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AVOIDING BOUNDARY ESTIMATES IN LATENT CLASS ANALYSIS
BY BAYESIAN POSTERIOR MODE ESTIMATION

Francisca Galindo Garre∗ and Jeroen K. Vermunt∗∗

In maximum likelihood estimation of latent class models, it often occurs that one or
more of the parameter estimates are on the boundary of the parameter space; that is,
that estimated probabilities equal 0 (or 1) or, equivalently, that logit coefficients equal
minus (or plus) infinity. This not only causes numerical problems in the computation
of the variance-covariance matrix, it also makes the reported confidence intervals and
significance tests for the parameters concerned meaningless. Boundary estimates can,
however, easily be prevented by the use of prior distributions for the model param-
eters, yielding a Bayesian procedure called posterior mode or maximum a posteriori
estimation. This approach is implemented in, for example, the Latent GOLD software
packages for latent class analysis (Vermunt & Magidson, 2005). Little is, however,
known about the quality of posterior mode estimates of the parameters of latent class
models, nor about their sensitivity for the choice of the prior distribution. In this paper,
we compare the quality of various types of posterior mode point and interval estimates
for the parameters of latent class models with both the classical maximum likelihood
estimates and the bootstrap estimates proposed by De Menezes (1999). Our simulation
study shows that parameter estimates and standard errors obtained by the Bayesian
approach are more reliable than the corresponding parameter estimates and standard
errors obtained by maximum likelihood and parametric bootstrapping.

1. Introduction

Latent class (LC) analysis has become one of the standard methods for analyzing
data in social and behavioral research. As is well known, it often occurs that maximum
likelihood (ML) estimates of the parameters of LC models lie on the boundary of the
parameter space; i.e., that estimated model probabilities equal 0 (or 1) or, equivalently,
that estimated log-linear parameter equal plus (or minus) infinity. Though such boundary
estimates are most likely to occur when the sample size is small compared to number of
unknown parameters, they may also occur in other situations. Occurrence of boundary
estimates not only leads to numerical problems in the computation of the parameters’
asymptotic variance-covariance matrix, it also causes confidence intervals and significance
tests to become meaningless.
To overcome the problems associated with the asymptotic standard errors in the case a

LC model contains boundary estimates, De Menezes (1999) proposed using a parametric
bootstrap approach. She showed that this computationally intensive method yields more
reliable point and interval estimates for the class-specific conditional response probabilities
than the ML method. However, bootstrap replicate samples may also contain boundary
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estimates, which is not a problem when one is only interested in the model probabilities,
but is a big problem if one is also interested in the logit parameters defining the class-
specific response probabilities: A single bootstrap replicate with a boundary estimate of
say minus infinity yields a point estimate of minus infinity for the parameter concerned
with an asymptotic standard error of infinity. This may even occur if the ML solution
does not contain boundary estimates, which shows that the bootstrap method does not
seem to be very useful for inference concerning the logit parameters of a LC model.
An alternative method for dealing with the boundary problems associated with ML

estimation involves making use of prior information on the model parameters. This yields
a Bayesian estimation method called posterior mode or maximum a posteriori estimation,
which was used in the context of LC analysis by, for example, Maris (1999) and which
is implemented in the Latent GOLD program for LC analysis (Vermunt & Magidson,
2000, 2005). An important difference with the bootstrap method is that this Bayesian
estimation method prevents boundaries from occurring by introducing external a priori in-
formation about the possible (non-boundary) values of the parameters. Another difference
is that Bayesian posterior mode estimation does not take more computation time than
ML estimation. In fact, it requires only a minor modification of the standard ML estima-
tion algorithms. Note that posterior mode estimation is a computationally non-intensive
variant of a computationally intensive full Bayesian analysis using Markov Chain Monte
Carlo (MCMC) methods (Gelman, Carlin, Stern & Rubin, 2003). Moreover, Galindo,
Vermunt & Bergsma (2004) showed for log-linear analysis of sparse contingency tables –
which is also a situation in which boundaries are very likely to occur – that bias and root
median squared errors of posterior mode estimates may even be smaller than those of
posterior mean estimates obtained via MCMC, indicating that the former may be a good
alternative to a full Bayesian analysis.
An important issue when applying Bayesian methods is the choice of the prior distri-

bution. When no previous knowledge about the possible values of the unknown model
parameters is available, it is common to take a noninformative prior, which should yield
point estimates similar to the ones obtained by ML while avoiding boundary estimates.
In a simulation study on the performance of various noninformative prior distributions
in logit modeling with sparse contingency tables, Galindo Garre, Vermunt & Bergsma
(2004) found that any of the investigated prior distributions studied yielded better point
and interval estimates than standard ML. Further research is needed, however, to explore
whether these results can be generalized to more complex categorical data models, such
as the LC models.
The aim of the present paper is to determine whether a Bayesian approach yields better

point and interval estimates for parameters of LC models than asymptotic and bootstrap
procedures. The adopted Bayesian approach consists of maximum a posteriori estimation
using the noninformative priors that performed best in the simulation study conducted
by Galindo et al. (2004). Section 2 describes the asymptotic method based on ML the-
ory as well as the bootstrap method for obtaining standard errors. Section 3 describes
the adopted Bayesian approach in combination with various types of noninformative pri-
ors. Section 4 presents the results of a small simulation study. The paper ends with a
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discussion.

2. Estimation of parameters and standard errors of latent class models

This section illustrates the numerical problems occurring in the estimation of standard
errors when one or more parameter estimates of a LC model are on the boundary of the
parameter space. After describing the basic LC model, we show how asymptotic and boot-
strap standard errors can be obtained. These ML and bootstrap methods are illustrated
with a small empirical example.
The aim of a basic LC analysis is to explain the associations among a set of K categor-

ical response variables (Y1, .., Yk, ..., YK) from the existence of a categorical latent variable
X, with the intension to find meaningful latent classes. The number of categories of X
(number of latent classes) is denoted by T and the number of categories of response vari-
able Yk by I1). Let P (X = x) be the overall probability of belonging to latent class x and
P (Yk = yk|X = x) the conditional probability of providing response yk to item Yk given
that one belongs to latent class x, where 1 ≤ x ≤ T and 1 ≤ yk ≤ I. In the basic LC
model, we assume that for each possible response combination (y1, .., yk, ..., yK) and each
category x of X

P (y1, .., yk, ..., yK |X = x) =
K∏

k=1

P (Yk = yk|X = x).

In other words, responses are assumed to be mutually independent within latent classes,
which is known as the local independence assumption (Goodman, 1974a, 1974b). The
unconditional probability of having a certain response sequence is obtained as follows:

P (y1, .., yk, ..., yK) =
T∑

x=1

P (X = x) · P (y1, .., yk, ..., yK |X = x).

The probabilities defining the LC model – P (X = x) and P (Yk = yk|X = x) – can also
be expressed as logit models (Haberman, 1979; Heinen, 1996, pp.51–53, Vermunt, 1997);
that is,

P (X = x) =
exp(γX

x0)∑T
s=1 exp(γ

X
s0)
,

P (Yk = yk|X = x) =
exp(βYk

yk0 + β
YkX
ykx )∑I

r=1 exp(β
Yk
r0 + β

YkX
rx )

.

Here γX
x0 are the logit parameters defining the class sizes, β

Yk
yk0 are the constants in the

model for item Yk and βYkX
ykx are the association parameters describing the relationship

between X and Yk.2) This parametrization is useful because it is the logit coefficients that
1) In this paper, for simplicity of exposition, we assume that the number of categories is the same for

all items. The LC model can, of course, also be used when this is not the case.
2) Note that the standard identifying – effect or dummy coding – constraints are impose on these logit

coefficients.
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are asymptotically normally distributed rather than the probabilities themselves. More-
over, the logit parametrization makes it possible to imposed all kind of interesting model
restrictions, leading, for example, to discretized variants of IRT models, as well as makes
it possible to expand the LC model in various ways, for example, by including covariates
affecting class membership.
Let θ = (γ, β) be a column vector containing all unknown logit parameters, where γ

denotes the subvector of parameters corresponding to the latent class probabilities and β

denotes the subvector of logit parameters corresponding to the conditional response prob-
abilities. Note that the total number of free logit parameters equals (T−1)+K ·T ·(I−1).
Let Z be a design matrix of the form

Z =



Z0 0 · · · 0 · · · 0
0 Z1 · · · 0 · · · 0
...

...
...

...
...

...
0 0 · · · Zk · · · 0
...

...
...

...
...

...
0 0 · · · 0 · · · ZK


,

where Z0 is a T × (T − 1) submatrix whose elements connect the γ parameters to the
response probabilities and where, for 1 ≤ k ≤ K, Zk is a (T · I)× [T · (I − 1)] submatrix
whose elements connect the right β parameters to the conditional response probabilities
corresponding to item Yk. Using these submatrices, the logit of the subvectors of model
probabilities can alternatively be defined as follows:

logit πX = Z0 γ = Z0 θ0,

logit πYk/X = Zk βk = Zk θk.

where πX contains the T P (X = x) terms and πYk/X the T · I P (Yk = yk|X = x) terms.
Parameter estimates of LC models are usually obtained by ML. Let n(y1, .., yK) be the

observed frequency for response pattern (y1, .., yK) and n be the full vector of observed
frequencies. Summing over all the response sequences, the multinomial log-likelihood,
log p(n|θ), is

log p(n|θ) =
∑

n(y1, .., yK) logP (y1, ..., yk, ..., yK) + Constant (1)

The most popular algorithms for maximizing equation (1) under a LC model are the
Expectation-Maximization (EM) (Dempster, Laird & Rubin, 1977), Fisher scoring (Haber-
man, 1979), and Newton-Raphson algorithms.

2.1 Asymptotic standard errors

Once the ML estimates of the parameters have been computed, standard errors are
needed to assess their accuracy and to test their significance. Asymptotic standard er-
rors for θ̂ estimates can directly be obtained as the square root of the main diagonal
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elements of the inverse of the Fisher information matrix, i(θ). Because P (X = x) and
P (Yk = yk|X = x) are functions of the θ parameters, their asymptotic standard errors
(ASE) can be obtained by the delta method; that is, by

ASE[P (X = x)] =

√
∂P (X = x)

∂γ
i(θ)−1

∂P (X = x)
∂γ

′
,

ASE[P (Yk = yk|X = x)] =

√
∂P (Yk = yk|X = x)

∂β
i(θ)−1

∂P (Yk = yk|X = x)
∂β

′
.

The Fisher information matrix – i.e., the expected information matrix – is defined as
minus the expected value of the matrix of second-order derivatives to all model param-
eters: i(θ) = E(−∂2 log p(n|θ)

∂θ∂θ ). For any categorical data model, an element (�,m) of the
information matrix is obtained as follows:

i(θ�, θm) = −N
∑ 1

P (y1, .., yk, ..., yK)
∂P (y1, .., yk, ..., yK)

∂θ�

∂P (y1, .., yk, ..., yK)
∂θm

, (2)

where θ� and θm are the logit parameters corresponding with rows � and m of the de-
sign matrix Z and N is the total sample size. Denoting the probability of belonging to
latent class x and response sequence (y1, ..., yK) by P (x, y1, ..., yK), the necessary partial
derivative for θ� can be obtained by

∂P (y1, .., yk, ..., yK)
∂θ�

=
T∑

x=1

P (x, y1, ..., yK)

[
zx� −

T∑
r=1

zr�P (X = x)

]

for the parameters corresponding to the latent class probabilities, and by

∂P (y1, .., yk, ..., yK)
∂θ�

=
T∑

x=1

P (x, y1, ..., yK)

[
zkykx� −

I∑
s=1

zksx�P (Yk = yk|X = x)

]
,

for the parameters corresponding to the conditional responses probabilities (for a detailed
description, see Bartholomew & Knott, 1999, p. 40, and De Menezes, 1999). In presence
of parameter estimates on the boundary of the parameter space, the matrix i(θ) is not full
rank, which means that its (standard) inverse is not defined. As a consequence, neither
interval estimates nor significance tests can be obtained by the usual procedure.3)

2.2 Bootstrap standard errors

De Menezes (1999) proposed obtaining estimates for the standard errors in a LC anal-
ysis by a parametric bootstrap, which implies that their values are approximated by a
Monte Carlo simulation (Efron & Tibshirani, 1993). More specifically, B replication sam-
ples of the same size as the original sample are generated from the population defined by

3) Standard errors for the non-boundary parameters are usually obtained by taking the generalized

inverse of the information matrix. These standard errors are valid only under the conditional that the

boundary estimates can be seen as a priori model constraints.
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the ML solution obtained for the model of interest. For each of these replication samples
we re-estimate the model of interest using ML. The bootstrap parameter values and their
standard errors are respectively the means and standard deviations of the B sets of param-
eter estimates. Using an extended simulation study, De Menezes (1999) showed that, in
general, the parametric bootstrap procedure yields accurate point estimates and standard
errors for the conditional response probabilities defining a LC model. She, however, did
not investigate the performance of the method for logit parameters.

2.3 Empirical example

We will now illustrate the impact of the occurrence of boundary estimates using an
empirical example. Table 1 reports women’s answers to five opinion items about gender
roles in a Dutch survey taken from Heinen (1996, pp.44–49). Heinen found that while the
LC model with two classes had to be rejected

(
G2 = 53.78, χ2 = 54.30, d.f. = 20

)
, the LC

model with three latent classes provided a good fit
(
G2 = 17.53, χ2 = 19.31, d.f. = 14

)
.

However, some of the conditional probabilities – P (Y2 = 1|X = 1), P (Y3 = 1|X = 3),
and P (Y5 = 1|X = 3) – took values of zero or one, resulting in numerical problems when
calculating the corresponding standard errors. Table 2 gives ML and bootstrap parame-
ter estimates and standard errors for the model probabilities. As can be seen, none the
bootstrap estimates is on the boundary of the parameter space and reasonable standard
errors are obtained for all parameters, also for the ones for which ML yielded a boundary
estimate.
Table 3 reports the same information for the logit parameters. As can be seen, both ML

and bootstrap methods produce estimates close to plus or minus infinity for βY2X
11 , βY3

1 ,
βY3X

11 , βY3X
12 , βY5

1 , β
Y5X
11 , and βY5X

12 . Although bootstrap standard errors exist for these
parameters, their values are extremely large, which shows that the parametric bootstrap
does not always yield reasonable standard errors for logit coefficients. The reason for this
is that some replicate samples contain (close to) boundary estimates.
The cause of the poor performance of the parametric bootstrap with the logit parame-

terization is that the range of values for logit parameters is between [−∞,+∞], whereas
conditional probabilities are constrained to lie in the interval [0, 1]. Extreme parameter es-
timates in the replication samples will thus affect the means and variances more seriously
for logit parameters than for probabilities.

Table 1: Women’s answers to five gender role opinion items (observed frequencies).

Pattern Frequency Pattern Frequency Pattern Frequency Pattern Frequency

11111 23 12111 3 21111 4 22111 2
11112 0 12112 0 21112 1 22112 1
11121 49 12121 45 21121 13 22121 45
11122 14 12122 29 21122 10 22122 47
11211 0 12211 2 21211 0 22211 0
11212 0 12212 0 21212 1 22212 1
11221 4 12221 15 21221 7 22221 42
11222 3 12222 51 21222 3 22222 177
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Table 2: Estimates of the conditional probabilities for Heinen’s data.

ML Bootstrap Jeffreys Normal Dirichlet LG

Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE

P (X = 1) 0.46 0.06 0.49 0.04 0.49 0.03 0.50 0.09 0.55 0.05 0.46 0.08
P (X = 2) 0.43 0.05 0.40 0.04 0.38 0.03 0.35 0.07 0.25 0.06 0.42 0.06
P (X = 3) 0.11 0.02 0.11 0.03 0.13 0.01 0.15 0.06 0.20 0.04 0.12 0.03
P (Y1 = 1|X = 1) 0.19 0.03 0.22 0.03 0.20 0.02 0.20 0.03 0.23 0.03 0.19 0.03
P (Y1 = 1|X = 2) 0.50 0.05 0.48 0.04 0.51 0.04 0.48 0.09 0.49 0.08 0.49 0.07
P (Y1 = 1|X = 3) 0.91 0.06 0.89 0.07 0.90 0.01 0.87 0.08 0.80 0.06 0.90 0.07
P (Y2 = 1|X = 1) 0.00 — 0.05 0.01 0.01 0.01 0.02 0.02 0.04 0.02 0.00 0.02
P (Y2 = 1|X = 2) 0.28 0.06 0.19 0.05 0.28 0.04 0.26 0.11 0.26 0.09 0.27 0.07
P (Y2 = 1|X = 3) 0.93 0.08 0.92 0.01 0.90 0.01 0.83 0.11 0.74 0.08 0.90 0.09
P (Y3 = 1|X = 1) 0.10 0.06 0.30 0.02 0.12 0.04 0.12 0.08 0.20 0.04 0.10 0.07
P (Y3 = 1|X = 2) 0.76 0.05 0.78 0.02 0.79 0.06 0.79 0.11 0.79 0.09 0.76 0.08
P (Y3 = 1|X = 3) 1.00 — 0.99 0.00 0.98 0.00 0.95 0.04 0.90 0.04 0.99 0.03
P (Y4 = 1|X = 1) 0.00 0.01 0.01 0.02 0.01 0.00 0.01 0.01 0.02 0.01 0.00 0.01
P (Y4 = 1|X = 2) 0.04 0.02 0.03 0.00 0.03 0.01 0.03 0.03 0.07 0.04 0.04 0.02
P (Y4 = 1|X = 3) 0.41 0.08 0.37 0.10 0.41 0.04 0.34 0.10 0.29 0.06 0.39 0.09
P (Y5 = 1|X = 1) 0.14 0.04 0.24 0.02 0.15 0.03 0.16 0.04 0.19 0.03 0.14 0.04
P (Y5 = 1|X = 2) 0.59 0.06 0.74 0.03 0.61 0.05 0.60 0.11 0.65 0.09 0.59 0.08
P (Y5 = 1|X = 3) 1.00 — 0.99 0.03 0.96 0.01 0.92 0.06 0.83 0.05 0.98 0.04

Table 3: Estimates of the logit parameters for Heinen’s data.

ML Bootstrap Jeffreys Normal Dirichlet LG

Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE

βX1
1 1.43 0.30 1.51 0.32 1.35 0.09 1.21 0.52 1.02 0.25 1.35 0.41

βX2
2 1.35 0.24 1.29 0.32 1.10 0.14 0.87 0.44 0.23 0.39 1.25 0.28

βY1
1 2.36 0.78 3.77 5.40 2.15 0.10 1.86 0.68 1.38 0.39 2.22 0.74

βY1X
11 −3.80 0.78 −4.72 5.46 −3.55 0.17 −3.22 0.67 −2.60 0.41 −3.65 0.73

βY1X
12 −2.38 0.80 −4.30 5.40 −2.13 0.20 −1.92 0.66 −1.40 0.57 −2.26 0.74

βY2
1 2.61 1.22 5.81 7.43 2.21 0.16 1.61 0.79 1.06 0.44 2.25 1.00

βY2X
11 −33.78 — −16.86 12.90 −6.42 0.77 −5.74 1.21 −4.12 0.56 −8.02 4.97

βY2X
12 −3.55 1.22 −13.61 12.45 −3.18 0.28 −2.66 0.77 −2.11 0.69 −3.23 0.96

βY3
1 22.06 — 21.91 7.58 3.67 0.20 2.90 0.88 2.20 0.48 4.88 3.47

βY3X
11 −24.23 — −23.17 7.88 −5.68 0.36 −4.87 1.06 −3.61 0.52 −7.05 3.41

βY3X
12 −20.90 — −23.13 8.09 −2.33 0.44 −1.55 1.23 −0.87 0.86 −3.74 3.52

βY4
1 −0.34 0.35 −0.49 1.01 −0.34 0.18 −0.67 0.43 −0.91 0.28 −0.43 0.37

βY4X
11 −5.74 2.24 −9.96 10.05 −4.65 0.71 −4.41 1.11 −2.87 0.55 −5.50 2.01

βY4X
12 −2.82 0.51 −7.33 8.88 −3.01 0.42 −2.78 0.84 −1.68 0.73 −2.80 0.57

βY5
1 22.50 — 18.99 9.20 3.20 0.25 2.46 0.82 1.58 0.38 4.02 2.32

βY5X
11 −24.32 — −19.98 9.59 −4.92 0.29 −4.13 0.82 −3.04 0.42 −5.83 2.27

βY5X
12 −22.13 — −19.47 9.23 −2.73 0.35 −2.05 0.89 −0.95 0.64 −3.66 2.29

* A dummy coding is used and the parameters fixed to zero are not reported
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3. Estimation of parameters and standard errors of latent class model
using Bayesian methods

In contrast to ML and bootstrap methods, Bayesian methods assume that parameters
θ are random variables rather than taking fixed values that have to be estimated. As a
consequence, probability models are used to fit the data. The main advantage of these
models is that the information coming from the current sample may be combined with
available knowledge on the parameters’ values summarized in a prior distribution p(θ).
The posterior distribution p(θ|n), representing the updated parameters’ distribution given
the data n, can be determined by applying the Bayes’ rule,

p(θ|n) = p(n|θ) p(θ)∫
p(n|θ) p(θ)dθ ∝ p(n|θ) p(θ),

where, in our case, p(n|θ) is the exponential of the log-likelihood function defined in
equation (1).
By using a prior distribution, parameter estimates can be smoothed so that they stay

within the parameter space. When no previous knowledge about the parameters is avail-
able, it is most common to use a noninformative prior, in which case the contribution of
the data to the posterior distribution will be dominant. Below, three types of prior distri-
butions for the Bayesian estimation of LC models are presented: Jeffreys’ prior, normal
priors, and Dirichlet priors.

3.1 Jeffreys’ prior

A commonly used prior in Bayesian analysis is the Jeffreys’ prior (Jeffreys, 1961). This
prior is obtained by applying Jeffreys’ rule, which involves taking the prior density to be
proportional to the square root of the determinant of the Fisher information matrix i(θ);
that is,

p(θ) ∝ |i(θ)|
1
2 ,

with | · | denoting the determinant. In the case of the LC model and taking a logit
formulation, the elements of i(θ) can be obtained with equation (2).
An important property of Jeffreys’ prior is its invariance under scale transformations of

the parameters. This means, for example, that it does not make any difference whether the
prior is specified for the logit parameters or for the probabilities defining the LC model, or
whether we use dummy or effect coding for the logit parameters. As Gill (2002) pointed
out, other relevant properties of the Jeffreys’ prior are that it mediates as little subjective
information into the posterior distribution as possible since it comes from a mechanical
process in which the researcher does not need to determine the prior’s hyperparameters.
Firth (1993) showed for various generalized linear models that parameter estimates ob-
tained by using Jeffreys’ prior present less bias than the corresponding ML estimates.
Similar results were obtained in a simulation study conducted by Galindo et al. (2004) for
logit models. However, more research is needed to determine whether the Jeffreys’ prior
also has good frequentist properties under more complex models, such as LC models.
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3.2 Univariate normal priors

An alternative to using a prior based on a statistical rule, is to assume a normal prior
distribution for the θ parameters. When no information about the dependence between
parameters is available, it is convenient to adopt a set of univariate normal priors.
Normal distributions have repeatedly been used as prior distributions for logit models

and also for latent trait models. For instance, the example “LSAT: latent variable models
for item response data” that appears in the manual of the WinBUGS computer program
(Gilks, Thomas & Spiegelhalter, 1994) makes use of normal priors. Congdon (2001) sug-
gested that noninformative priors may be approximated in WinBUGS by taking univariate
normal distributions with means equal to zero and large variances. The effect of using
normal priors with means of 0 is that parameter estimates will be smoothed toward zero.
The prior variances determine the amount of prior information that is added, implying
that the smoothing effect can be decreased by using larger variances.

3.3 Dirichlet priors

In contrast to the normal priors presented above which are defined for the logit pa-
rameters, the Dirichlet prior is defined for the vectors of latent class probabilities and
conditional response probabilities, denoted as πX and πYk/X respectively. More specifi-
cally, the Dirichlet prior for the latent class probabilities equals

p(πX) ∝
T∏

x=1

P (X = x)αx−1, (3)

and for the conditional probabilities corresponding to item Yk

p(πYk|X) ∝
T∏

x=1

I∏
yk=1

P (Yk = yk|X = x)αykx−1. (4)

Here, the α terms are the hyperparameters defining the Dirichlet. These hyperparameters
can be interpreted as a number of observations in agreement with a certain model that
is added to the data. If there is no previous information about the hyperparameters,
the α terms may be chosen to be constant, in which case the added observations are in
agreement with a model in which the cases are uniformly distributed over the cells of
the frequency table. For example, suppose that one decides to add L observations to the
data. If a constant value is chosen for the αx and αykx parameters, respectively, then each
αx = 1+ L

T , with T denoting the number of latent classes, and each αykx = 1+ L
T ·I , with

I denoting the number of categories for Yk.
It is sometimes desirable to use α parameters that are in agreement with a more real-

istic model. For example, the Latent GOLD computer program (Vermunt & Magidson,
2000, 2005) uses Dirichlet priors for the conditional probabilities which preserve the ob-
served univariate marginal distributions of the Yk’s; that is, which is in agreement with
the independence model. More precisely, if we add L observations to the data, αx = 1+ L

T
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and αykx = 1 + n(yk)·L
N·T , where n(yk) is the observed marginal frequency for Yk = yk. A

similar type of Dirichlet prior was proposed by Clogg et al. (1991) and Schafer (1997) for
log-linear and logit models.

3.4 Estimators and algorithms

Two types of estimation methods can be used within a Bayesian context. The more
standard approach focuses on obtaining information on the entire posterior distribution
of the parameters by sampling from this distribution using Markov Chain Monte Carlo
techniques. The point estimator usually used under this perspective is the mean of the
posterior distribution, called mean a posteriori or expected a posteriori estimator. The
second method, which is more similar to classical approach, is oriented to find a single
optimum estimate; that is, the estimated values corresponding to the maximum of the
posterior distribution. This point estimator is called the posterior mode or maximum
a posteriori (MAP) estimator. In the example and in the simulation study of the next
section, we worked with this MAP estimator. The two main advantages of this estimator
are: (1) it is computationally less intensive than the expected a posteriori estimator, and
(2) it can be obtained with minor adaptations of ML algorithms. As already mentioned,
Galindo et al. (2004) found that the MAP estimators is more reliable than the EAP
estimator in logit modeling with sparse tables.
To obtain the MAP estimates, one can, for example, use and EM algorithm. The algo-

rithm that we used was a hybrid: we started with a number of EM iterations and switched
to Newton-Raphson when EM was close to reach the convergence criterion.4)

As shown by Gelman et al. (2003, pp.101–108), the posterior density can usually be
approximated by a normal distribution centered at the mode; that is,

p(θ|y) ≈ N
(
θ, [I (θ)]−1

)
,

where I(θ) is the observed information matrix, which is defined as minus the matrix of
second-order derivatives towards all model parameters, I(θ) = −∂2 log p(n|θ)

∂θ∂θ . Gelman et
al. (2003) demonstrated that, given a large enough sample size, the standard asymptotic
theory underlying ML can also be applied to the MAP estimator. As a result, one can, for
example, obtain 95% confidence intervals by taking MAP point estimates plus and minus
two standard errors, with the standard errors estimated from the diagonal elements of
the inverse of I(θ) evaluated at the MAP estimates of θ. Note that contrary to the ML
case, here, numerical problems are avoided because of the prior constrains the parameter
estimates lie within the parameter space.

3.5 Empirical example (continued)

To illustrate Bayesian posterior mode estimation of LC model probabilities and logit
4) In M step of the EM algorithm, we used analytical derivatives of the complete data log-likelihood

and the log priors, except for the derivatives of the Jeffreys’ prior, which were obtained numerically.

In the Newton-Raphson procedure, we used numerical derivatives of the log-posterior.
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parameters, we reestimated the three-class model with the data from Table 1 using this
method. Table 2 and 3 report MAP parameter estimates and their respective standard
errors obtained with the following priors: Jeffreys’ prior, Dirichlet priors with constant
hyperparameters corresponding to adding a single case to the analysis, Dirichlet priors
with hyperparameters that preserve the observed distributions of the items which again
corresponds to adding a single case to the analysis (this prior is labeled LG because it is
the one used by Latent GOLD), and normal priors with zero means and variances equal
to 10. The chosen values of hyperparameters for the Dirichlet and normal distributions
correspond to best performing values according to the study by Galindo et al. (2004) for
the case of logit modeling.
For the conditional probabilities, Table 2 shows that MAP estimates and the corre-

sponding standard errors are very similar to those obtained using parametric bootstrap-
ping. Regarding the logit parameters, Table 3 shows that, contrary to the bootstrap,
the Bayesian methods overcome the presence of logit parameters close to the boundary
because the prior distributions smooth the parameters to be within the parameter space.
Comparison of the standard errors obtained with the Bayesian approaches to the ones
of the parametric bootstrap shows that the former produce smaller and more reasonable
standard errors than the latter. However, a simulation study is needed to determine
whether these results can be generalized to other data sets.

4. A simulation experiment

This section presents the results from a small simulation study that was conducted to
determine whether Bayesian methods produce more reliable point estimates and standard
errors than the parametric bootstrap and the ML approach, as well as to determine which
prior distribution yields the best point and interval estimators. Samples were generated
from a LC model for binary items. The population parameters were chosen to be close to
the ML estimates obtained with the empirical example described above. We varied the
following design factors:

1. the number of latent classes: either T = 3 with unconditional latent class probabil-
ities equal to P (X = 1) = 0.46, P (X = 2) = 0.43 and P (X = 3) = 0.11, or T = 4
with class sizes equal to P (X = 1) = 0.40, P (X = 2) = 0.30, P (X = 3) = 0.20, and
P (X = 4) = 0.10;

2. the sample size: either N = 100 or N = 1000;
3. the number of items: either K = 5 or K = 9.

By crossing these three factors, we obtained a design with eight configurations. The
population model contained conditional response probabilities of various sizes, but we
made sure that several of them were (somewhat) close to the boundary. More specifically,
as extreme values we used response probabilities equal to 0.01, 0.05, and 0.10, each of
which corresponds to one or more large negative or positive logit parameters.5) Note that

5) In the four-class nine-item design, the population values for the probabilities of giving the 1 re-
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logit parameters are a function of various probabilities and vice versa, so there is no simple
relationship between a single probability and a single logit coefficient.
For each of the eight condition mentioned above, we simulated 1000 data sets. For

each of these data sets, the parameters of the LC model were estimated by ML and MAP,
where MAP estimates were obtained under the same four prior distributions as we used in
our empirical example. For each data set, we also executed a parametric bootstrap based
on 400 replication samples.
The parameter point estimates are evaluated using the median of the ML and MAP

estimates and the root median square errors (RMdSE); that is, the square root of the
median of (θ̂ − θ)2. Although mean square errors are more common statistics for mea-
suring the quality of point estimates, we used median square errors instead to avoid the
effect that a few extreme values may have on the mean. It should be noted that for many
simulated samples the ML estimates will be equal to plus (or minus) infinity. A single
occurrence of infinity will give a mean of infinity and a root mean square error of infinity,
which shows that these measures are not very informative for the performance of ML
and that median-based measures are better suited for the comparison of Bayesian, boot-
strap, and ML estimates. To evaluated the accuracy of the SE estimates, we report their
medians, as well as the coverage probabilities and the median widths of the confidence
intervals. By definition, a 95% confidence interval should have a coverage probability of
at least 0.95. However, even if the true coverage probability equals 95%, the coverage
probabilities coming from the simulation experiment will not be exactly equal to 0.95
because of Monte Carlo error. This error tends to zero when the number of replications
tends to infinity. Since we worked with 1000 replications, the Monte Carlo standard error

was equal to
√

0.95·0.05
1000 = 0.007, which means that coverage probabilities between 0.936

and 0.964 are in agreement with the nominal level of 95%.
The confidence intervals were obtained using the well-known normal approximation

[θ̂ − zα/2σ̂(θ̂), θ̂ + zα/2σ̂(θ̂)] (5)

where θ̂ represents the ML or MAP estimate and σ̂(θ̂) the estimated asymptotic standard
error, which is obtained by taking the square root of the corresponding diagonal elements
of estimated variance-covariance matrix. Note that this normal approximation cannot be
used for obtaining confidence intervals of latent and conditional probabilities unless a logit
transformation is applied to these parameters.
Rather than showing what happens with each of the model parameters, for simplicity of

exposition, we will concentrate on results obtained for two typical βYkX
ykx parameters, one

that is non-extreme and another that is extreme. That gives us the possibility to demon-
strate the impact of the various methods for the two most interesting cases; namely, the
situation in which a boundary estimate is unlikely to occur and a situation in which a

sponse were equated to 0.2, 0.01, 0.1, 0.01, 0.15, 0.01, 0.01, 0.4, and 0.15 for class 1; 0.5, 0.3, 0.75,

0.05, 0.6, 0.3, 0.75, 0.05, and 0.6 for class 2; 0.9, 0.95, 0.99, 0.4, 0.99, 0.75, 0.9, 0.2, and 0.9 for class

3; and 0.4, 0.8, 0.7, 0.6, 0.5, 0.9, 0.6, 0.7, and 0.99 for class 4. The population values for the other

(smaller) designs were obtained from these by omitting the ones for last four items in the five-item

designs and for the last class in the three-class designs.
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Table 4: Estimates for βY1X
21 = −2.20 in the three-class model.

N = 100 N = 1000

Median Coverage Median Median Coverage Median
Medians SE RMdSE Probabilities Widths Medians SE RMdSE Probabilities Widths

K=5

Boot. −6.03 15.15 7.87 0.69 ∞ −3.14 3.39 0.99 0.99 13.28
ML −7.35 1.07 7.79 0.55 ∞ −2.76 0.61 0.72 0.99 ∞
Jeff. −2.31 1.37 1.03 0.82 5.37 −2.11 0.55 0.41 0.87 2.16
Norm. −1.40 1.53 1.11 0.84 6.02 −1.91 0.50 0.41 0.81 1.94
Dir. −1.11 1.53 1.34 0.72 6.02 −1.67 0.49 0.53 0.80 1.93
LG −2.08 1.50 1.21 0.91 5.86 −2.06 0.60 0.43 0.92 2.34

K=9

Boot. −9.09 10.78 8.77 0.62 ∞ −3.30 1.60 1.10 0.95 6.27
ML −3.13 1.08 1.73 0.78 ∞ −2.25 0.48 0.26 1.00 ∞
Jeff. −1.83 1.03 0.97 0.81 4.05 −2.16 0.43 0.34 0.94 1.68
Norm. −1.16 0.93 1.15 0.69 3.65 −2.11 0.42 0.27 0.96 1.66
Dir. −2.67 1.01 1.05 0.81 3.97 −2.26 0.44 0.26 0.97 1.74
LG −1.99 1.08 1.14 0.81 4.23 −2.26 0.47 0.29 0.97 1.83

Table 5: Estimates for βY1X
11 = −0.98 in the four-class model.

N = 100 N = 1000

Median Coverage Median Median Coverage Median
Medians SE RMdSE Probabilities Widths Medians SE RMdSE Probabilities Widths

K=5

Boot. −13.59 25.75 19.91 0.49 ∞ −0.15 4.78 1.17 0.96 18.74
ML −0.27 1.17 12.92 0.54 ∞ −0.70 0.50 0.43 0.98 ∞
Jeff. −1.24 1.42 2.41 0.56 5.56 −0.19 0.65 0.80 0.88 2.56
Norm. −1.16 1.34 0.70 0.96 5.26 −0.71 0.51 0.38 0.97 2.01
Dir. −0.73 1.69 1.01 0.98 6.61 −0.52 0.59 0.49 0.95 2.33
LG −0.49 2.63 1.68 0.98 10.33 −0.63 0.58 0.44 0.93 2.28

K=9

Boot. −0.12 12.14 5.17 0.74 ∞ −0.74 0.53 0.33 0.95 2.07
ML −0.66 0.94 0.98 0.84 ∞ −0.84 0.32 0.24 1.00 ∞
Jeff. −0.35 1.03 1.00 0.89 4.06 −0.90 0.33 0.18 0.97 1.29
Norm. −0.79 0.91 0.70 0.91 3.59 −0.86 0.32 0.22 0.94 1.27
Dir. −0.79 0.80 0.79 0.86 3.14 −0.72 0.33 0.27 0.90 1.30
LG −0.65 1.04 1.03 0.93 4.07 −0.90 0.33 0.19 0.96 1.28

boundary is very likely to occur. More specifically, Tables 4 and 5 report the results
for the non-extreme population parameter βY1X

21 for the three-class model and βY1X
11 for

the four-class model, whereas Tables 6 and 7 gives the same information for the extreme
population parameter βY3X

11 for the three-class model and βY2X
11 for the four-class model.

As can be seen from these four tables, each of methods investigated in this study -
bootstrap, ML, and Bayesian methods - provides more accurate point and interval esti-
mates in the non-extreme parameter with large sample case, which is, of course, the easiest
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situation to deal with. Overall the Bayesian estimators turn out to perform better than
parametric bootstrap and ML (see, for example, the lower RMdSE values), with really
large differences for the most difficult situation (extreme parameter with small sample).
The fact that coverage probabilities for the Bayesian estimators are sometimes lower than
0.95, especially for the smaller sample size and the extreme parameter, indicates that the
normal approximation used for constructing the confidence interval is failing. It should be
noted that though in some cases parametric bootstrap and ML yield coverage probabili-
ties that are closer to the nominal level than MAP, in these situations the corresponding
median widths are much larger for the MAP estimates.
As far as the point estimates and standard errors for the non-extreme parameters are

concerned, Tables 4 and 5 illustrate that the parametric bootstrap may yield more ex-
treme point estimates and standard errors than ML and MAP even when the sample
size is large. This is because bootstrap estimates and standard errors are the means and
standard deviations of the ML estimates for the replicated samples. Note that even if
only a small portion of the bootstrap replicates yield an extreme estimate for the pa-
rameter concerned, the bootstrap mean and standard deviation will be severely affected.
When comparing the various prior distributions with one another, one can see that in the
three-class model the normal prior produces median estimates that are lower than the
population values and large RMdSEs, which indicates that it tends to smooth parameter
estimates somewhat too much toward zero. The Jeffreys’ prior achieves accurate point
estimates in the three-class model but not in the four-class model. As far as the interval
estimates is concerned, Tables 4 and 5 illustrate that the coverage probabilities are often
under the nominal level. Overall the LG prior seems to perform slightly better than the
other priors in the non-extreme parameters case.
For the (more interesting) extreme parameter situation, we see much larger differences

in performance among the four priors (see Tables 6 and 7). The point estimates are more
accurate with the LG prior (MAP medians close to the population parameters and small
RMdSE’s) than with the other ones investigated. The Jeffreys’ and the Normal priors
perform very well when the sample size is 1000, but they too strongly smooth the pa-
rameter estimates toward zero if the sample size is 100. The Dirichlet prior also smooths
the parameter estimates too much toward zero in the model with 5 items, but not in the
model with 9 items. Note that the same amount of information (one observation) is added
in both the models with 5 and 9 items, but this observation is spread out over the 32 cells
of the contingency table is the first case and over 512 cells in the second case. According
to Table 7, the Dirichlet prior performs very badly for the four-class model with 9 items,
but despite of that still much better than ML.
The information on the interval estimates that is reported in Tables 6 and 7 (median

widths and coverage probabilities) shows that the Bayesian methods perform much better
than ML and bootstrap for the extreme parameters. It should, however, be noted that for
the bootstrap this is partially the result of the procedure we use to compute confidence
intervals. If we would compute confidence intervals based on bootstrap percentiles, the
coverage probabilities can be expected to be larger than with the normal approximation.
We, however, decided to use the normal approximation because we were more interested
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Table 6: Estimates for βY3X
11 = −6.79 in the three-class model.

N = 100 N = 1000

Median Coverage Median Median Coverage Median
Medians SE RMdSE Probabilities Widths Medians SE RMdSE Probabilities Widths

K=5

Boot. −27.04 16.31 22.40 0.42 ∞ −15.81 12.27 9.00 0.75 ∞
ML −32.35 2.85 25.54 0.30 ∞ −6.71 1.39 4.44 0.62 ∞
Jeff. −4.23 1.45 2.15 0.66 5.72 −5.52 0.96 1.27 0.70 3.75
Norm. −3.53 1.16 3.26 0.20 4.55 −5.02 0.81 1.77 0.40 3.19
Dir. −3.74 1.52 3.05 0.46 5.97 −4.66 0.68 2.13 0.72 2.67
LG −5.05 2.49 1.75 0.84 9.75 −6.37 1.86 0.87 0.92 7.27

K=9

Boot. −26.59 12.92 21.65 0.39 ∞ −10.62 9.67 3.88 0.99 37.90
ML −24.07 1.48 17.00 0.54 ∞ −7.18 2.24 0.79 0.99 ∞
Jeff. −4.56 1.32 2.24 0.55 5.18 −6.03 0.87 0.77 0.79 3.42
Norm. −3.84 1.01 2.95 0.20 3.95 −5.79 0.74 1.00 0.73 2.90
Dir. −8.99 3.17 4.59 0.53 12.42 −7.10 1.79 0.70 0.89 7.02
LG −5.21 2.32 1.72 0.71 9.11 −6.82 1.72 0.59 0.95 6.74

Table 7: Estimates for βY2X
11 = −5.98 in the four-class model.

N = 100 N = 1000

Median Coverage Median Median Coverage Median
Medians SE RMdSE Probabilities Widths Medians SE RMdSE Probabilities Widths

K=5

Boot. −32.99 21.79 28.78 0.32 ∞ −16.36 13.69 10.31 0.76 ∞
ML −32.92 121.92 27.48 0.35 ∞ −11.81 2.57 5.76 0.67 ∞
Jeff. −4.96 1.68 1.90 0.64 6.58 −5.41 1.05 0.65 0.90 4.10
Norm. −3.47 1.69 2.51 0.75 6.63 −5.38 1.14 0.63 0.92 4.45
Dir. −4.40 2.05 1.59 0.86 8.04 −5.67 1.50 0.70 0.90 5.88
LG −5.28 3.36 1.71 0.88 13.17 −6.51 2.50 1.07 0.87 9.79

K=9

Boot. −27.72 19.64 28.34 0.33 ∞ −7.86 7.31 2.37 0.92 28.65
ML −30.83 138.09 24.93 0.43 ∞ −6.11 0.79 0.59 0.95 ∞
Jeff. −4.85 1.59 1.30 0.82 6.23 −5.90 0.72 0.44 0.96 2.82
Norm. −4.21 1.44 1.77 0.76 5.66 −5.74 0.69 0.47 0.92 2.69
Dir. −4.46 0.70 1.87 0.38 6.76 −4.92 0.52 1.06 0.46 2.03
LG −6.05 3.34 1.54 0.88 13.10 −6.14 0.80 0.52 0.96 3.14

in the quality of the standard errors than in the accuracy of the interval estimates. As
was already mentioned, the interval estimates obtained with the Bayesian methods have
sometimes coverage probabilities lower that the nominal level.
Comparison of the median of the estimated standard errors for ML with the ones for

the various Bayesian methods shows that the LG estimates are very close to the ML
estimates in those situations in which ML provides reasonable standard errors whereas
the other priors often provide smaller medians than ML. This is an indication that other
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priors tend to smooth the parameter estimates too strongly toward zero. Overall the LG
prior seems to performs best of the investigated prior distributions: It has (close to) the
lowest RMdSE and (among) the best coverage rate in all situations.

5. Discussion

We investigated the posterior mode estimation of parameters and standard errors of LC
models for several types of noninformative prior distributions. By means of a simulation
study, we have shown that this Bayesian method provides much more accurate point and
interval estimates than the traditional ML and the parametric bootstrap approach when
the true parameter is close to the boundary.
Comparing of the proposed noninformative priors showed that the prior that we labeled

“LG” yields accurate parameter estimates and standard errors under more conditions than
any of the other investigated priors. An additional advantage is that this prior requires
only minor modifications of the standard ML estimation algorithms. Jeffreys’ prior also
performed well under most conditions, but has the disadvantage that its use requires
computation of derivatives of the determinant of the Fisher information matrix, which is
not straightforward and computationally demanding. The quality of the estimates of the
Dirichlet priors with constant hyperparameters and of the normal priors varied consider-
ably across conditions. Our conclusion would thus be that, among the priors studied, the
most reasonable one seems to be the LG prior, which is a Dirichlet prior whose hyperpa-
rameters preserve the univariate marginal distributions of the Yk’s. This prior is used in
the LC analysis program Latent GOLD (Vermunt & Magidson, 2000, 2005).
Interval estimates turned out to be of low quality for all the investigated procedures in

various of the investigated conditions as could be seen from the too low coverage prob-
abilities despite of large median widths. More specifically, it seems as if the normal
approximation is not appropriate when there are parameters near the boundary, even if
(a small amount of) prior information is used to keep the point estimates away from the
boundary. However, in the context of the parametric bootstrap, there are more reliable
methods for obtaining interval estimates than with the normal approximation (Davison &
Hinkley, 1997). Also within a Bayesian framework alternative intervals estimates can be
constructed; that is, by reconstruction of the full posterior distribution rather than “just”
finding its maximum and relying on the normal approximation at its maximum (Gelman
et al., 2003).
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