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Abstract

Analysis of a large longitudinal study of children motivated our work. The results illustrate how

accurate inference for fixed effects in a general linear mixed model depends on the covariance

model selected for the data. Simulation studies have revealed biased inference for the fixed effects

with an underspecified covariance structure, at least in small samples. One underspecification

common for longitudinal data assumes a simple random intercept and conditional independence of

the within-subject errors (i.e., compound symmetry). We prove that the underspecification creates

bias in both small and large samples, indicating that recruiting more participants will not alleviate

inflation of the Type I error rate associated with fixed effect inference. Enumerations and

simulations help quantify the bias and evaluate strategies for avoiding it. When practical,

backwards selection of the covariance model, starting with an unstructured pattern, provides the

best protection. Tutorial papers can guide the reader in minimizing the chances of falling into the

often spurious software trap of nonconvergence. In some cases, the logic of the study design and

the scientific context may support a structured pattern, such as an autoregressive structure. The

sandwich estimator provides a valid alternative in sufficiently large samples. Authors reporting

mixed-model analyses should note possible biases in fixed effects inference because of the

following: (i) the covariance model selection process; (ii) the specific covariance model chosen; or

(iii) the test approximation.
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1. Introduction

1.1. Motivation

The Context—The general linear mixed model has become a standard tool for modeling

correlated continuous data from longitudinal and clustered sampling. The stacked-data

structure creates parallels with univariate linear regression. The arrangement allows simple
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interpretation of mean values, which has helped make it popular with researchers with

limited statistical background, as well as statisticians working with them.

The Problem—The flexibility of the general linear mixed model has created a false sense

of security about robustness to covariance misspecification and assumption diagnostics,

particularly in large samples. We demonstrate that underfitting the covariance structure for

the responses can optimistically bias inference about fixed effects. Furthermore, the amount

of bias remains unchanged as the number of subjects increases to infinity. Analytic,

simulation, and enumeration results quantify the amount of bias in small and large samples.

The Solution—Good statistical practice can avoid or solve the problem. Conscientious

application of existing tools gives a dependable strategy for selecting, verifying, and

reporting a covariance model giving accurate inference about fixed effects in small and large

samples. Analysis of a large longitudinal study of child care highlights the importance of the

strategy, even in large samples.

1.2. Asthma in childhood

Asthma affects more than nine million American children 0-17 years old [1]. In a cross-

sectional study, Blackman and Gurka [2] found that children with severe asthma were more

than four times more likely to have chronic developmental and behavioral problems of

various sorts, including depression or anxiety and conduct problems. However, the cross-

sectional sampling plan limits the value of the results.

In contrast, a longitudinal design lies at the heart of the Study of Early Child Care and Youth

Development (SECCYD) [3]. The SECCYD followed up children from 10 US sites from

birth through age 15 years. Families were recruited during hospital visits following the birth

of the child in 1991. A total of 1364 families enrolled from the 8986 eligible births. By

phase IV (2005-2008; age 14-15 years), 1056 families remained enrolled. The repeated

collection of standard psychometric measures throughout childhood provided a unique

opportunity to examine the role of chronic asthma in the development of a child. Interest lay

solely in fixed effects inference: does the average longitudinal profile for children with

asthma differ from the profile for those without? Although selection of the covariance model

was secondary, the choice was found to be vital in making correct decisions for the primary

aim.

2. Previous research and current views

The linear mixed model is composed of fixed effects, random effects, and a residual error. In

medical research, the first component is typically of interest, whereas the latter two

components comprise the covariance portion of the model. There are no fully reliable ways

to identify the best covariance model, at least in small samples [4]. Verbeke and

Molenberghs [5, pp. 125-127] noted that it is common to include random intercepts and

additional random effects only for time-varying covariates. They then presented a set of

guidelines for the inclusion of additional random effects, noting that they ‘favor the

inclusion of too many random effects rather than omitting some’ (p. 127). However, they

also noted that inclusion of too many random effects may lead to nonconvergence.

In practice, limitations of current software and user behaviors, magnified in small sample

settings or in the presence of missing data, make nonconvergence common. Many analysts

interpret a model failing to converge as empowering them to simplify the model, whether it

be through the fixed effects or the covariance model. A more parsimonious fixed effect

structure may be an effective remedy for nonconvergence, particularly in the presence of a

small number of subjects and/or a limited number of repeated measures (in the case of time-
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varying covariates). In the context of covariance model selection, the press of time and a

belief in the robustness of the mixed model with respect to fixed effects inference encourage

this approach.

Some authors have considered covariance misspecification for tests about means, that is,

fixed effects in mixed models. Liang and Zeger [6] proposed the ‘sandwich’ estimator for

 in seeking inference about the fixed effects robust to misspecified covariance. Verbeke

and Molenberghs [5, p. 62] noted the following: (i) the sandwich estimator is less efficient

than the one using the correct covariance model; and (ii) valid inference requires additional

assumptions about the missing data. In addition, the sandwich estimator has not been fully

evaluated in small samples.

Another approach to covariance misspecification has been to ask whether underfitting can

allow valid inference. Jacqmin-Gadda et al. [7] demonstrated an inflated type I error rate

with covariance misspecification in simulations in the general linear mixed model with

Gaussian errors. For some special cases with complete and balanced Gaussian data, Lange

and Laird [8] proved that ‘fitting a parsimonious covariance structure need not give

inappropriate variance estimates, even if the parsimonious structure is inadequate.’ They

demonstrated in the special cases considered that inclusion of both a random intercept and

slope is conservative in that the variance estimates of the fixed intercept and slope will not

be biased downward. The theory and simulations in the present paper expand on their

discussion, specifically providing evidence against the use of the compound symmetry

assumption in general longitudinal settings.

Scientists in a variety of health and social science settings often assume compound

symmetry for the covariance model of longitudinal responses. Some do so by fitting a

random-intercept-only mixed model and assuming residual error covariance is diagonal with

homogeneous variances [9, 10], whereas others use the uncorrected univariate approach to

repeated measures (UNIREP) test [11, 12]. The unadjusted UNIREP test assumes compound

symmetry. Muller and Stewart [13], among many others, have provided further discussion of

the UNIREP approach. In addition, convergence failure leads some data analysts to remove

additional random effects and retain only a random intercept (and implicitly assume

compoundsymmetry of the responses). Scientists often assume compound symmetry to

simplify a power analysis for the design of a longitudinal study. Some free software for

planning repeated measures studies use compound symmetry exclusively [14].

Despite the widespread use of a compound symmetric (CS) covariance model for

longitudinal responses, little evidence can be marshaled to defend the approach. Equally

important, many authors studying the UNIREP approach, dating back to Box [15, 16], have

demonstrated inflated type I error when falsely assuming compound symmetry. We present

analytic and numerical evidence to demonstrate that underspecification of the covariance

model can lead to very inaccurate fixed effect inference in a mixed model because of an

inflated type I error rate and suggest ways to ensure accurate inference.

3. Analytic results

3.1. Notation

We use the notation in Chapters 3-5 of Muller and Stewart [13]. Subscripts have been added

as needed to distinguish distinct expressions, which play parallel roles in distinct model

formulations, with M for multivariate and m for mixed models. All results assume Gaussian

errors and testable hypotheses (estimable secondary parameters with full-rank contrast
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matrices). The linear mixed model, that in the form which Laird and Ware [17] described,

may be written in the notation of Muller and Stewart [13, Chapter 5] as follows:

(1)

Here, i ∈ {1,…, N }, for N the number of independent sampling units (usually subjects) yi is

a pi × 1 vector of observations on person i; Xi is a pi ×q known design matrix for person i,

whereas β is a q×1 vector of unknown population parameters. Also, Zi is a pi×m known

design matrix for person i corresponding to the m×1 vector of unknown random effects di,

whereas ei is a pi×1 vector of unknown residual errors. The vectors di and ei are Gaussian

and independent with mean 0 and covariance matrices Σdi (τd) and Σei (τe), respectively. In

turn,  is characterized by the finite set of parameters in

the r×1 vector τ containing the unique parameters in τd and τe.

A focus on inference about ‘fixed’ effects, the mean response values, has led others to

consider the ‘population average’ model,

(2)

where e+i = Zidi + ei. Formulation (1) allows conveniently specifying latent random

intercepts, slopes, and others, which implies a covariance model for the responses. In

contrast, formulation (2) allows directly specifying the response covariance model, which in

some cases implies the latent random components. A functional mapping from random

effects to a covariance structure always exists. However, the mapping need not be unique.

Clustered data arising from schools, hospitals, and others usually generate CS data. Such

observations have a common variance and a common correlation for any pair. Cluster i has

pi observations. The same covariance structure arises by specifying the following: (i) a

random intercept as the only random effect, so Zi=1pi and di is 1×1, a scalar; and (ii)

 (a conditional independence assumption for within-subject residual). The

responses have

(3)

For intraclass correlation coefficient ρ between observation j and j’, the model implies

 and . Having  requires ρ ≥ 0, whereas −1/ (pi – 1) < ρ
suffices for compound symmetry. The matrix ν (yi) has a largest eigenvalue of λ1iD=σ2 [1+

(pi – 1) ρ] with eigenvector pi
−1/2pi, whereas all other pi –1 eigenvalues are λ2=σ2 (1 – ρ).

Typically, cluster designs are discussed in terms of {γ2;ρ} [18] rather than the equivalent

pair {λ1i ;λ2}.

3.2. A useful class of mixed models

We restrict attention to tests of fixed effects in the general linear mixed model with Gaussian

errors. In this section and the next, we will prove the following statement:

Proposition 1 Inference for fixed effects in the general linear mixed model is

not robust to covariance misspecification—Specifically, we prove that falsely

assuming compound symmetry, which ignores heterogeneity within subject, creates biased

tests and confidence intervals for data with no missing values (complete and balanced). The

result holds in small and also in asymptotically large samples. The often-used assumption of
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compound symmetry serves as a logical counterexample that allows us to make the

previously mentioned claim.

To prove and enumerate the impact of under fitting the covariance model on tests of fixed

effects, we focus on a restricted class of models, which allows finding closed-form and

small-sample (exact) answers. Hence, our proof centers on the following: (i) mixed models,

which can be stated as a multivariate model; and (ii) hypotheses, which can be stated as a

general linear multivariate hypothesis. The multivariate model corresponds to the

‘population average’ model formulation in Equation (2), which has no explicitly defined

random effects. This multivariate model, as Muller and Stewart [13, Chapter 3] defined, has

restrictions that demand a design with complete balance within subjects, with no missing or

mistimed data and no repeated covariates. An unstructured covariance matrix will be

assumed to be the correct model for the responses.

Muller and Stewart [13, Table 6.5, Table 6.6, Section 12.1, and especially Equation 12.5]

described how to state any multivariate model as a general linear mixed model. As

traditionally written, the multivariate model Y =XMB+E describes N rows of independent

sampling units (subjects) and p columns of repeated measures. Here, B is a q×p matrix of

parameters with rows corresponding to between-subject effects and columns (time indicator)

to within-subject (time) effects. By describing only the data for subject i and therefore row i

in the multivariate model gives 1×p matrix Yi = XM i B + Ei, with Yi = rowi (Y) and XMi =

rowi (XM), whereas Ei = rowi (E). The equivalent mixed model form arises as

(4)

which is the population average model with n = N · p observations, and ⊗ is the Kronecker

product. The error term can be interpreted as e+ i = Zidi + ei . For example, if Zi =1pi and

elements of the residual ei are independent and identically distributed (i.i.d.), then ν (yi) will

be CS.

For inference about population means (i.e., fixed effects), the parameter matrix of mean

differences for the multivariate model is Θ =CMBU with hypothesis H0 : CMBU = Θ0.

Transforming to the mixed model creates vector θ = Cmβ=vec (Θ)=(Cm ⊗ U’)vec(B’). The

multivariate matrix CM defines contrasts between groups. The multivariate matrix U defines

contrasts within an independent sampling unit (such as person) across level of response

(such as time). The mixed model contrast matrix Cm does the work of both CM and U.

3.3. Incorrectly assuming compound symmetry; ignoring heterogeneity within subject

A test of all time trends from linear through p–1 for p repeated measures will illustrate the

analytic and simulation results, which actually cover a wider class of situations. Stacking all

of the data together as ys=[y’1 … y’i … y’N]’ and Xs=[X’1 … X’i … X’N]’ allows writing

ys=Xsβ+e+s and provides a convenient form for the Wald statistic in the mixed model:

(5)

with am = rank(Cm) and . A mixed model corresponding to a multivariate model

has Cm = (U’ ⊗ CM and . Kenward and Roger [16] mentioned

that in such models, Fm is a 1−1 function of the Hotelling–Lawley statistic in the
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multivariate model. The exact distribution of Fm when falsely assuming compound

symmetry for a multivariate equivalent model may be derived as outlined in Appendix A.

Assuming compound symmetry in the mixed model further reduces the statistic to the

original UNIREP statistic. The following theorem and corollary summarize the most

important conclusions that can be deduced.

Theorem 1—An interesting class of general linear mixed models have the following: (i)

complete and balanced Gaussian data; (ii) a common (finite and full rank) population

covariance matrix for each independent sampling unit (e.g., subject); and (iii) no time-

varying covariates. Assuming CS covariance of the responses for any such model leads to a

simple closed-form expression for the Wald statistic from a test of fixed effects. Algorithms

for computing the distribution function of quadratic forms allows exact calculation of test

size and power.

Proof—Appendix A contains an explicit derivation of easily computed expressions for the

distribution function of the test statistic in small and asymptotic samples.

Corollary 1—Incorrectly assuming compound symmetry among responses inflates type I

error rate for Wald tests of fixed effects in a general linear mixed model for small or large

samples.

Proof—Finite and infinite large-sample examples in the exact calculations in the following

text (Section 3.4) prove the corollary by giving counterexamples to the implicit claim of

guaranteed correct test size.

An abundance of results [15, 16, 19, 20] make it clear that the uncorrected UNIREP test can

badly inflate type I error rate in small samples. The same test arises in the general linear

mixed model whenever compound symmetry has been assumed but does not hold. The

between-within approach for mixed models (SAS (SAS Institute Inc., Cary, NC, USA) PROC

MIXED) [21] provides one direct path. However, all other mixed model test choices (such

as containment, residual, Satterthwaite, and Kenward–Roger in SAS) will also inflate type I

error rate because of the assumption error. The proof contains results that show that type I

error inflation remains just as high as N → ∞.

3.4. Exact calculations

Exact calculations illustrate the bias described in the corollary for each combination of N ∈
{50, 100, ∞} and p ∈ {5; 10}, based on models that assumed two groups with a mean

model including only intercept, time (linear), group, and group time (linear), so Xi had rank

4. The pi time points were equally spaced from 0 to 1.

Using the same mean model structure, four covariance models were considered true. They

may be summarized as covariance model: random effects and within-unit residual error,

namely

1. 1,IID: random intercept and i.i.d. within-unit residual (i.e., compound symmetry);

2. 1,AR: random intercept and a first-order AR(1), autoregressive within-subject

residual;

3. 2,IID: random intercept and slope, with an i.i.d. within-unit residual; and

4. 2,AR: random intercept and slope (correlated = 0.25) with an AR(1) within-unit

residual.
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Population variances of the random intercept and slope (when included) were 2 and 1,

respectively. The within-unit residual variance was 1 with an AR(1) correlation of 0.25

when included.

Enumerations used the _QPROB module from the free software POWERLIB [22]. Kim et al. [23]

described the _QPROB algorithm (because of Davies [24]). Exact asymptotic calculations

used the SAS chi-square function. We calculated the type I error rate for testing the fixed

effect of group time (linear) interaction (i.e., the group difference in slopes) when assuming

compound symmetry.

Correctly assuming compound symmetry (1,IID) gives the correct type I error rate of 5%.

When p = 5, incorrectly assuming compound symmetry gives a type I error rate of 9.0%

when the true covariance was (1, AR). Type I error rate increases to 9.8% and 13.7% when

the true covariance also contains a random slope: (2,IID) and (2,AR), respectively. When p

= 10, the type I error rate rises to 14.5% and 19.7% when assuming compound symmetry,

and the true covariance is (2,IID) and (2,AR), respectively. The exact Type I error rates for p

∈ {5, 10} were equal (to three digits of accuracy) for N ∈50; 100;∞}. The proof requires no

missing data (to take advantage of simplifications in the theory for multivariate models).

Obviously, complete and balanced data rarely occur in some applications, such as clinical

trials. However, the simulations (Section 4) support the general proposition that with or

without missing data, incorrectly assuming compound symmetry inflates type I error rate in

the general linear mixed model.

For the sake of brevity, parallel results about ignoring heterogeneity between subjects, as

distinct from ignoring heterogeneity within subjects, have been omitted. Key features are

well-known from the study of univariate linear models: heterogeneity between subjects

strongly interacts with unequal cell sizes to inflate type I error rate for three or more groups

in ANOVA [25]. The mixed model inherits the same vulnerability. However, a

knowledgeable and conscientious analyst can directly model such heterogeneity in a mixed

model formulation.

4. Simulation study

We have proved that incorrectly assuming compound symmetry leads to inflated type I error

rates, with complete and balanced data. Simulations extend the results to missing data. All

simulations used SAS/IML, PROC MIXED, and the DATA step. The normal function generated

pseudorandom Gaussian values. The exact conditions presented in Section 3.4 were

replicated for the simulations. We generated 10,000 pseudorandom samples for each {N; pi}

∈ {{50, 5}, {50, 10}, {100, 5}, {100; 10}}, with each subject having pi time points equally

spaced from 0 to 1. With α = 0.05, the 10,000 pseudorandom samples give a confidence

region for the estimated type I error rate of . In practice, the

acceptability of a particular type I error rate will vary with the preferences of the reader. A

total of 20% of the data were set to missing by pseudorandom deletion within person

(uniform sampling without replacement).

We calculated the type I error rate for testing the fixed effect of Group×Time (Linear)

interaction (i.e., the group difference in slopes). For each of the four true population

covariance structures (listed in Section 3.4), we tabulated type I error rates when fitting the

same four distinct covariance models, in addition to fitting an unstructured covariance. We

employed restricted maximum likelihood (REML) estimation with the Kenward–Roger

approach [26] for all five cases. We also tabulated the type I error rate when assuming

compound symmetry with the sandwich estimator, which required the containment method

[21] because the Kenward–Roger approach does not apply.
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Figure 1 presents empirical type I error rates for the simulations with pi = 5 observations per

subject. Results from the simulations with {N; pi } ∈ {{50, 10} ; {100, 10}} were similar

and are not shown. The results illustrate the generality of the theorem and the substantial

bias that can occur. Even with a correctly specified covariance model, observed type I error

rate has some modest bias for smaller sample sizes, especially when the true models include,

an AR(1) within-unit error covariance. The (true) (1,AR) model has a 5.3% type I error rate

when correct, and the (true) (2,AR) model has a 4.7% type I error rate when correct, for N =

50. As expected, moderate to severe bias in type I error rate can occur when incorrectly

assuming compound symmetry, with type I error rates no smaller than 7.6% for any of the

other examined true covariance models. The bias remains substantial even when the number

of subjects increases from 50 to 100.

It is important to note what works in the absence of reliable covariance model identification

techniques. Not surprisingly, if the covariance model chosen contained the true model as a

special case, or differed only modestly from the true model, then type I error rate was

roughly correct. For example, the random intercept and slope (i.i.d. error) covariance model

that Lange and Laird [8] considered controlled type I error rate for the four simple models

considered, with a small conservative bias when the true model is indeed compound

symmetry (4.1% and 4.2% when N = 50 and N = 100, respectively). Our results imply that it

would be a simple exercise to find other covariance patterns for which the choice fails to

control type I error rate. Fitting an unstructured covariance model always gives a safe choice

when focused on inference about fixed effects, if one is willing to accept a type I error rate

no greater than about 6%. It is clear that the unstructured covariance model is over-fitting

data generated from a model with at most two random effects. As many practitioners know,

estimating an unstructured covariance can create convergence problems, especially as the

number of observations per subject increases or the number of independent observations

decreases. For example, with N 100 and p 10 (results not shown), convergence for the

unstructured model was achieved only 61% ofDthe time. Among the models that converged,

type I error rates were inflated, no matter what the underlying true model was. For the

sample sizes considered, using the sandwich estimator improved inference no matter what

covariance model was assumed, without the convergence problems. However, bias similar

to what was observed for the unstructured model remains, particularly for small samples.

5. Application to the Study of Early Child Care and Youth Development

asthma data

Modeling behavioral outcomes over time in the SECCYD data further illustrate the

analytical and numerical results. Specifically, assuming CS errors or equivalently including

only a random intercept with conditional independence of within-subject error leads to

different inferences than for more general covariance models. Both look plausible, although

both cannot be correct because they disagree. The analytic and simulation results suggest

that the results for the complex covariance model are the correct ones.

Developmental measures collected in the SECCYD allow comparing children with and

without various phenotypes of asthma. The primary outcome was the Child Behavior

Checklist (CBCL) [27]. The CBCL measures social competence as well as externalizing and

internalizing behavior problems. The parent completed age-specific versions of the CBCL,

standardized as a ‘T-score’ (mean = 50, SD = 10), at age 36 and 54 months, as well as

during grades 1, 3, 4, 5, and 6, and at age 15 years. Higher scores indicate more problematic

behavior, with T-scores greater than 70 considered as clinically relevant.

We compared internalizing behavior trends between those who developed asthma early (by

age 4 years) and those who never developed asthma. Asthma status could be classified for
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795 children: 58 children had asthma, whereas 737 did not. Linear, through cubic orthogonal

polynomial trends for time, were initially included as predictors, as well as all corresponding

interactions, with the interactions of age with asthma status of particular interest. Covariates

included sex, maternal age at birth, the mean maternal depression score during years 0-3, the

mean home environment score (higher indicating better) during years 0-3, and the mean

child care quality score during years 0-3 (higher indicating better). Initially, compound

symmetry was assumed. A backward stepwise selection procedure was performed for the

fixed effects by removing the least-significant higher-order interactions one by one until

only significant interactions (and/or main effects) remained. Table I displays the estimates

and the p-values for the final fixed effects model of internalizing CBCL T-scores when

assuming compound symmetry. In addition, estimates were calculated for the final (fixed

effect) model using two additional covariance models: (i) unstructured; and (ii) random

intercept and slope with an AR(1) within-unit error. The sandwich estimator (with

containment) assuming compound symmetry was also applied. With respect to the

recommendation of Verbeke and Molenberghs [5, Section 2.3], we fitted additional models

not shown here. Given the consistency of these other models, we did not display results from

these others, including one with random effects through cubic age. Table I also displays the

corresponding fixed effects estimates and the p-values for these other covariance models.

Comparisons of the fixed effect estimates and the p-values for the various covariance

models reveal agreement for most values (Table I). However, asthma status was found to

significantly interact with age (p = 0:03) in a linear fashion when assuming compound

symmetry; there was no such significant interaction when fitting any of the other covariance

models (p ≥ 0:10 in all cases). If one were to have fit a random-intercept-only model to these

data, one would have concluded, apparently erroneously, that those with asthma exhibited

higher internalizing behavior scores over time. A similar contrast is also observed in

considering gender and behavior over time, with the compound symmetry model giving a

significant linear change in behavior scores between boys and girls as they mature. We

emphasize that it is safer to select the fixed-effect model based on a sufficiently complex

covariance model. We omit the details simply for the sake of brevity and simplicity.

6. Discussion

A common choice for a covariance model of the responses in a general linear mixed model

arises from including only a random intercept and assuming homogeneous and independent

errors within subject. The choice requires the responses to have CS covariance, an

assumption that arises in a variety of ways.

We proved that incorrectly assuming compound symmetry inflates type I error for inference

about the fixed effects in a general linear mixed model, in both small and large samples.

Numerical results illustrate the magnitude of the problem. Simulations demonstrate that the

problem occurs with missing data. Our focus here has been the compound symmetry

assumption; the proof does not directly apply to other assumed covariance structures (e.g.,

random intercept plus slope, etc.). However, our results prove that robustness of fixed

effects inference with an underspecified covariance model cannot be guaranteed in small or

large samples. The generalization applies not only to mixed models that incorporate random

effects but also to any multivariate model, particularly those with repeated measurements.

The results provide some guidance for achieving accurate inference for fixed effects. The

first step involves considering general covariance models. Many analysts, including

ourselves, would not consider compound symmetry for longitudinal data. Despite that, many

recently published studies explicitly or implicitly make the assumption. The false hope that

large samples allow ignoring insufficient covariance model complexity may motivate the
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approach. In contrast to longitudinal data, cluster-based sampling typically provides

exchangeability of observations and hence CS correlation within cluster. A careful review of

the sampling plan to ensure the validity of the exchangeability assumption seems necessary.

In addition to the use in data analysis, the compound symmetry assumption has been used

often for power analysis. Although preferred for cluster samples, realistic correlation

patterns for longitudinal data include a linear exponent autoregressive (LEAR) reliable or

damped exponential model [28], which generalize AR(1) structure. In parallel to the results

on type I error rate, a valid power analysis requires a covariance model aligned with the

population. The example power values for repeated measures designs in [29] allow

concluding that misspecification of the covariance matrix can lead to computing power

either too high or too low because of misalignment.

If the data allow it, one should model an unstructured covariance. Unfortunately,

convergence often becomes an issue with mixed models. Cheng et al. [30] provided practical

advice on improving the chances for convergent models. The least appreciated strategies

center on minimizing collinearity in both fixed and random predictors. The importance of

centering and scaling all predictors (especially time) and the use of full-rank coding

schemes, preferably orthogonal, cannot be overemphasized.

When a simple covariance model (compound symmetry, unstructured) can not be assumed,

the mixed model provides advantages in that one can incorporate random effects to model

the covariance structure. Our work extends the results of Lange and Laird [8] by

demonstrating that modest expansion of the random effects (covariance structure) helps but

cannot be guaranteed to be sufficient. We warn against underspecification of the covariance

model, no matter whether it is a general structure or one composed of random effects.

Fortunately, conscientious attention to good statistical practices in covariance model fitting

can provide confidence in fixed effect inference in a mixed model.

The sandwich estimator appeals simply because it does not require an elaborate covariance

model selection process and can simplify convergence. As far as we know, its performance

in small-sample settings has been relatively unstudied and should be the focus of future

work. Specifically, DOF approximations should be studied with the sandwich estimator.

However, in large-sample settings, where we prove that assuming compound symmetry

results in substantial bias, the sandwich estimator seems to be a valid alternative.

We have focused on settings with primary interest in inference about fixed effects and little

interest in covariance structure itself. Even with a focus on fixed effects, accurate inference

requires selecting an adequate approximation for the true covariance structure.

Unfortunately, although many model selection criteria have been suggested, none has been

found to be clearly superior. Part of the difficulty stems from the interaction between fixed

effect and covariance model selection. Overall, one principle seems clear: controlling type I

error for tests of fixed effects demands avoiding an underfitted covariance model.
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Appendix A. Proof of the theorem

For the sake of brevity, we use the notation and many results in [13, Chapters 1, 3, 5, 12, 14,

16, 18] without specific references. We restrict attention to mixed models that are valid

multivariate models. Stacking all of the data sorted by subject gives vec(Y’) = vec[(XMB)’]

+vec(E’) = (XM ⊗ Ip)vec(B’)+vec(E’), which may be stated as ys=Xsβ + e+s, the population

average model for all n= N·p observations. Here, ys=[y’1 … y’i 7#x2026; yN]’ and Xs=[X’1

… X’i … XN]’.

With ν (yi) = Σi for subject i , the multivariate model gives maximum-likelihood estimations

noniteratively:  and . Here  is functionally

independent of , so  is invariant to , a property not guaranteed in the mixed model.

REML estimates are  and  for rM = rank(XM). Mixed model estimates

are , ,  for subject i and . Hence,

 and

. The Wald statistic reduces to .

Here, Fm is invariant to full-rank transformation of columns of U and

. Singular value decomposition gives U =L+Dg(s)R’ with L+ and R orthonormal by column.

Using T =RDg(s)−1 allows assuming U =L+, the eigenvectors of UU’ for nonzero

eigenvalues.

A p × p CS covariance is

. Here, λ1 = σ2

[1+(p – 1) ρ] and λ2 = σ2 (1 – ρ), whereas ν0=1p/p1/2 and Vt may be taken to be any p×(p –

1) orthonormal matrix with .

Three distinct classes of hypotheses occur: (i) pure between hypotheses have p×1 U =w·ν0

for w ≠ 0; (ii) pure within hypotheses have U’ν0 = 0; and (iii) combinations have U’ν0 ≠ 0

and rank(U) > 1. For the sake of brevity, we provide an explicit form only for pure within

hypotheses. The other cases have the same structure with different weights in the resulting

quadratic forms. If U’ν0 = 0 and p × bU = L+, then without loss of generality Vt = [L+L0]

with L0 any p – 1 – b ≥ 0 eigenvectors of UU’ for zero eigenvalues.

Compound symmetric estimates may be computed in terms of the unstructured maximum

likelihood  and unstructured REML  covariance estimates [31]. Here,

 and

 give

 and

.
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Hence, the REML estimate for a CS covariance matrix in a general linear mixed model

corresponding to a multivariate model may be computed noniteratively as

. Assuming compound symmetry in the mixed model

gives 

For pure within hypotheses (such as a test of the linear trend),

. With  indicating

column k of ,

(6)

Writing  implies  with am = aMb for Θ aM ×b.

Multivariate model results give  and 

independent of , which insures  independent of .

Under H0,  for i.i.d. Xhk~χ2 (aM) and λhk an eigenvalue of Σh=U’ΣiU. If

, then . In turn,

. Here,

 so

 and  with

. Hence,  for i.i.d. Xek ~ χ2 (νe; 0) and

λek an eigenvalue of Σe =V’tΣVt . Finally,

, for

 a quadratic form with positive and negative weights.

The fact that Pr {Fm≤f } = Pr{Q ≤ 0} allows computing the exact distribution function of the

Wald statistic in finite samples with the Kenward–Roger approximation. Results in [12]

allows using modules from POWERLIB [28] that implements exact methods described in

[29].

In large samples, under H0, the numerator distribution of Fm does not change as N → ∞

because  does not depend on N for i.i.d. Xhk ~ χ2 (aM). The denominator converges to

a constant,  and thereby becomes known.

Hence, under the null , a quadratic form, which allows

exact probability calculations. Satterthwaite’s method gives an accurate approximation.
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Under HA, as in [15], U’ΣiU = γDg(λ*)γ’ defines noncentrality

 a diagonal element of Ω* = γ’ΔγDg(λh)−1. Here,

 for i.i.d. Xhk ~ χ2 (aM, ω*k) and λhk an eigenvalue of Σh = U’ΣiU.

Methods in [29] allow exact computation and accurate approximation of the cumulative

distribution function of Fm for finite samples. In large samples, as under H0,

. With nonlocal alternatives  and power → 1. For

local alternatives β. N−1/2 β and .

The essence matrix Es(XM) contains one copy of each unique row of XM, and MM =

N−1CMEs (XM)’ Es (XM)]−1 C’M.
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Figure 1.
Observed type I error rate (×100) of fixed effect interaction for α = 0:05. Four true

covariance models, 20% missing completely at random, 10,000 replications per condition*.

*Except in the sandwich cases, we performed inference using the Kenward-Roger approach.
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