# Avoiding closed timelike curves with a collapsing rotating null dust shell 

José Natário<br>(Instituto Superior Técnico - Lisbon)

Based on arXiv:0710.4696, joint with Filipe Mena and Paul Tod

## Introduction

- Several solutions to EFE display CTCs: van Stockum, Gödel, NUT, Gott (usually associated to rotation).
- Cosmic censorship implies that for reasonable matter one cannot evolve CTCs from generic initial data, since maximal development is globally hyperbolic and generically inextendible.
- Example: what happens if one tries to create a spinning cosmic string from an incoming rotating cylindrical null shell?


## Hyperboloid in Minkowski space

- Parameterize hyperboloid $-\tau^{2}+\xi^{2}+\eta^{2}=a^{2}$ in Minkowski space $g^{-}=-d \tau^{2}+d \xi^{2}+d \eta^{2}$ by

$$
\left\{\begin{array}{l}
\tau=u \\
\xi=a \cos \psi-u \sin \psi \\
\eta=a \sin \psi+u \cos \psi
\end{array}\right.
$$

- Induced metric is

$$
h^{-}=2 a d u d \psi+\left(u^{2}+a^{2}\right) d \psi^{2}
$$



## Rotating cosmic string

- Rotating cosmic string is given by the metric

$$
g^{+}=-(d t+m d \varphi)^{2}+C^{2} d r^{2}+r^{2} d \varphi^{2}
$$

It is just flat space with unusual identifications.

- CTCs for $r^{2}<m^{2}$.
- Mass and angular momentum per unit length are

$$
\mu=\frac{C-1}{4 C} \quad J=\frac{m}{4}
$$

## Hyperboloid in rotating cosmic string metric

- Null geodesics are parameterized by

$$
\left\{\begin{array}{l}
t=b C \tan \lambda-m C \lambda \\
r=b \sec \lambda \\
\varphi=C \lambda+\psi
\end{array}\right.
$$

- In the new set coordinates $\{\lambda, b, \psi\}$ the metric becomes

$$
g^{+}=2 b C(b-m) \sec ^{2} \lambda d \lambda d \psi+C^{2} d b^{2}-2 m C \tan \lambda d b d \psi+\left(b^{2} \sec ^{2} \lambda-m^{2}\right) d \psi^{2}
$$

- The metric induced on a hypersurface $\{b=$ constant $\}$ is

$$
h^{+}=2 b C(b-m) \sec ^{2} \lambda d \lambda d \psi+\left(b^{2} \sec ^{2} \lambda-m^{2}\right) d \psi^{2}
$$

or setting $u=b \tan \lambda$

$$
h^{+}=2 C(b-m) d u d \psi+\left(u^{2}+b^{2}-m^{2}\right) d \psi^{2}
$$

- Matching conditions are

$$
\left\{\begin{array}{l}
a=C(b-m) \\
a^{2}=b^{2}-m^{2}
\end{array}\right.
$$

In particular that the matching requires $b>m$, so that the shell bounces before CTCs are revealed in the exterior.

## Shell matter

- Computing the jump on the second fundamental form one arrives at

$$
T^{\alpha \beta} \partial_{\alpha} \otimes \partial_{\beta}=\frac{m}{8 \pi C a \rho} \delta\left(\rho-\sqrt{\tau^{2}+a^{2}}\right) \frac{\partial}{\partial u} \otimes \frac{\partial}{\partial u}
$$

where $\rho^{2}=\xi^{2}+\eta^{2}$.

- Therefore matter is a null dust with surface density

$$
\sigma=\frac{m}{8 \pi a C \rho}=\frac{C^{2}-1}{16 \pi C^{2} \rho}=\frac{(C+1)}{2 C} \frac{\mu}{2 \pi \rho}
$$

- Similarly

$$
-T^{\alpha \beta}\left(\frac{\partial}{\partial \tau}\right)_{\alpha}\left(\frac{\partial}{\partial \varphi}\right)_{\beta}=a \sigma \delta\left(\rho-\sqrt{\tau^{2}+a^{2}}\right)
$$

corresponding to a surface angular momentum density

$$
j=a \sigma=\frac{m}{8 \pi C \rho}=\frac{1}{C} \frac{J}{2 \pi \rho}
$$

- Densities slightly puzzling. Notice that solution is not stationary (so one cannot use Komar integrals).

