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Abstract
We consider real eigenfunctions of the Schrödinger operator in 2D. The nodal
lines of separable systems form a regular grid,and the number of nodal crossings
equals the number of nodal domains. In contrast, for wavefunctions of non-
integrable systems nodal intersections are rare, and for random waves, the
expected number of intersections in any finite area vanishes. However, nodal
lines display characteristic avoided crossings which we study in this work.
We define a measure for the avoidance range and compute its distribution for
the random wave ensemble. We show that the avoidance range distribution
of wavefunctions of chaotic systems follows the expected random wave
distributions, whereas for wavefunctions of classically integrable but quantum
non-separable systems, the distribution is quite different. Thus, the study of
the avoidance distribution provides more support to the conjecture that nodal
structures of chaotic systems are reproduced by the predictions of the random
wave ensemble.

PACS numbers: 05.45.Mt, 02.10.Yn

1. Introduction

The morphology of the nodal sets of wavefunctions depends crucially on whether the
underlying classical dynamics is integrable or chaotic. This was first proposed in [1] and
was followed by the study of various features of the nodal lines, such as the distribution of its
curvatures [2]. Recently, the counting statistics of nodal domains for integrable and chaotic
systems were investigated in [3], and it was shown that in the chaotic case, the statistics follow
the predictions derived by assuming that the wavefunctions are random superpositions of plane
waves [4, 5]. Local effects due to boundary conditions, and the corresponding modifications
of the random wave ensembles were also studied [6, 7].

The interest in the properties of the nodal set is not confined to the physics literature
only. Most of the mathematics literature on this subject is concerned with solutions of the
Helmholtz equation in the interior of compact domains in R

2 with Dirichlet or Neumann
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Figure 1. Eigenfunctions of 2D billiards: (a) rectangle (separable dynamics); (b) equilateral
triangle (integrable, non-separable dynamics); (c) Sinai (chaotic dynamics).

boundary conditions. Courant [8] and later Pleijel [9] pioneered these studies, and computed
an upper bound on the number of nodal domains. Krahn [10] provided a lower bound for the
area of a nodal domain. Other authors gave estimates on, e.g., the length of the nodal sets
[11], and addressed the general properties of the nodal network [12].

Uhlenbeck’s theorem [13] states that the nodal lines of ‘generic’ wavefunctions do not
intersect (this statement will be further discussed in the next section). An important class of
exceptions to this rule are the eigenfunctions of separable systems, where the nodal lines form a
grid, and the number of intersections equals the number of nodal domains. The purpose of this
work is to provide a quantitative measure of the degree by which nodal lines avoid each other.
We shall associate the avoidance range with each avoided crossing, and will compute their
distribution for the random wave ensemble. The avoidance range vanishes for an intersection,
and therefore, the avoidance range distribution for separable functions is proportional to a Dirac
δ at zero. We also show that eigenfunctions of classically chaotic systems display an avoidance
range distribution which is similar to that obtained for a random wave ensemble, while for an
intermediate system, the avoidance distribution differs substantially from either of the extreme
distributions mentioned above. The nodal structure for a few representative wavefunctions
can be seen in figure 1. The wavefunction of a rectangle (a) displays a perpendicular grid of
nodal lines typical of separable systems. An equilateral triangle (b) is classically integrable,
but not separable, and the wavefunction shows a few crossings and avoided crossings of the
nodal lines. The domain in (c) is a Sinai billiard where the classical dynamics is chaotic. With
the exception of the boundary crossings, the nodal set displays a characteristic set of avoided
crossings.

The paper is organized as follows. We shall begin the next section by discussing the
nodal structure of general solutions of the Helmholtz equation. We shall then identify avoided
crossings of the nodal lines, and define the corresponding avoidance range. The avoidance
range distribution will be written down explicitly. In section 3, we shall define the random
wave ensemble and compute explicitly the expected distribution of the avoidance ranges. The
resulting expression will be compared with the avoidance distributions obtained numerically
for high lying eigenfunctions of a chaotic domain. For Dirichlet problems, the boundary
belongs to the nodal set, where nodal intersections occur at a density which is approximately
two intersections per wavelength. This property cannot be reproduced by the uniform random
wave ensembles, which are expected to account for bulk properties. This problem, in the
context of the avoided crossing distribution, is discussed at the end of section 3.

2. Avoided crossings of nodal lines and the avoidance range

We consider real solutions of the Helmholtz equation in a domain � ∈ R
2 which can be

expressed as linear superpositions of regular solutions of the equation in the entire plane. They
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can be expressed in terms of either plane or cylindrical waves, and the two representations are
equivalent. In the plane wave representation the wavefunction is written as

�(r) =
∞∑

n=−∞
an eikn·r (1)

with wave vectors (kn = −k−n, |kn|2 = k2) directed at an angle θn and coefficients which
ensure that the series (1) converges absolutely (we require a∗

n = a−n to render �(r) real).
Using the expansion of a plane wave in cylindrical coordinates we get

�(r) =
∞∑

l=−∞
αlJl(kr) eilθ (2)

with

αl =
∞∑

n=−∞
an eilθn and α∗

l = (−1)lα−l . (3)

The infinite sums in both (1) and (2) can be truncated, when one considers domains of
finite area. Semiclassical arguments show that the necessary number of terms is L ≈ Lk/π ,
where L is the perimeter of the domain. For reasons which will become clear in the following,
we prefer to use the cylindrical wave representation in this work.

The expansion (2) refers to a particular choice of the origin. Using Graf’s addition
theorem [14] the origin can be shifted to r, and the wavefunction retains its form,

�(r + ρ) =
∑
m

αm(r)Jm(kρ) eimφ (4)

where

αm(r) =
∑

l

αl(0)Jl−m(kr) eilθ (5)

with αl(0) = αl , and the angle φ is measured from the direction defined by r. The translated
coefficients αm(r) = βm(r) + iγm(r) are related to the wavefunction and its derivatives
computed at the point r:

β0(r) = �(r)

β1(r) = 1

k
�r(r) γ1(r) = − 1

kr
�θ(r)

(6)
β2(r) = �(r) +

2

k2
�rr(r) γ2(r) = 2

k2r2
(�θ(r) − r�rθ (r))

�θθ(r) = −krβ1(r) − k2r2

2
(β2(r) + β0(r)).

In the close vicinity of r, where kρ < 1, and to second order in kρ

�(r + ρ) ≈ β0(r)

(
1 −

(
kρ

2

)2
)

+ |α1(r)|
(

kρ

2

)
cos(φ + φ1)

+
1

2
|α2(r)|

(
kρ

2

)2

cos 2(φ + φ2) (7)

where φl are the phases of αl(r). If β0(r) = 0, r is a nodal point. It cannot be an isolated
zero since the second term vanishes on the line segment through r which is oriented along
the direction π

2 − φ1. Hence, the nodal set consists of lines. Two nodal lines intersect at r
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if both β0(r) = 0 and α1(r) = 0, while α2(r) �= 0. The intersection is perpendicular since
cos 2(φ + φ2) vanishes along two perpendicular lines which intersect at r. For the time being
we shall continue the discussion assuming that α2(r) �= 0. The more general case will be
commented on at the end of this section.

An avoided crossing occurs at r when α1(r) = 0 and |α2(r)| > |β0(r)| > 0. In other
words, when r is a saddle point of the wavefunction. This can be easily seen by writing the
equation of the zero set of (7) in terms of the local coordinates ρ = (ξ, η),

1 = ξ2

(
β0(r) − |α2(r)|

β0(r)

)
+ η2

(
β0(r) + |α2(r)|

β0(r)

)
. (8)

This is a hyperbola (ellipse) if |α2(r)| is larger (smaller) than |β0(r)|. At an avoided crossing,
the scaled distance between the two branches is

z(r) ≡ kd(r) = 4

√
|β0(r)|

|β0(r)| + |α2(r)| . (9)

This is the avoidance range associated with the avoided crossing at r.
A few comments are in order:

(i) At a nodal intersection z = 0.

(ii) At a saddle point |α2(r)| > |β0(r)|, hence z < 2
√

2.

(iii) An equivalent expression for z(r) in terms of �(r) and its Cartesian derivatives reads

z(r) = 4

√√√√ k2|�|
k2|�| +

√
4�2

xy + (�xx − �yy)2

∣∣∣∣∣
r

. (10)

(iv) Consider an elliptic critical point of the wavefunction. In the quadratic approximation
the area of the elliptic nodal domain is

A = 4πk−2

√
β2

0

β2
0 − |α2|2

∣∣∣∣∣
r

. (11)

This area is always larger than 4πk−2. Krahn’s theorem [10] gives j 2
0,1πk−2 as the

maximal lower bound to the area of any nodal domain, where j0,1 ≈ 2.405 is the first zero
of the Bessel function J0(x). The lower bound 4πk−2 is smaller but not very far from
Krahn’s exact value and thus consistent.

So far we considered the intersections of two nodal lines. However, higher order
intersections may occur. In general, if the first non-vanishing coefficient at r is αq , then
r is a nodal point of order q, where q nodal lines intersect at angles π

q
. The higher the q,

the rarer are the intersections, since more conditions are to be satisfied by the coefficients.
This explains the Uhlenbeck’s theorem [13] mentioned above. From now on we shall discuss
the most common intersections with q = 2, and comment on the higher order intersections
whenever necessary.

Up to now we discussed individual avoided crossings,and defined the associated avoidance
ranges. In the following section, we shall consider the distribution of the avoidance ranges
of a wavefunction in the domain of its definition, and compute its mean for random wave
ensembles.
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3. Avoidance range distributions

The number of the critical points of �(r) in the domain � is given by

NC =
∫

�

r dr dθδ(�r(r))δ
(

1

r
�θ (r)

)
|J (r)| (12)

with J (r) = 1
r

(
�rr(r)�θθ(r) − �2

rθ (r)
)

being the Jacobian. Using (7) we get

NC = k2

4

∫
�

r dr dθδ(β1(r))δ(γ1(r))
∣∣|α2(r)|2 − β2

0 (r)
∣∣. (13)

To count the saddle points, we add the restriction |α2(r)|2 − β2
0 (r) > 0 and obtain

NS = k2

4

∫
�

r dr dθδ(β1(r))δ(γ1(r))
(|α2(r)|2 − β2

0 (r)
)

(|α2(r)|2 − β2

0 (r)
)
. (14)

Combining (14) and (9), the number of avoided crossings with avoidance ranges less than z is

Ĩ(z) = k2

4

∫
�

r dr dθδ(β1(r))δ(γ1(r))
(|α2(r)|2 − β2

0(r)
)

(|α2(r)|2 − β2

0(r)
)
(z − z(r))

(15)

and the fraction of the total number is I(z) = Ĩ(z)/NS . This counting function, and its
associated density P(z) ≡ dI(z)

dz
are the distributions which characterize the avoided crossings

of the nodal set. The range of z is [0, 2
√

2]. I(z) is normalized such that it takes the value 1 at
z = 2

√
2. One can easily check that an avoided crossing of order q is counted in (15) with a

multiplicity q − 1. The number (including multiplicity) of nodal crossings provides the value
of I(0). The effective multiplicity of nodal crossings of the boundary is reduced by a factor
of one half.

Numerically computed I(z) are shown in figure 2 for the three wavefunctions plotted in
figure 1. The computed I(z) do not take into account the nodal crossings of the boundary. For
the separable billiard all the saddle points have zero avoidance range, and the function I(z) is
trivially equal to 1 in all the z range. In the triangular billiard there are still some saddle points
with zero avoidance range (nodal crossings), but most of them have a finite avoidance range.
For the chaotic billiard, all the calculated saddle points have a finite avoidance range.

3.1. Avoidance range distribution for the random wave ensemble

One of the main goals of this work is to show that the properties of the nodal set of chaotic
billiards, as detected by the distribution of avoidance ranges,are reproduced by the distributions
computed for the random wave ensembles. Because wavefunctions are subject to boundary
conditions, it is expected that the predictions of the isotropic random wave ensemble used
e.g. in [3, 5], are relevant only to the bulk of the domain, and will do poorly in the λ = (

2π
k

)
vicinity of the boundary. This was observed and discussed in [3].

The isotropic random wave ensemble is the ensemble of wavefunctions (2) where the
real parameters βl and γl are independent identically distributed random Gaussian variables
with zero mean and unit variance for all |l| � 1. Because γ0 = 0 the variance of β0 is twice
that of all the others. The ensemble average of a function f will be denoted by 〈f 〉. The
local coefficients αl(r) = βl(r) + iγl(r) were derived from the original ones by a unitary
transformation. Hence, they are also independent identically distributed Gaussian variables,
and the ensemble averages of the number of critical points (12), the number of saddle points
(14) and the mean distribution of avoidance ranges (15) can be computed by considering
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Figure 2. Normalized cumulative histograms of the avoidance ranges I(z) for the three
wavefunctions plotted in figure 1: rectangle (dash-point line); triangle (dashed line); Sinai (full
line).

Gaussian integrations with respect to the variables β0, β1, γ1, β2 and γ2. A straightforward
integration gives

〈NC〉 = k2|�|
2π

√
3

〈NS〉 = k2|�|
4π

√
3

(16)

where |�| is the area of the domain. The average number of saddle points is a half of the
number of critical points. The other half are the points where the wavefunction has either a
minimum or a maximum.

The mean number of saddle points with an avoidance range less than or equal to z can
also be computed,

〈Ĩ(z)〉 = k2|�|
4π

3z2(16 − z2)2

(512 − 64z2 + 3z4)3/2
0 < z < 2

√
2. (17)

The normalization gives trivially the mean number of saddle points in the ensemble. Therefore
we can define the probability

Ir.w.(z) = 〈Ĩ(z)〉
〈NS〉 = 3

√
3z2(16 − z2)2

(512 − 64z2 + 3z4)3/2
0 < z < 2

√
2 (18)

with a corresponding density

Pr.w.(z) = 6144
√

3z(8 − z2)(16 − z2)

(512 − 64z2 + 3z4)5/2
0 < z < 2

√
2. (19)

These results served to test the conjecture that the bulk properties of the nodal sets
of chaotic wavefunctions are reproduced by the predictions of the isotropic random wave
ensemble. For this purpose we computed numerically the first 2400 eigenfunctions of the
Sinai billiard shown in figure 1(c). For each wavefunction the critical points were found by
a numerical search. The saddles which correspond to boundary intersections were excluded.
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Figure 3. Counting function I(z) for the n = 2000 eigenstate of the Sinai type billiard (full thin
line), compared with the random wave prediction (18) (dashed line). Inset: difference between the
average counting function over the n = (1800, 2000) eigenstates and the random wave prediction
(dark line); the same for n = (2200, 2400) eigenstates (light line).

The avoidance range (10) was computed for each saddle. In figure 3 we plot the cumulative
histogram of the avoidance ranges for the 2000th eigenstate as full line (1102 saddle points),
compared with formula (17) as dashed line. Even for a single eigenstate the agreement is very
good. Averaging the avoidance range distributions over a group of neighbouring eigenstates the
numerical histogram and the theoretical curve approximately coincide. The inset of figure 3
shows the differences between the random wave prediction and the mean avoidance range
distributions computed for two groups of eigenstates. The difference is small, and shows no
systematic deviations.

Another distribution which we compared to the prediction of the random wave ensemble
is the number of saddle points. Normalizing the number of saddle points by the prediction of
the isotropic random wave ensemble, we observe that as k increases the numerical computation
approaches the predicted value (see figure 4).

The systematic deviation observed at finite k is due to boundary effects. Following [6]
we compute the effect of an infinite straight Dirichlet line, which is reproduced by the wave
ensemble

�(r) = 2
∞∑

n=1

cn sin(nθ)Jn(kr) (20)

where the cn are real coefficients taken as independent random Gaussian distributed variables.
Not entering into the details of the calculation, the computed mean density of saddle

points approaches the bulk expression (16) as the distance from the Dirichlet line increases.
The integrated density in the perpendicular direction shows a global deficiency of saddle points
relative to the bulk value. It diverges logarithmically as a function of the distance from the
Dirichlet line [6].
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Figure 4. Number of saddle points for the first 2400 eigenstates of the Sinai billiard, normalized
by the isotropic random wave prediction k2/(4π

√
3), as a function of the wave number k. Dashed

line: equation (21) for the anisotropic random wave ensemble (20).

We compared the results of the ensemble (20) to the number of saddle points counted
for highly excited eigenstates of a chaotic billiard with sufficiently smooth boundaries. The
integral along the boundary multiplies the density by the perimeter of the billiard L. The
perpendicular integral must be truncated in view of the logarithmic divergence mentioned
above. A sensible choice of the truncation distance is R = √|�|/2. The resulting estimate
for the mean number of saddle points is

〈NS〉 ≈ k2|�| − kL(σ1 log(kR) + σ2)

4π
√

3
. (21)

with σ1 ≈ 0.014 and σ2 ≈ 2.0. The deficiency of saddle points is explained by the effect
of the Dirichlet boundaries that affects the statistics. The dashed line in figure 4 represents
equation (21) and the agreement is definitely improving. However, the domain of low values,
k < 500, is not in complete agreement. This deficiency can be associated with the corners of
the billiard, with its curvature or with the finiteness of the Dirichlet line that the ensemble (20)
cannot reproduce. These possible causes will be studied elsewhere.

In conclusion, we can say that the properties of the nodal set of chaotic wavefunctions
which were investigated in this work are very well reproduced by the isotropic random wave
ensemble in the semiclassical domain. These findings are consistent with previous works on
the subject, and add support to the random wave conjecture.
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