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Avoiding a replication crisis in deep-learning- 
based bioimage analysis
Deep learning algorithms are powerful tools for analyzing, restoring and transforming bioimaging data. One 

promise of deep learning is parameter-free one-click image analysis with expert-level performance in a fraction 

of the time previously required. However, as with most emerging technologies, the potential for inappropriate use 

is raising concerns among the research community. In this Comment, we discuss key concepts that we believe 

are important for researchers to consider when using deep learning for their microscopy studies. We describe 

how results obtained using deep learning can be validated and propose what should, in our view, be considered 

when choosing a suitable tool. We also suggest what aspects of a deep learning analysis should be reported in 

publications to ensure reproducibility. We hope this perspective will foster further discussion among developers, 

image analysis specialists, users and journal editors to define adequate guidelines and ensure the appropriate use 

of this transformative technology.

Romain F. Laine, Ignacio Arganda-Carreras, Ricardo Henriques and Guillaume Jacquemet

M
icroscopy is a leading technology 
used to gain fundamental insight 
for biological research. Today, a 

typical microscopy session may generate 
hundreds to thousands of images, generally 
requiring computational analysis to extract 
meaningful results. Over the last few 
years, deep learning (DL) has increasingly 
become one of the gold standards for 
high-performance microscopy image 
analysis1,2. DL has shown the capacity to 
efficiently perform a wide range of image 
analyses, such as image classification3,4, 
object detection5,6, image segmentation7–9, 
image restoration10,11, super-resolution 
microscopy10,12–15, object tracking16,17,  
image registration18 and the prediction  
of fluorescence images from label-free 
imaging modalities19.

For image analysis, DL usually uses 
algorithms called artificial neural networks 
(ANNs). Unlike classical algorithms, before 
an ANN is used, it first needs to be trained 
(Fig. 1). During training, the ANN is 
presented with a range of data from which it 
attempts to learn how to perform a specific 
task (image denoising, for instance). More 
specifically, the ANN builds a model of the 
mathematical transformation that needs 
to be applied to data to obtain the desired 
output. Here, the model parameters (called 
weights) can be seen as the instructions 
to carry out the learned task. Once the 
weights of a model are optimized, the 
model can be used to perform the task—a 
step called inference or prediction. ANNs 
can therefore be considered as non-linear 
transformation machines, performing 
sequential mathematical operations on the 
input data. As we inspect deeper into these 

sequences of operations, it becomes difficult 
to understand what features of the original 
images are used. For that reason, they are 
often thought of as ‘black boxes’ as, for most 
users, only the input images and output 
predictions are readily available.

The training data provided to the 
ANN commonly consist of a large set 
of representative input images and their 
expected results. For instance, in denoising, 
the training dataset comprises matched 
pairs of noisy and high signal-to-noise ratio 
(SNR) images (Fig. 1). This type of training 
using paired image labels is commonly 
referred to as supervised training. On the 
other hand, for so-called self-supervised 
training, pre-processing steps directly 
generate the training pairs, and therefore 
the users only need to provide input images. 
Training is typically the most challenging, 
time-consuming and resource-greedy part 
of the process and can take minutes to 
weeks depending on the size of the training 
dataset and the type of ANN. It often 
requires specialized knowledge, dedicated 
training datasets and access to powerful 
computational resources, such as graphical 
processing units, to run and optimize 
ANN training. In comparison, using DL 
models (predictions) can be straightforward 
(parameter-free one-click solutions) and 
fast (seconds to minutes) even on a local 
machine. Multiple tools are in development 
to facilitate the training and use of DL for 
bioimage analysis, including both online 
and offline, commercial and open-source 
solutions8,20–28. Choosing the most 
appropriate tool out of these options largely 
depends on what tasks or combination of 
tasks need to be performed, the scale of the 

analysis and the level of computational skills 
required to run them.

In this Comment, we suggest a set  
of best practices for implementing and 
reporting on the use and development  
of DL image analysis tools. These 
suggestions are primarily built from our 
own experiences in developing and using 
DL tools. Here we cover traditional image 
analysis tasks, such as cell segmentation, as 
well as more recent approaches for image 
denoising and restoration.

The upsides and downsides of using  
DL for bioimaging analysis
Learning how to perform an analysis 
from example data is both the principal 
strength and the main weakness of DL. By 
learning directly from the data, the ANN 
tries to identify the most suitable way to 
perform the analysis, leading to models 
with excellent performances for that 
particular dataset (Fig. 2). However, trained 
DL models are only as good as the data, 
and the parameters used to train them. In 
particular, data augmentation, a method 
used to artificially increase training dataset 
size using controlled image manipulations 
— such as rotations, mirroring, noise 
addition, shearing and so on — can 
significantly influence model performance. 
Eventually, a DL model will only perform 
reliably on images similar to those used 
during training29. How similar the images 
need to be depends on the network 
used, and aspects to consider encompass 
microscope types, label types and the SNR 
or optical aberrations. If a training dataset is 
inadequate for the desired task, the resulting 
model will produce unwanted results 
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that are often difficult to detect without 
detailed analysis of the network output. For 
instance, unsuitable segmentation models 
will lead to under- and over-segmentation 
results, while inappropriate image denoising 
and restoration models may lead to 
poor performance, image degradation 
and hallucinations (Fig. 2; see refs. 29,30 
for reviews on this topic). In this case, 
non-DL-based approaches are likely to 
produce better results (Fig. 2). Users should 
be particularly cautious when using models 
based on generative adversarial networks 
(GANs), as they are designed to produce 
very realistic images while being prone to 
hallucinations, which are especially difficult 
to identify by eye.

One powerful approach is to produce 
general models with high reusability 
potential using a large and diverse training 
dataset. For example, popular nuclei or 
cell segmentation models have been made 

publicly available27,31,32 (Figs. 2 and 3).  
However, this is only possible when  
large heterogeneous pre-curated datasets  
are available, which are challenging to 
produce or find. In particular, large  
object detection or segmentation datasets 
are very time-consuming to create as they 
require experts to annotate hundreds 
to thousands of images manually, 
with three-dimensional datasets being 
particularly difficult to generate. The 
curation of such datasets would be greatly 
facilitated by creating a centralized 
repository where training datasets generated 
to analyze microscopy data using DL  
would be available (for example, as  
done by the Papers with Code initiative; 
https://paperswithcode.com/datasets).  
This would also help to produce and 
disseminate benchmark datasets14,33 that 
would then be accessible for both algorithm 
developers and life scientists.

As DL models are becoming accessible 
through public repositories (so-called 
model zoos, such as bioimage.io) or web 
interfaces27,32, it becomes straightforward 
to use the models directly to analyze 
new data. This has the advantages of 
speeding up DL uptake but, unless the 
researcher can confirm that their own 
data were well-represented within the 
training dataset used initially (which can 
be very difficult to do), the performance 
of such portable models on the new data 
often remains unclear. Therefore, despite 
its incredible potential, the application 
of DL in microscopy analysis has raised 
concerns30,34,35 due to a lack of transparency 
and understanding of its limitations, 
especially for generalizability. In addition 
to this, DL is developing at an incredible 
rate, which places a significant burden on 
users to determine the most appropriate 
tools for their needs. It remains challenging 
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Fig. 1 | Use of classical or DL algorithms to analyze microscopy images. The critical steps required when using classical or DL-based algorithms to analyze 

microscopy images, using denoising as an example. When using a classical algorithm, researcher efforts are put into designing mathematical formulae 

(fx) that can then be directly applied to the images. When using a DL algorithm, a model first needs to be trained using a training dataset. Next, the model 

can be directly applied to other images and generate predictions. The microscopy images displayed are breast cancer cells labeled with silicon rhodamine 

(SiR)-DNA to visualize the nuclei and imaged using a spinning disk confocal microscope. The denoising in the classical algorithm example was performed 

using PureDenoise implemented in Fiji61,62. The denoising in the DL algorithm example was performed using CSBDeep content-aware restoration (CARE) 

implemented in ZeroCostDL4Mic10,20. Scale bars, 50 μm.
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Fig. 2 | Artifacts, metrics and performance of DL in bioimaging. DL methods can offer excellent performances but only when the model used matches the 

data to be analysed. a,b, Noisy images of cells stained to visualize their nuclei (a) or F-actin (b) were acquired using a spinning disk confocal microscope 

and denoised using two different CARE models10,20 or PureDenoise. One CARE model was trained to denoise these images, while the other was trained to 

denoise structured illumination microscopy images of F-actin. Note that in both cases, the appropriate CARE model outperforms PureDenoise62, while the 

inappropriate CARE model fails to denoise these images correctly. In b, the inappropriate CARE model was trained to denoise the nuclei images shown in a. 

c,d, Examples to highlight how segmentation models can offer variable performance even on similar images. Images of cells migrating on cell-derived matrices 

were acquired using a brightfield microscope and segmented with cellpose pre-trained models32. Note how the cellpose cyto model performs well in c but 

poorly in d. Also, note how the cellpose cyto2 model, a model trained with additional data, performs better than the cyto model in d.
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to assess the validity and performance of a 
range of approaches that are often difficult 
to compare, especially when widely accepted 
benchmark datasets are unavailable.

We propose that many of these concerns 
can be significantly alleviated by the careful 
assessment of DL models performance  
and consideration in the choice of tool,  
and by following reporting guidelines to 
ensure transparency.

Assessing DL model predictions
Currently, the most unambiguous  
way to assess the quality of DL model 
predictions is to compare them to 
ground-truth images or labels (Figs. 2 
and 3). Here we primarily focus on image 
restoration and segmentation tasks, 
but similar concepts also apply to other 
image-to-image DL-based image analysis. 
Segmentation results can be compared to 
manually annotated masks. In this case, 
expert manual annotations remain the 
gold standard to evaluate segmentation. 
Denoising results can be compared to 
matching high-SNR images acquired with 
high laser power or long exposure times10,14, 
or by computationally introducing noise to 
high-SNR data15. The comparison between 
the model prediction and the ground-truth 
dataset is scored using various metrics 
(see Box 1). These analyses are typically 
performed after a model has been trained. 
In publications, DL models are often 
evaluated using data similar to those used 
during training to demonstrate the models’ 
capabilities, but this does not represent a 
general performance level. Therefore, we 
argue that when using a model produced 
by others, it is the end user’s responsibility 
to assess the specific performance of that 
model on their images (Figs. 2 and 3). This 
involves generating ground-truth images or 
investing time to manually annotate a few 
images to ensure that sufficient material is 
available for this essential quality control 
step. For instance, when planning to use 
a denoising DL model, users can acquire 
a few corresponding high-SNR images to 
ensure that the chosen denoising strategy 
works appropriately. Additionally, using 
such a dataset, users can also compare the 

performance of various tools to find the 
most suitable for the job (Figs. 2 and 3).

It is important to note that single 
high-SNR images or manually annotated 
labels are not strictly speaking ground 
truth. Indeed, regardless of the acquisition 
parameters used, single high-SNR images 
will always be affected by noise. Labels 
manually annotated by a single expert will 
also contain errors and bias. In both cases, 
repetition and averaging can improve the 
quality of the training data. For instance, 
averaging multiple high-SNR images of the 
same field of view will reduce the noise of 
the target image and produce a better proxy 
for the ground-truth images. Similarly, to 
avoid bias, it may be beneficial to combine 
the annotations of multiple experts or even 
to crowdsource the annotation process36.

When comparing DL predictions to 
ground truth, it is important to visually 
assess the network output for artifacts; 
however, it is equally important to 
quantitatively estimate similarity with 
the expected results. Box 1 presents a 
list of commonly used metrics and their 
appropriate uses depending on the tasks 
performed by the DL model. In addition, 
we provide a Jupyter notebook, as part of 
the ZeroCostDL4Mic platform20, to easily 
compute some of these metrics directly in 
the cloud. One of the most straightforward 
image metrics used to assess denoising, 
restoration and image-to-image translation 
predictions is the root square error (RSE), 
which calculates the sum of the square 
differences between predictions and the 
expected ground truth on a pixel-by-pixel 
basis. RSE is an easy-to-understand 
metric but does not report on structures, 
only on intensities. So other image 
similarity metrics, such as the structural 
similarity index measure (SSIM37), are 
also commonly used (Box 1 and Figs. 2 
and 3). Additionally, these metrics can be 
presented as maps that spatially render the 
discrepancies between the DL predictions 
and ground-truth images. Such maps are 
especially useful to check for reconstruction 
artifacts that may be linked to specific 
structures in the images (Figs. 2 and 3). 
Other metrics, such as intersection over 

union (IoU), which measures the overlap 
between two binary masks, can assess the 
quality of segmentation outputs. Instance 
segmentation results can be further 
evaluated using additional scores such as 
F1 score or panoptic quality38, reflecting 
the ability of the algorithm to identify 
each object in the image correctly. Other 
metrics have also been developed to assess 
other image processing tasks, such as 
image registration39 or super-resolution 
reconstructions40, but are not described  
here in detail.

When using metrics to assess DL 
predictions, an issue that often arises is to 
decide when the metric scores are good 
enough. This is often less of a problem for 
segmentation tasks where predictions and 
ground-truth images can reach a good 
agreement (IoU and F1 scores of 0.8 and 
above). However, assessing the quality of 
denoising and image-to-image translation 
predictions may be more challenging. We 
found that the approach of comparing 
both the prediction and raw images to the 
ground-truth images to be particularly 
useful to evaluate denoising. This allows 
users to check that the predictions are more 
similar to the ground-truth images than 
the raw input data. If this is not the case, 
the DL model used is not improving the 
dataset toward the target image and should 
be reconsidered. This, however, should not 
replace a careful visual inspection of the 
data, as an increase in metric is not always a 
sign of higher image quality (Fig. 2b).

We recommend that efforts should be 
put into generating ground-truth data as 
much as possible, and it is almost always 
possible to do so. But in rare cases, when 
ground-truth images are not available, a 
careful visual inspection of the results may 
be the only option to assess the performance 
of a DL model. While less desirable, this 
solution may be sufficient if the results 
are already well-characterized and 
well-understood by the researcher, such as 
when denoising known cellular structures. 
However, when studying novel phenomena, 
this approach should be avoided and 
observations cross-validated, especially 
if the structures observed after denoising 

Fig. 3 | Using quality metrics to assess the performance of DL models. a,b, Noisy images of breast cancer cells labeled with SiR-DNA were denoised using 

CARE (a,b)10, Noise2Void (b)11 and DecoNoising (b)63, all implemented in ZeroCostDL4Mic20. In a and b, the SSIM maps (yellow: high agreement; dark blue: low 

agreement; 1 indicates perfect agreement) and RSE (yellow: high agreement; dark blue: low agreement; 0 indicates perfect agreement) highlight the differences 

between the CARE prediction and the corresponding ground-truth image. Note that the agreement between these two images is not homogenous across the 

field of view and that these maps are helpful to identify spatial artifacts. Panel b shows a magnified region of interest from a, showcasing how image similarity 

metrics can compare different DL models trained using different algorithms but using the same training dataset. Note that in this example, all three algorithms 

improved the original image but to a different extent. Importantly, these results do not represent the algorithms’ overall performance to train these models but 

only assess their suitability to denoise this specific dataset. White arrows highlight areas of poor agreement between the predictions and the ground-truth 

image. c, An example to highlight how segmentation metrics can be used to evaluate the performance of segmentation pre-trained models27,31,32. Of note, these 

results do not reflect the overall quality of these pre-trained models but only assess their suitability to segment this dataset. ROI, region of interest.
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Box 1 | Common quality metrics used to assess denoising and segmentation DL models

All the metrics described here enable the 
comparison of the prediction generated 
by DL models to ground-truth images or 
labels. �eir respective use depends on the 
type of task performed by the DL model. 
In some cases, several metrics might be 
available and can be used together.

Image similarity metrics (denoising, 
restoration and image-to-image translation)

Several metrics can be used to assess 
how similar two images are:
 (1) �e RSE map displays the root of the 

squared di�erence between two im-
ages. In this case, a smaller RSE is bet-
ter. A perfect agreement between target 
and prediction will lead to an RSE map 
showing zeroes everywhere.

RSE (i, j) =

√

(P (i, j)− GT (i, j))2

where P(i,j) is the prediction value at 
pixel (i,j) and GT(i,j) is the ground-truth 
value at the same pixel. �ese images are 
typically normalized before evaluation 
of the metric.

 (2) �e normalized root mean squared 
error (NRMSE) gives the average dif-
ference between all pixels in the images 
compared to each other. Good agree-
ment between target and prediction 
yields low NRMSE values.

NRMSE =

√

1

N

∑

i,j

(P (i, j)− GT (i, j))2

where N is the total number of pixels. 
�ese images are typically normalized 
before evaluation of the metric.

 (3) �e Pearson correlation coe�cient 
(PCC) represents the degree of linear 
correlation between two images. A 
high correlation between target and 
prediction translates into a PCC close 
to 1.

 (4) �e SSIM evaluates whether two im-
ages contain the same structures based 
on contrast, luminance and structural 
content concepts. It is a normalized 
metric, and a SSIM of 1 indicates a per-
fect similarity between the two images. 
�e SSIM maps are generated by cal-
culating the SSIM metric in each pixel 
but also considering the surrounding 
pixels. �e mSSIM is the SSIM value 
calculated across the whole image37.

 (5) �e peak signal-to-noise ratio (PSNR) 
is a metric that estimates discrepancies 

between two images with respect to the 
peak signal amplitude of the predic-
tion image. It is usually calculated in 
decibels and the higher the score, the 
better the agreement.

Segmentation metric
 (1) Image segmentation aims at de�ning 

areas of interest in an image based  
on their identity (foreground versus 
background being the most common 
one). A segmentation step typically 
provides a binary mask image where 
the pixels in the segmented area have 
a value of 1 (foreground) while the 
rest of the pixels have a value of 0 
(background).

 (2) �e IoU metric is a method that  
can be used to quantify the overlap 
between two binary masks. �erefore, 
when using IoU to assess the  
performance of a segmentation 
algorithm compared to ground-truth 
masks, the closer to 1, the better  
the performance.

IoU =

P ∩ GT

P ∪ GT

where ∪ represent the union of two 
binary images (number of pixels that 
are foreground in either image), ∩ 
represents the intersection of two 
binary images (number of pixels 
that are foreground in both images 
simultaneously), and P is the predicted 
image.

Instance segmentation metrics  
(also used for classi�cation and object 
detection tasks)

Instance segmentation aims to  
identify objects of interest in an image, 
both from the background and each  
other. An instance segmentation step 
commonly provides a label image  
where each identi�ed object has a  
unique pixel intensity representing  
its identity, and the background is 
commonly set to have a pixel intensity  
of 0. Several metrics can be used  
to assess the quality of instance 
segmentation results, some of which  
are outlined below.
 (1) Typically, an IoU value is �rst calcu-

lated between the DL prediction and 
a ground-truth image on a per-object 
basis. �is allows identifying true and 

false positives, as well as false nega-
tives. True positives are objects that are 
correctly identi�ed. In contrast, false 
positives are segmented objects that 
are not present in the ground-truth 
image, and false negatives are objects 
missed by the segmentation algorithm. 
A particular object is considered as 
detected when its segmentation mask 
has an IoU with a ground-truth object 
mask that is above a user-de�ned 
threshold (for instance, IoU > 0.5). �e 
number of false-positive (NbFalse positive) 
and false-negative (NbFalse negative) results 
are then calculated as follows:

Nb

False positive

= Nb

Prediction

−Nb

True positive

where NBTrue positive represents the number 
of true positives and NbPrediction and 
NbGT image refer to the number of objects 
present in the predicted image and the 
ground-truth image, respectively.

 (2) Precision is de�ned as the number of 
correctly segmented objects divided by 
the total number of detected objects. 
Precision is a metric used to assess the 
cost associated with false positives. �e 
closer the precision is to 1, the better 
the performance.

Precision =

Nb

True positive

Nb

True positive

+Nb

False positive

=

Nb

True positive

Nb

Prediction

 (3) Recall calculates how many of the 
actual positives the model captures by 
labeling them as true positive. Recall 
can be used as a metric to assess the 
cost associated with false negatives. 
�e closer the recall is to 1, the better 
the performance.

Recall =
Nb

True positive

Nb

True positive

+Nb

False negative

 (4) �e F1 score combines both the preci-
sion and recall scores in a single metric 
and is calculated as follows:

F1 = 2×

Precision× Recall

Precision+ Recall

Other metrics such as ‘accuracy’ or ‘PQ’ 
(where 1 indicates perfect agreement38) can 
also be used to score the quality of instance 
segmentation results.
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are not easily visible in the raw data. Thus, 
there is a need for developing metrics or 
implementing evaluation methods that 
can assess the quality of predictions when 
no ground-truth images are available. 
Therefore, it may be valuable for developers 
to include in their tools ways to easily  
assess DL model uncertainty using, for 
instance, Monte Carlo dropout strategies41 
(see ref. 42 for an in-depth review on this 
topic). Other possible methods include 
using particular network architectures such 
as variational autoencoders to extract a 
distribution of network output from a single 
input, allowing to estimate the model’s 
variability and uncertainty quantitatively 
and spatially43.

Choosing a DL tool
With the increasing availability of networks, 
models and software, it becomes challenging 
to identify the most suitable tool to answer a 
biological question. We do not recommend 
any particular software or tool simply 
because each user’s needs are distinct (for an 
excellent review of DL-based segmentation 
tools, see ref. 9). Instead, we present a few 
pointers to help readers sieve through the 
literature based on what developers have 
reported in their work and reports from 
early adopters.

First, we recommend choosing a 
well-documented and well-maintained 
tool that matches the user’s preferred 
interface. Available DL tools now span 
various web interfaces27,32, standalone 
software22,26,32,44, plugins for popular image 
analysis software10,11,25,45, online notebooks20 
and Python packages46. Each platform 
requires a different level of technical skill 
to use. In addition, the level of detail of the 
documentation provided by the developers 
can vary significantly and ranges from 
annotated code to online video tutorials 
and detailed step-by-step guides. This will 
limit accidental misuse of the tool and help 
users to understand the tools and their 
capabilities. Additionally, a substantial 
existing user base and online forums 
discussing troubleshooting are signs of a 
healthy and helpful tool. It also provides a 
wealth of information about user experience, 
as well as tips and tricks.

We advise being wary about works that 
do not provide source code and associated 
data for users to reproduce the results on 
example data. It is typically free and easy to 
make these elements publicly available via 
common platforms (such as GitHub). We 
support works that themselves encourage 
open science. We also believe that example 
data are instrumental as they allow users 
to test and learn how to use a tool properly 
before applying it to their data.

As discussed above, it is essential 
to carefully assess the performance of 
DL-based tools on the dataset of interest. 
Therefore, we also recommend using 
tools that offer purposely built evaluation 
and sanity-check strategies, such as those 
found in the StarDist Python package31, 
the Noise2Void Fiji plugin11 and the 
ZeroCostDL4Mic notebooks20. We also 
strongly encourage users to consider how 
the chosen tool can be used within their 
preferred image analysis pipeline. DL-based 
analyses will often constitute only a small 
part of the overall analysis process, and 
therefore, the pipeline as a whole should be 
considered before selecting a tool.

When training DL networks using a new 
algorithm or software, one feature to look for 
is the availability of strategies to identify and 
prevent overfitting. Overfitting occurs when 
a model becomes too specialized to the 
training dataset and does not generalize well 
to new data. In practice, this means that the 
trained model may not perform well on new 
data even if they are similar to those used 
during training. Overfitting can be detected 
by monitoring how the performance of the 
model evolves over training time on the 
training dataset and a set-aside validation 
dataset. When more training leads to 
an improvement in performance on the 
training dataset but an otherwise worsening 
of the performance on the validation dataset, 
this is a sign that overfitting is occurring, 
which can be typically visualized by 
plotting so-called loss curves over training 
time. Overfitting may be prevented by 
increasing the training dataset’s diversity 
using, for instance, data augmentation47,48 
or strategies such as reducing the model 
complexity, adding regularization (L1, L2) 
or early stopping during training49. DL tools 
dedicated to training would enormously 
benefit from these features as they simplify 
the assessment and potential improvement 
on model optimization for the user.

Another feature to look for when 
choosing a tool to train DL models is the 
possibility to perform transfer learning. 
Transfer learning enables the use of existing 
models as a starting point when training 
a new model. This allows users to take 
advantage of previously learned features 
present in these trained models, instead of 
starting the training process from scratch. 
In other words, transfer learning enables 
users to fine-tune an existing model using 
their data. This approach can considerably 
accelerate training and reduce the size of the 
necessary training dataset while producing 
models with higher performance for a 
specific task20,50.

Finally, when testing a new tool, it 
is often informative (and even often 

appreciated) to get in touch with developers 
and contribute to tool improvement when 
bugs are discovered or to report issues in 
some specific configuration that may not 
have been encountered at the development 
stage. We feel that the importance of this 
conversation is sometimes understated, 
even though it promotes good tools, 
open-mindedness and multidisciplinary 
research while building trust in the methods.

Reporting the use of DL in publications
As previously done for other transformative 
technologies, we believe that the bioimaging 
community needs to discuss and flesh 
out guidelines for reporting DL use for 
bioimaging in publications51–54. This is 
especially important as the reporting 
of more traditional image analyses and 
acquisitions pipelines is still raising 
concerns51,55–57. It is beyond the intention 
of the present work to propose guidance 
to developers on evaluation and reporting 
when proposing new DL algorithms, and 
we refer the readers to recent work that 
has initiated this conversation within the 
computer science community58. Instead, 
we focus on what would be useful to report 
when using DL tools.

Due to the wealth of hyperparameters, 
architecture choices and data manipulation 
available with DL, incorrectly trained or 
incorrectly evaluated DL models can be 
easily generated and lead to suboptimal 
results. This highlights the importance  
of reporting the steps leading to the 
generation of a particular model clearly  
and appropriately. Indeed, standard 
guidelines will increase confidence in the 
use of DL and promote transparency and 
reproducibility. Such guidelines will also 
help reviewers assess manuscripts using 
DL for image analysis, especially if this 
technology is unfamiliar to them. Below,  
we listed several suggestions to contribute  
to this critical discussion.

•	 Naturally, the algorithm used should be 
reported, and the appropriate paper(s) 
cited. We also recommend indicating  
the version of the algorithm used or,  
failing that, the date at which the tool 
was obtained, as most analytical tools 
change over time and each update may 
lead to varying performance on the  
same data. For DL, this is currently  
not a widespread habit, especially 
because both the network and dataset 
may change over time (acquiring  
more data to expand the training  
dataset, for instance).

•	 Similarly, when using models trained  
by others, it is advisable to indicate  
the version of the model used (Fig. 2c).  

http://www.nature.com/naturemethods
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If not available, we recommend pro-
viding the date when the model was 
obtained and used.

•	 A DL model performance is entirely 
dependent on the dataset used at  
the training stage (Fig. 2). When  
training dedicated DL models, the  
training dataset should be clearly 
described in the material and methods 
(including, but not limited to, specimen, 
microscope, magni�cation, numerical 
aperture of the objective, light  
detector used, exposure and illumination 
conditions, as recommended in  
other work55).

•	 Training datasets should be deposited  
in a suitable and semi-permanent 
data repository (such as Zenodo, 
BioImageArchive or the Image Data 
Resource59). �is would help create and 
disseminate diverse benchmark datasets 
and make them accessible to both tool 
developers and users.

•	 When training a DL model, we  
recommend indicating the key  
hyperparameters used and the main 
underlying libraries (for example,  
TensorFlow and PyTorch). We  
recommend that DL models with  
reusability potential are deposited in a 
suitable repository (such as Zenodo)  
and linked to a model Zoo (such as  
TensorFlow hub or bioimage.io), along 
with their associated metadata.

•	 If custom code was generated to run the 
algorithm or process the data (pre- or 
post-processing steps, for instance), it 
should also be shared with the paper  
and archived (for example, using  
GitHub or Zenodo).

•	 �e steps taken to validate the DL model 
used should be clearly described. �is 
includes the type of validation (that is, 
indicating the evaluation metric used 
and what score was achieved), the  
number and the origin of the images 
used for evaluation (it is o�en  
considered imperative for evaluation 
data to be completely absent from  
training data to have bearings on how 
well the model generalizes to new data), 
and explaining why the result was 
deemed acceptable. If space allows, we 
also recommend providing evaluation 
examples as supplementary �gures.

•	 When performing predictions using 
a DL model, the tool used to run the 
model should be indicated (with the 
version again), and appropriate paper(s) 
cited. Indeed, several tools o�er the  
possibility to run DL models and  
may involve di�erent pre- or 
post-processing steps that can in�uence 
the results obtained.

Concluding remarks
DL tools are transforming the way we 
analyze microscopy images. As with all 
new methods, proper use, validation 
and reproduction are needed before the 
methods can be trusted. While we believe 
these methods offer many advantages, 
we think that DL cannot be used on any 
dataset without prior validation. This is 
especially important as users risk falling 
into the artificial intelligence hype when 
other techniques may be more appropriate, 
more robust and sometimes quicker to 
analyze their images. Importantly, due to 
the complexity of operations performed in 
DL, not knowing precisely how the images 
are manipulated may affect how they can 
be reliably analyzed downstream of DL. As 
an example, it is hard to estimate whether 
it is appropriate to quantify absolute 
image intensities following DL-based 
denoising due to potential non-linearity 
with respect to the input data. Similarly, 
although image-to-image translation and 
resolution improvement using DL are very 
promising approaches, they remain prone 
to undetected artifact generation due to the 
inherent addition of data to the input data60 
from the training dataset, raising concerns 
of validity. When using such approaches, 
it is particularly powerful to use tools that 
can spatially map the area in the resulting 
image that is likely to contain artifacts (for 
example, to produce a map of prediction 
confidence, as is done with DivNoising43).

Here, we presented arguments toward  
the importance of validating any model 
using a purposefully built evaluation  
dataset containing ground-truth target 
images or labels. Similarly, the use of  
DL models should be reported  
appropriately to ensure reproducibility  
and transparency. This is a challenging  
task for DL as many components, both 
internal (hyperparameters) and external 
(training dataset) to the network used,  
can dramatically influence the results 
obtained. With the increasing availability 
of networks and models, we also stress 
the importance of finding ways to identify 
what might be a ‘good tool’. We believe that 
a good tool is not only a performant one, 
but that transparency of what it does to the 
data, usability and reliability are equally 
important. The responsibility of proper use 
of DL in microscopy is now equally shared 
between users and developers. Spiderman’s 
Uncle Ben has never been more right than 
today: “With great powers comes great 
responsibility”. Finally, this article is not 
intended to set strict standards in place,  
but rather to serve as a starting point 
for further discussions between users, 
developers, image analysis specialists and 

journal editors to define appropriate use of 
these otherwise powerful techniques. ❐
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