Park, NY, 12065, USA. 3Department of Computer

Science, Coe College, 1220 First Avenue NE, Cedar Rapids, Iowa 52402, USA.
4Department of Chemistry, State University of New York at Buffalo, Buffalo,

New York 14260-3000, USA. 5Avogadro development team.

Received: 25 June 2012 Accepted: 31 July 2012

Published: 13 August 2012

References

1. Sayle R, Milner-White EJ: RasMol: Biomolecular graphics for all. Trends

Biochem Sci(TIBS) 1995, 20(9):374.

2. Hanson RM, Howard MT, Willighagen EL, et al.: Jmol: an open-source

Java viewer for chemical structures in 3D. 2012. [http://www.jmol.org]

3. DeLano WL: The PyMOLMolecular Graphics System. 2002. [http://

www.pymol.org]

4. Humphrey W, Dalke A, Schulten K: VMD - Visual Molecular Dynamics.

J Molec Graphics 1996, 14:33–38.

5. Tarini M, Cignoni P, Montani C: Ambient Occlusion and Edge Cueing

for Enhancing Real TimeMolecular Visualization. IEEE Trans

Visualization and Comput Graphics 2006, 12(5):1237–1244.

6. Mehlhorn K, Lenhof HP, Kholbacher O, Hildebrandt A: BALLView. 2012.

[http://www.ballview.org]

7. Momma K, Izuma F: VESTA 3 for three-dimensional visualization of

crystal, volumetric andmorphology data. J Appl Cryst 2011,

44:1272–1276.

8. Kokalj A: XCrySDen—a new program for displaying crystalline

structures and electron densities. J Mol Graphics andModel 1999,

17(3–4):176–179.

9. Kokalj A: Computer graphics and graphical user interfaces as tools in

simulations of matter at the atomic scale. Comput Mater Sci 2003,

28(2):155–168.

10. SCIGRESS 2012. [http://www.fujitsu.com/global/services/solutions/tc/

hpc/app/scigress]

11. ChemBio3D 2012. [http://www.cambridgesoft.com/software/

chembio3d]

12. GaussView 5 2012. [http://gaussian.com/g prod/gv5.htm]

http://avogadro.openmolecules.net/
http://avogadro.openmolecules.net/
http://www.jmol.org
http://www.pymol.org
http://www.pymol.org
http://www.ballview.org
http://www.fujitsu.com/global/services/solutions/tc/hpc/app/scigress
http://www.fujitsu.com/global/services/solutions/tc/hpc/app/scigress
http://www.cambridgesoft.com/software/chembio3d
http://www.cambridgesoft.com/software/chembio3d
http://gaussian.com/g_prod/gv5.htm

Hanwell et al. Journal of Cheminformatics 2012, 4:17 Page 16 of 17

http://www.jcheminf.com/content/4/1/17

13. HyperChem 2012. [http://www.hyper.com/]

14. CrystalMaker 2012. [http://www.crystalmaker.com]

15. Materials Studio 2001–2007. [http://accelrys.com/products/materials-

studio]

16. Spartan 2012. [http://www.wavefun.com]

17. Hassinen T, et al.: Ghemical. 2012. [http://www.uku.fi/thassine/projects/

ghemical]

18. Schaftenaar G, Noordik JH:Molden: a pre- and post-processing

program for molecular and electronic structures. J Comput-AidedMol

Des 2000, 14:123–134.

19. Murray-Rust P, Townsend J, Adams S, Phadungsukanan W, Thomas J: The

semantics of Chemical Markup Language (CML): dictionaries and

conventions. J Cheminformatics 2011, 3:43.

20. Murray-Rust P, Rzepa H: CML: Evolution and Design. J Cheminformatics

2011, 3:44.

21. Thomas J, Sherwood P: The CCP1 GUI Project. 2009. [http://www.cse.

scitech.ac.uk/ccg/software/ccp1gui]

22. Allouche AR: Gabedit. 2012. [http://gabedit.sourceforge.net]

23. Bode BM, Gordon MS:Macmolplt: a graphical user interface for

GAMESS. J Mol Graphics Model 1998, 16(3):133–138.

24. Avogadro Downloads 2012. [http://sourceforge.net/projects/avogadro/

files/stats/timeline?dates=2006-04-14+to+2012-03-29]

25. Avogadro Translations 2012. [https://translations.launchpad.net/

avogadro/trunk/+translations]

26. Avogadro Contributors 2012. [http://www.ohloh.net/p/avogadro/

contributors]

27. Avogadro Citations from Google Scholar 2012. [http://scholar.google.

com/scholar?&q=22http://avogadro.openmolecules.net/22]

28. Mera-Adasme R, Mendizábal F, Olea-Azar C, Miranda-Rojas S, Fuentealba

P: A Computationally Efficient and Reliable Bond Order Measure.

J Phys Chem A 2011, 115(17):4397–4405.

29. Closser KD, Head-Gordon M: Ab Initio Calculations on the

Electronically Excited States of Small Helium Clusters. J Phys Chem A

2010, 114(31):8023–8032.

30. Ide T, Takeuchi D, Osakada K, Sato T, Higuchi M: Aromatic Macrocycle

Containing Amine and Imine Groups: Intramolecular

Charge-Transfer andMultiple Redox Behavior. J Org Chem 2011,

76(22):9504–9506.

31. Menegazzo N, Zou Q, Booksh KS: Characterization of electrografted

4-aminophenylalanine layers for low non-specific binding of

proteins. New J Chem 2012, 36(4):963–970.

32. Patel DGD, Ohnishi Yy, Yang Y, Eom SH, Farley RT, Graham KR, Xue J,

Hirata S, Schanze KS, Reynolds JR: Conjugated polymers for pure UV

light emission: Poly(meta-phenylenes). J Polym Sci Part B-Polym Phys

2011, 49(8):557–565.

33. Popov AV, Gould EA, Salvitti MA, Hernandez R, Solntsev KM: Diffusional

effects on the reversible excited-state proton transfer. From

experiments to Brownian dynamics simulations. Phys Chem Chem

Phys 2011, 13(33):14914.

34. Hu W, Webb LJ: Direct Measurement of the Membrane Dipole Field in

Bicelles Using Vibrational Stark Effect Spectroscopy. J PhysChem Lett

2011, 2(15):1925–1930.

35. Bingöl B, Durrell AC, Keller GE, Palmer JH, Grubbs RH, Gray HB: Electron

Transfer Triggered by Optical Excitation of Phenothiazine-tris(meta-

phenylene-ethynylene)-(tricarbonyl)(bpy)(py)rhenium(I). J Phys

Chem B 2012:120503135353007 .

36. Yao CJ, Sui LZ, Xie HY, Xiao WJ, Zhong YW, Yao J: Electronic Coupling

between Two Cyclometalated Ruthenium Centers Bridged by

1,3,6,8-Tetra(2-pyridyl)pyrene (tppyr). Inorg Chem 2010,

49(18):8347–8350.

37. Fleisher A, Morgan P, Pratt D: High-Resolution Electronic Spectroscopy

Studies of meta-Aminobenzoic Acid in the Gas Phase Reveal the

Origins of its Solvatochromic Behavior. Chem Phys Chem 2011,

12(10):1808–1815.

38. Mayorkas N, Malka I, Bar I: Ionization-loss stimulated Raman

spectroscopy for conformational probing of flexible molecules. Phys

Chem Chem Phys 2011, 13(15):6808–6815.

39. Tian H, Bora I, Jiang X, Gabrielsson E, Karlsson KM, Hagfeldt A, Sun L:

Modifying organic phenoxazine dyes for efficient dye-sensitized

solar cells. J Mater Chem 2011, 21(33):12462.

40. Kapla J, Stevensson B, Dahlberg M, Maliniak A:Molecular Dynamics

Simulations of Membranes Composed of Glycolipids and

Phospholipids. J Phys Chem B 2012, 116:244–252.

41. Mandal D, Mondal B, Das AK: Nucleophilic Degradation of

Fenitrothion Insecticide and Performance of Nucleophiles:

a Computational Study. J Phys Chem A 2012, 116(10):2536–2546.

42. Bernstein N, Kulp III JL, Cato Jr MA, Clark TD: Simulations of

Nanocylinders Self-Assembled from Cyclic β-Tripeptides. J Phys

Chem A 2010, 114(44):11948–11952.

43. Hlawacek G, Khokhar FS, van Gastel R, Poelsema B, Teichert C: Smooth

Growth of Organic Semiconductor Films on Graphene for

High-Efficiency Electronics. Nano Lett 2011, 11(2):333–337.

44. Förster S, Hahn T, Loose C, Röder C, Liebing S, Seichter W, Eißmann F,

Kortus J, Weber E: Synthesis and characterization of new derivatives

of azulene, including experimental and theoretical studies of

electronic and spectroscopic behavior. J Phys Org Chem 2012: . [http://

onlinelibrary.wiley.com/doi/10.1002/poc.2934/abstract?

deniedAccessCustomisedMessage=&userIsAuthenticated=false]

45. Burkhardt SE, Rodŕıguez-Calero GG, Lowe MA, Kiya Y, Hennig RG, Abruña

HD: Theoretical and Electrochemical Analysis of Poly(3,4-

alkylenedioxythiophenes): Electron-Donating Effects and Onset of

p-Doped Conductivity. J Phys Chem C 2010, 114(39):16776–16784.

46. Burkhardt SE, Conte S, Rodŕıguez-Calero GG, Lowe MA, Qian H, Zhou W,

Gao J, Hennig RG, Abruña HD: Towards organic energy storage:

characterization of 2,5-bis(methylthio)thieno[3,2-b]thiophene.

J Mater Chem 2011, 21(26):9553.

47. Madison TA, Hutchison GR: Effects of Charge Localization on the

Orbital Energies of Bithiophene Clusters. J Phys Chem C 2011,

115(35):17558–17563.

48. Guha R, Howard MT, Hutchison GR, Murray-Rust P, Rzepa H, Steinbeck C,

Wegner J, Willighagen EL: The Blue Obelisk - Interoperability in

Chemical Informatics. J Chem Inf andModel 2006, 46(3):991–998.

49. O’Boyle N, Guha R, Willighagen E, Adams S, Alvarsson J, Bradley JC,

Filippov I, Hanson R, Hanwell M, Hutchison G, James C, Jeliazkova N, Lang

A, Langner K, Lonie D, Lowe D, Pansanel J, Pavlov D, Spjuth O, Steinbeck

C, Tenderholt A, Theisen K, Murray-Rust P: Open Data, Open Source and

Open Standards in chemistry: the Blue Obelisk five years on.

J Cheminformatics 2011, 3:37.

50. Qt Framework 2012. [http://qt-project.org/]

51. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison

GR: Open Babel: an open chemical toolbox. J Cheminf 2011, 3:33.

52. Guennebaud G, Jacob B, et al.: Eigen v2. 2010. [http://eigen.tuxfamily.org]

53. GNU General Public License v2.0 2012. [http://www.gnu.org/licenses/

gpl-2.0.html]

54. Sitzmann M, Filippov IV, Nicklaus MC: Internet resources integrating

many small-molecule databases. SAR QSAR Environ Res 2008,

19(1–2):1–9.

55. Python Extensions - Avogadro wiki 2012. [http://avogadro.

openmolecules.net/wiki/Python Extensions]

56. Vandermeersch T: Python Example. 2009. [http://timvdm.blogspot.

com/2009/05/using-avogadro-library-from-python.html]

57. Python Scripting in Avogadro 2012. [http://avogadro.openmolecules.

net/wiki/Category:Scripting]

58. PyQt Scripting Example 2012. [https://gist.github.com/3194164]

59. Vandermeersch T: Avogadro Python Terminal Tutorial 2012. [http://

avogadro.openmolecules.net/wiki/Tutorials:Console]

60. Compiling Avogadro onWindows 2012. [http://avogadro.

openmolecules.net/wiki/Compiling on Windows]

61. Compiling Avogadro on Linux 2012. [http://avogadro.openmolecules.

net/wiki/Compiling on Linux and Mac OS X]

62. Hanwell MD: OpenQube. 2012. [http://www.openchemistry.org]

63. OpenQube Source 2012. [http://github.com/OpenChemistry/

openqube]

64. Adams S, de Castro, P, Echenique P, Estrada J, Hanwell MD, Murray-Rust P,

Sherwood P, Thomas J, Townsend JA: The Quixote project:

Collaborative and Open Quantum Chemistry data management in

the Internet age. J Cheminformatics 2011, 3:38.

65. Weininger D: SMILES, a chemical language and information system. 1

Introduction tomethodology and encoding rules. J Chem Inf Comp Sci

1988, 28:31–36.

http://www.hyper.com/
http://www.crystalmaker.com
http://accelrys.com/products/materials-studio
http://accelrys.com/products/materials-studio
http://www.wavefun.com
http://www.uku.fi/ thassine/projects/ghemical
http://www.uku.fi/ thassine/projects/ghemical
http://www.cse.scitech.ac.uk/ccg/software/ccp1gui
http://www.cse.scitech.ac.uk/ccg/software/ccp1gui
http://gabedit.sourceforge.net
http://sourceforge.net/projects/avogadro/files/stats/timeline?dates=2006-04-14+to+2012-03-29
http://sourceforge.net/projects/avogadro/files/stats/timeline?dates=2006-04-14+to+2012-03-29
https://translations.launchpad.net/avogadro/trunk/+translations
https://translations.launchpad.net/avogadro/trunk/+translations
http://www.ohloh.net/p/avogadro/contributors
http://www.ohloh.net/p/avogadro/contributors
http://scholar.google.com/scholar?&q=22http://avogadro.openmolecules.net/22
http://scholar.google.com/scholar?&q=22http://avogadro.openmolecules.net/22
http://onlinelibrary.wiley.com/doi/10.1002/poc.2934/abstract?deniedAccessCustomisedMessage=&use rIsAuthenticated=false
http://onlinelibrary.wiley.com/doi/10.1002/poc.2934/abstract?deniedAccessCustomisedMessage=&use rIsAuthenticated=false
http://onlinelibrary.wiley.com/doi/10.1002/poc.2934/abstract?deniedAccessCustomisedMessage=&use rIsAuthenticated=false
http://qt-project.org/
http://eigen.tuxfamily.org
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html
http://avogadro.openmolecules.net/wiki/Python_Extensions
http://avogadro.openmolecules.net/wiki/Python_Extensions
http://timvdm.blogspot.com/2009/05/using-avogadro-library-from-python.html
http://timvdm.blogspot.com/2009/05/using-avogadro-library-from-python.html
http://avogadro.openmolecules.net/wiki/Category:Scripting
http://avogadro.openmolecules.net/wiki/Category:Scripting
https://gist.github.com/3194164
http://avogadro.openmolecules.net/wiki/Tutorials:Console
http://avogadro.openmolecules.net/wiki/Tutorials:Console
http://avogadro.openmolecules.net/wiki/Compiling_on_Windows
http://avogadro.openmolecules.net/wiki/Compiling_on_Windows
http://avogadro.openmolecules.net/wiki/Compiling_on_Linux_and_Mac_OS_X
http://avogadro.openmolecules.net/wiki/Compiling_on_Linux_and_Mac_OS_X
http://www.openchemistry.org
http://github.com/OpenChemistry/openqube
http://github.com/OpenChemistry/openqube

Hanwell et al. Journal of Cheminformatics 2012, 4:17 Page 17 of 17

http://www.jcheminf.com/content/4/1/17

66. James CA, Willighagen EL, Dalke A, Landrum G, Apodaca R, Morley C:

OpenSMILES. 2012. [http://opensmiles.org]

67. Schmidt M, Baldridge K, Boatz J, Elbert S, Gordon M, Jensen J, Koseki S,

Matsunaga N, Nguyen K, Su S, Windus T, Dupuis M, Montgomery J:

General Atomic andMolecular Electronic-Structure System.

J Comput Chem 1993, 14(11):1347–1363.

68. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, Van Dam HJJ,

Wang D, Nieplocha J, Apra E, Windus TL, de Jong W: NWChem: a

comprehensive and scalable open-source solution for large scale

molecular simulations. Comput Phys Commun 2010, 181(9):1477–1489.

69. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR,

Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M,

Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada

M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda

Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, et al.: Gaussian 09 Revision

A.1. Wallingford CT: Gaussian Inc.; 2009.

70. Shao Y, Molnar LF, Jung Y, Kussmann Jr, Ochsenfeld C, Brown ST, Gilbert

ATB, Slipchenko LV, Levchenko SV, O Neill DP, DiStasio Jr RA, Lochan RC,

Wang T, Beran GJO, Besley NA, Herbert JM, Yeh Lin C, Van Voorhis T, Hung

Chien S, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath PP,

Adamson RD, Austin B, Baker J, Byrd EFC, Dachsel H, Doerksen R J, et al.:

Advances in methods and algorithms in a modern quantum

chemistry program package. Phys Chem Chem Phys 2006,

8(27):3172–3191.

71. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T,

Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD,

Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F,

Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C,

Liu Y, Lloyd AW, Mata RA, May AJ, et al.:MOLPRO, version 2010.1, a package

of ab initio programs. Cardiff, UK ; 2010. See http://www.molpro.net

72. Stewart JJP:MOPAC2009. Internet. USA: Colorado Springs CO; 2008.

[http://openmopac.net]

73. Gilbert ATB: QUI - The Q-Chem User Interface 2008. [http://rsc.anu.edu.

au/agilbert/gilbertspace/qui.php]

74. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M:Molpro: a

general-purpose quantum chemistry program package.Wiley

Interdisciplinary Rev: Comput Mol Sci 2012, 2(2):242–253. [http://dx.doi.org/

10.1002/wcms.82]

75. Mart́ınez L, Andrade R, Birgin EG, Mart́ınez JM: Packmol: a package for

building initial configurations for molecular dynamics simulations.

J Comp Chem 2009, 30(13):2157–2164.

76. Mart́ınez JM, Martı́nez L: Packing optimization for automated

generation of complex system’s initial configurations for molecular

dynamics and docking. J Comp Chem 2003, 24(7):819–825.

77. Lonie D, Zurek E: XtalOpt. 2011. [http://xtalopt.openmolecules.net]

78. Lonie D, Zurek E: XtalOpt: an Open-Source Evolutionary Algorithm for

Crystal Structure Prediction. Comput Phys Commun 2011, 182:372–387.

doi:10.1186/1758-2946-4-17
Cite this article as: Hanwell et al.: Avogadro: an advanced semantic chem-
ical editor, visualization, and analysis platform. Journal of Cheminformatics
2012 4:17.

Open access provides opportunities to our

colleagues in other parts of the globe, by allowing

anyone to view the content free of charge.

Publish with ChemistryCentral and every

scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours you keep the copyright

Submit your manuscript here:

http://www.chemistrycentral.com/manuscript/

http://opensmiles.org
http://www.molpro.net
http://openmopac.net
http://rsc.anu.edu.au/ agilbert/gilbertspace/qui.php
http://rsc.anu.edu.au/ agilbert/gilbertspace/qui.php
http://dx.doi.org/10.1002/wcms.82
http://dx.doi.org/10.1002/wcms.82
http://xtalopt.openmolecules.net

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Software architecture
	Plugin interface
	Display types
	Tools
	Extensions
	Colors
	Python scripting

	Results and discussion
	The graphical user interface
	Semantic chemistry
	Building a molecule: atom by atom
	Building a molecule: from fragments
	Preparing input for quantum codes
	Alignment and measurements
	Visualization
	Standard representations
	Quantum calculations and electronic structure
	Secondary biological structure
	GLSL, novel visualization
	Ray tracing

	Avogadro library in use
	Packmol
	XtalOpt

	Conclusions
	Availability and requirements
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

