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In this paper, we consider a linear quantum network composed of two distantly separated cavities that are
connected via a one-way optical field. When one of the cavities is damped and the other undamped, the overall
cavity state obtains a large amount of entanglement in its quadratures. This entanglement, however, immedi-
ately decays and vanishes in a finite time. That is, entanglement sudden death occurs. We show that the direct
measurement feedback method proposed by Wiseman can avoid this entanglement sudden death, and, further,
enhance the entanglement. It is also shown that the entangled state under feedback control is robust against
signal loss in a realistic detector, indicating the reliability of the proposed direct feedback method in practical
situations.
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I. INTRODUCTION

Reliable generation and distribution of entanglement in a
quantum network is a central subject in quantum-information
technology �1�, especially in quantum communication �2–5�.
The biggest issue in such systems is the decay of entangle-
ment due to decoherence effects that are inevitably intro-
duced when node-channel or channel-environment interac-
tion occurs. Entanglement distillation �6,7� is a useful
technique that restores such degraded entanglement. How-
ever, it sometimes happens that entanglement completely
disappears in a finite time; this is called entanglement sudden
death �8,9�. In this case, distillation techniques cannot re-
cover the vanished entanglement.

On the other hand, feedback control can be used to
modify the dynamical structure of a system and improve its
performance, e.g., see �10–13�. Entanglement protection or
generation is one of the most attractive applications of feed-
back �14–17�. In particular, two studies have demonstrated
that a feedback controller effectively assists in the distribu-
tion of entanglement in a quantum network. One such result
is by Mancini and Wiseman �18�, where a direct measure-
ment feedback method �19,20� is used to enhance the corre-
lation of two bosonic modes that couple through a ��2� non-
linearity. The other such result is by Yanagisawa �21�, where
an estimation-based feedback controller is used to determin-
istically generate an entangled photon number state of two
distantly separated cavities.

This paper follows a similar direction to �18,21�. That is,
we also consider a problem of distributing entanglement in a

quantum network using direct feedback control. The quan-
tum network being considered is depicted in Fig. 1. Two
spatially separated cavities are connected via a one-way op-
tical field, and the measurement results of the output of cav-
ity 2 are directly fed back to control both cavities. A more
specific description will be given in Secs. II B and II C, but
here we note that the network model considered brings to-
gether the following three features that have been not simul-
taneously considered in previous work. First, the network
contains models of realistic components; a realistic quantum
channel in contact with an environment and a realistic homo-
dyne detector with finite bandwidth �22–24�. A realistic
model is of practical importance for real-time quantum feed-
back control. Second, we consider linear continuous-variable
cavity models �i.e., we consider the quadratures of the cavity
mode�, similar to the case considered in �4,5,18�. Hence, the
system differs from a discrete-variable system such as an
atomic energy level �2,3� or a photon number system de-
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FIG. 1. Schematic of the network. Thick gray lines represent
quantum optical fields, while thin black lines represent classical
signals.
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scription �21�. This setup is motivated by the recent rapid
progress and deep understanding of continuous-variable sys-
tems in the quantum-information regime �25�. Third, the
cavities are spatially separated, and the interaction between
them is simply mediated by an optical field, while in �18�
two bosonic modes interact through a ��2� optical nonlinear-
ity and thus the two modes are not spatially separated. The
spatially separated case is the case of interest in applications
such as quantum communication.

The contributions of this paper are as follows. First, we
show that the network considered in this paper, which looks
complicated, can be systematically captured and described
using the theory of quantum cascade systems �26–29�. We
then show that, when the first cavity is undamped and the
second cavity is damped, the cavity state obtains a large
amount of entanglement, which, however, disappears in a
finite time despite the continuous interaction between the
cavities; i.e., entanglement sudden death occurs. As men-
tioned above, no distillation technique can recover such zero
entanglement. Nevertheless, we show that direct feedback
control not only prevents entanglement sudden death, but can
also enhance the entanglement. Moreover, it will be shown
that the entangled state under control is robust against signal
loss in a realistic detector, implying the reliability of the
direct feedback method in practical situations.

We use the following notation. For a matrix A= �aij�, the
symbols AT, A†, and A* represent the transpose, conjugate
transpose, and elementwise complex conjugate of A, i.e.,
AT= �aji�, A†= �a

ji
*�, and A*= �a

ij
*�= �A†�T, respectively. These

rules are applied to any rectangular matrix including column
and row vectors. Re�A� and Im�A� denote the real and imagi-
nary parts of A, respectively, i.e., �Re�A��ij = �aij +a

ij
*� /2 and

�Im�A��ij = �aij −a
ij
*� /2i. The matrix element aij can be an op-

erator âij; in this case, â
ij
* denotes its adjoint operator.

II. MODEL

A. General linear quantum systems

We consider a general linear continuous-variable system
with N degrees of freedoms. Let x̂i= �q̂i , p̂i�T be the standard
quadrature pair of the ith subsystem. It then follows from the
canonical commutation relation �q̂i , p̂j�= q̂ip̂j − p̂jq̂i= i�ij��
=1� that the vector of system variables x̂ª �x̂1

T , . . . , x̂N
T�T sat-

isfies

x̂x̂T − �x̂x̂T�T = i�N = i�
k=1

N
�, � ª � 0 1

− 1 0
� .

Suppose that the system contacts with M optical vacuum
fields without scattering. In general, such an interaction is
described by a unitary operator that obeys the Hudson-
Parthasarathy equation �30�:

dÛt = ��− iĤ −
1

2�
k=1

M

L̂
k
*L̂k	dt

+ �
k=1

M

�L̂kdB̂
k,t
* − L̂

k
*dB̂k,t��Ût,Û0 = Î . �1�

The operators B̂k,t and B̂
k,t
* represent the quantum annihilation

and creation processes on the kth field, respectively. Note

that �dB̂i,t ,dB̂
j,t
* �=�ijdt. Let us choose Ĥ= Ĥ* and L̂k as fol-

lows:

Ĥ =
1

2
x̂TGx̂, L̂k = Lk

Tx̂ , �2�

where G=GT�R2N�2N and Lk�C2N. The system variables
obey the Heisenberg equation

x̂t ª �. . . ,Û
t
*q̂iÛt,Ût

*p̂iÛt, . . . �T.

We then obtain the following linear equation:

dx̂t = Ax̂tdt + i�N�LTdB̂
t
* − L†dB̂t� , �3�

where LT
ª �L1 , . . . ,LM��C2N�M, Aª�N�G+Im�L†L��, and

B̂tª �B̂1,t , . . . , B̂M,t�T. For details on the physical meaning of
these abstract linear models, see Sec. III and, e.g., �31–33�. It
is easy to see that the first moment vector 
x̂t�
ª �. . . , 
Û

t
*q̂iÛt� , 
Û

t
*p̂iÛt� , . . . �T, where 
x̂�ªTr��̂x̂�, satisfies

the linear equation d
x̂t� /dt=A
x̂t�. Also, the covariance ma-

trix Vt= �
V̂ij��, where

V̂ =
1

2
��x̂t�x̂t

T + ��x̂t�x̂t
T�T�, �x̂t ª x̂t − 
x̂t� ,

satisfies the following Lyapunov matrix differential equation:

dVt

dt
= AVt + VtA

T + D . �4�

Here, Dª�NRe�L†L��N
T . Suppose that the quantum state is

Gaussian at t=0. Then, from the linearity of the dynamics,
the unconditional state is always Gaussian with mean 
x̂t�
and covariance Vt. Note that the unconditional state corre-
sponds to a classical probability density that describes a lin-
ear diffusion process.

B. The ideal network

Before describing the quantum network depicted in Fig. 1,
let us consider the ideal situation where the optical field be-
tween the cavities is not in contact with any environment,
and the homodyne detector is perfect. In this case, the system
is a simple cascade of two cavities with a feedback loop. The
entangled state of this ideal network will be compared to that
of the realistic one for the purpose of clarifying how much
the realistic parameters affect the system. Also, this ideal
setup allows us to determine a reasonable control Hamil-
tonian �the vector f given below�, as will be seen in Sec.
III B.

Each component of the network is described as follows.

The optical vacuum field B̂1,t comes into cavity 1, and then
its output becomes the input of cavity 2. We assume that,
after some approximations, the ith cavity-field interaction is
represented by Eq. �1� with single field �M =1� and with the
following operators:
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Ĥi =
1

2
x̂i

TGix̂i, L̂1,i = �i
Tx̂i �i = 1,2� ,

where q̂i= �âi+ â
i
*� /�2 and p̂i= �âi− â

i
*� /�2i. The subscript

�1, i� in L̂ means the first field and the ith cavity �see the
figures in Appendix A�. Also, Gi=Gi

T�R2�2 and �i�C2.
The output of cavity 2 is transformed to a classical signal yt
through an ideal homodyne detector. Suppose now that each
cavity has an additional Hamiltonian of the form

Ĥi
fb = utF̂i = utf i

Tx̂i, f i � R2 �i = 1,2� ,

where ut�R is the control input. Then the direct measure-
ment feedback ut=gyt closes the loop by connecting the de-
tector to the cavities. Here g�R is the control gain. Note
that we need a classical communication channel in order to
control cavity 1; that is, a local operation via classical com-
munication type of control is performed.

For this network, we can easily determine the system ma-
trices G and Lk in Eq. �2� that specify the whole dynamical
equation. The derivation is based on the theory of quantum
cascade systems �26–29� and is given in Appendix A. Then,
from the definition, the A and D matrices in the Lyapunov
equation �4� are readily obtained as follows:

Aid = Ao + 2g�2f Re���T, �5�

Did = Do + �2�g2f fT − g Im���fT − gf Im���T��2
T, �6�

where �= ��1
T ,�2

T�T, f = �f1
T , f2

T�T, and

Ao = � A1 0

2� Im��2
*�1

T� A2
�, Do = � D1 �

� Re��2
*�1

T��T D2
� .

�7�

Here, Ai=��Gi+Im��
i
*�i

T��, Di=�Re��
i
*�i

T��T, and � de-
notes the symmetric elements. Note that Ao and Do are the
system matrices of the network without feedback. Hence, the
upper off-diagonal block matrix of Ao is zero, implying a
one-way interaction of the cavities.

C. The realistic network

We are now in the position to describe a realistic network,
which introduces the following two assumptions. First, the

output of cavity 1 is mixed with another vacuum field B̂2,t
through a beam splitter �BS� with transmittance �. This is a
standard model of possible environmental effects on a long
quantum channel. Second, the homodyne detector is not per-
fect and is described by the one-dimensional classical dy-
namics

d	t = a1	tdt + a2dwt, dyt = a3	tdt + dvt, ai � R , �8�

where wt is an input stochastic process satisfying E�dwt
2�

=dt and vt is an additional measurement noise satisfying
E�dvt

2�=a4dt�a4
0�. In particular, a typical low-pass filter
�LPF� is realized by choosing ai as

a1 = −
1

�
, a2 =

1

�
, a3 = 1,

where �
0 is the time constant. We now note that the de-
tector �8� can be represented as a quantum system with two

fields wt= B̂1,t� + B̂
1,t
�* and vt= B̂3,t+ B̂

3,t
* , where B̂1,t� is the output

of cavity 2. Indeed, from �29�, Eq. �1� with M =2 and with
the operators

Ĥ3 =
a1

2
�q̂3p̂3 + p̂3q̂3�, L̂1,3 = − ia2p̂3, L̂3,3 =

a3

2a4
q̂3

leads to a linear equation of the form �8�, where Û
t
*q̂3Ût

plays the same role as 	t.
Consequently, the network is composed of two cavities, a

beam splitter, a detector, and a controller, with three optical
vacuum fields. �Note that the beam splitter with local oscil-
lator �LO� shown in Fig. 1 is a part of the detector.� To
systematically obtain the overall system matrices G and Lk in
Eq. �2� of this complicated network, we again use the theory
of quantum cascade systems �26–29�. The procedure is given
in Appendix A. We then obtain the matrices A and D in Eq.
�4� as follows:

Are =  A1 0 ga3�f1

2�� Im��2
*�1

T� A2 ga3�f2

2�a2 Re��1�T 2a2 Re��2�T a1
� , �9�

Dre =  D1 � �

�� Re��2
*�1

T��T D2 �

− �a2 Im��1�T�T − a2 Im��2�T�T a2
2 �

+ g2a4�f1f1
T�T � 0

�f2f1
T�T �f2f2

T�T 0

0 0 0
� . �10�

III. ENTANGLEMENT CONTROL

In this section, we study the entanglement of the cavity
state for the ideal network. Since the state is Gaussian, its
entanglement is completely characterized by the covariance
matrix �34,35�. In our case, the covariance matrix to be
evaluated is obtained by solving the Lyapunov equation �4�
with the coefficient matrices Aid and Did in Eqs. �5� and �6�.
Let the matrices Vi be defined by the 2�2 block matrix
decomposition of V as follows:

V = �V1 V2

V2
T V3

� .

Then, the following logarithmic negativity �36� can be used
as a reasonable measure of Gaussian entanglement:

EN = max�0,− ln�2��� , �11�

where ln x denotes the natural logarithm of x,

� ª

1
�2

��̃ − ��̃2 − 4 det�V� ,
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�̃ ª det�V1� + det�V3� − 2 det�V2� . �12�

The logarithmic negativity EN divides the state space into
two regions: �i� the separable region, corresponding to EN
=0, and �ii� the entangled region, within which EN
0. Thus
phenomena of entanglement creation and destruction can be
understood simply in terms of movement of the system be-
tween these two regions.

A. Entanglement sudden death

Here we study the uncontrolled network, i.e., g=0. We
compute EN for two situations. First, consider the case where
both cavities have the same quadratic Hamiltonian and are
damped as a result of the field-cavity interaction, that is,

G1 = G2 = �m 0

0 1
�, �1 = �2 = ��1

i
� ,

where m
0 and 
0. This type of quadratic Hamiltonian
can be implemented in a cavity system following the scheme
of degenerate parametric amplification �28�; see Appendix
B. In this case, Aid is a stable matrix, and the Lyapunov
equation �4� has a unique steady state solution �see, e.g.,
�37��. Now assume that at t=0 the cavity is in the separable
state satisfying V0=2I. When the optical field is switched on,
the cavity modes couple after a finite time �i.e., entanglement
sudden birth �38� occurs�, and a steady entangled state is
generated as seen from the dotted line in Fig. 2�a�. However,
in this case, the entanglement is very small �EN�0.21�.

This result can be understood by examining the trajectory

of the parameter (�̃ ,det�V�). In Fig. 3, the colored region
with contour lines represents the set of parameters where a
general two-mode Gaussian state is entangled, i.e., EN
0,
while the white region corresponds to separable states, i.e.,
EN=0. The trajectory, denoted by Tdam, evolves toward the
steady entangled state that is located far from the area with
large EN �the right bottom area in Fig. 3�. This is likely
because each cavity has a strong tendency to transit into the
vacuum state due to the damping. Indeed, when the cavity is

in the separable vacuum state �0��0�, the corresponding cova-

riance matrix satisfies (�̃ ,det�V�)= �0.5,0.0625�, which is
very close to the equilibrium point of Tdam. Moreover, Fig.
2�b� shows that the purity �for a discussion of physical mean-
ings of the purity, see, e.g., �39�� of the steady Gaussian state
�̂,

P ª Tr��̂2� =
1

4�det�V�
� �0,1� , �13�

approaches P�0.8 as t→�. This also suggests that the
steady state is close to the separable vacuum state.

The above observation motivates us to try a dispersive
field-cavity interaction, which results in a phase shift of the
output field �10,40–42�. For a practical method to implement
this kind of coupling in a cavity system, see Appendix B. In
this case, the cavity is not damped, and thus it does not have
a tendency to move toward the vacuum state. In particular,
we assume that only the first cavity has such an interaction;
i.e.,

�1 = ��,0�T, �2 = ��1,i�T.

We then find that Aid is not a stable matrix, and the Lyapunov
equation �4� need not have a steady state solution as t→�1.
Figure 3 shows that the corresponding trajectory, denoted by
Tdis, evolves far from the separable initial state and reaches
the area with large EN. This figure also shows how both the
entanglement and purity decrease as time goes on and Tdis
escapes from the region of entangled states at t=6.2.

1More precisely, Aid is a marginally stable matrix: the eigenvalues
of Aid, �i �i=1,2 ,3 ,4�, satisfy Re��1�=Re��2�=0 and
Re��3� ,Re��4��0. For a marginally stable matrix, the correspond-
ing Lyapunov equation need not have a steady solution.
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FIG. 2. �Color online� Time dependence of the logarithmic
negativity �a� and the purity �b� of the overall cavity state without
feedback control. The solid and dotted lines correspond to the
dispersive-damped and damped-damped cases, respectively. The
parameters are m=0.2 and =1.

0 50 100 150

0

30

60

0

1

2

1 2

0.3

0.6

0.05
0

t = 0

t = 6.2

t = 8+

det(V)

EN

Tdam

Tdis
Tdam

∆
∼

FIG. 3. �Color online� Trajectories of the parameter (�̃ ,det�V�)
without feedback control. Tdam and Tdis correspond to the damped-
damped and dispersive-damped cases, respectively. We set V0=2I at

t=0, from which �̃=8 and det�V0�=16 follow. ��̃ and det�V� are in
units of �=1 and �2=1, respectively.�
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Finally, we remark that, if we exchange the order of the
interactions, i.e., �1=��1, i�T and �2= �� ,0�T, the corre-
sponding trajectory remains within the region of separable
states, i.e., EN=0 for all t
0. The situation is much the
same even when each cavity interacts with the field in a
dispersive way.

B. Feedback control

We first discuss how to determine the coefficient vector
f = �f1

T , f2
T�T that realizes high-quality entanglement control.

Fortunately, in the ideal case, we can explicitly find such an
f . The idea was originally provided by Wiseman and Doherty
in �43�, but here we apply the idea in a slightly different
manner.

Assume that g=1. Then the Lyapunov equation �4� with
coefficient matrices Aid and Did in Eqs. �5� and �6� can be
rewritten as

dVt

dt
= R�Vt� + �2�f − f t��f − f t�T�2

T, �14�

where

f t ª 2�2Vt Re��� + Im��� �15�

and

R�V� ª AoV + VAo
T + Do

− �2V Re��� − �2 Im�����2V Re��� − �2 Im����T.

We now recall from Fig. 2�b� that entanglement sudden death
occurs simultaneously with a decrease of the purity �13�.
This suggests that preventing a decrease of purity may also
prevent entanglement sudden death. However, we should
point out that it is not apparent that this will always be the
case, and the relationship between loss of purity and en-
tanglement sudden death needs to be studied further. There-
fore, a simple control strategy that we try here is to find a
feedback controller that prevents an increase of det�Vt� in
order to keep the purity high. As the second term of the
right-hand side of Eq. �14� is always non-negative, it is then
reasonable to choose the time-variant coefficient vector f
= f t. Of course, this intuitive argument does not always allow
us to conclude that det�Vt� takes its minimum value. How-
ever, it is known that the algebraic Riccati equation R�V�
=0 has a solution satisfying det�V�=1 /16, which implies that
the maximum purity P=1 is achieved; e.g., see �43�. Now
assume that Eq. �14� has a unique steady solution V� for a
constant f . Then, by taking the time-invariant coefficient
vector

f̄ ª 2�2V� Re��� + Im���, R�V�� = 0, �16�

we obtain the same desirable result, det�V��=1 /16. Note that
the numerical solution to the algebraic Riccati equation
R�V��=0 can readily be obtained using a standard software
package such as MATLAB.

We now consider direct feedback control with the coeffi-
cient vector �16�. Let us begin with the case where the first
cavity-field interaction occurs dispersively. For this system,

it is expected from Fig. 3 that the trajectory Tdis can be modi-
fied and stabilized via feedback so that it has an equilibrium
point in the area where EN is large. That this is indeed true is
shown below. When the parameters are given by m=0.2 and
=1, we find that f̄ = �0.1212,2.2196,−0.3163,−3.2277�T

from �16�. Figure 5 illustrates that the controlled trajectory,
denoted by Tdis

c , indeed shows the convergence that we had
hoped for. The entanglement and the purity of the steady
cavity state are shown in Fig. 4. While f̄ is determined with
fixed g=1, we consider variations in g to gain understanding
about its effect on the control system. When control is not
used �g=0�, the pair of dispersive and damped cavities does
not settle down to a steady state as seen in Sec. III A, and we
find that EN→0 as t→�. On the other hand, even with the
small-gain feedback controller, the system becomes stable
and has a unique steady state with nonzero entanglement.
Remarkably, when g=1, the entanglement of the steady state
�EN�2.2� improves upon the maximum value of EN of the
uncontrolled state �EN�0.65� shown in Fig. 2�a�. Hence we
see that direct feedback not only prevents entanglement sud-
den death, but can also enhance the entanglement.

Feedback can also improve the entanglement of a system
where both cavities are damped, but it is still very small as
seen from the dotted line in Fig. 4�a�. �The coefficient vector

defined by Eq. �16� in this case is calculated to be f̄
= �0.0629,0.1525,0.2479,−0.5830�.� To understand this phe-
nomenon, we recall that the uncontrolled trajectory Tdam has
an equilibrium point that is located far from the area with
large EN. Hence, it should be hard to drastically modify this
trajectory such that it could reach that area. It is actually

observed in Fig. 5 that, even with the vector f̄ , the controlled
trajectory Tdam

c shows almost the same time evolution as the
autonomous one Tdam.

The above results suggest that strong stability of the au-
tonomous system sometimes makes it difficult for the state to
transit into a desirable entangled target.

IV. A REALISTIC CONTROL SCENARIO

Finally, we return to the original setup of the network.
That is, the quantum channel is in contact with an environ-

0 1 2 3

0.0

1.0

2.0

0 1 2 3

0.0

0.5

1.0

EN

P

(a)

(b)

g

g

FIG. 4. �Color online� Logarithmic negativity �a� and purity �b�
of the steady cavity state with feedback control. g is the control
gain. The solid and dotted lines correspond to the dispersive-
damped and damped-damped cases, respectively. The parameters
are m=0.2 and =1.
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ment, and the homodyne detector is replaced by a realistic
LPF with finite bandwidth. The purpose here is to study the
impacts of these realistic components on the entanglement of
the cavity state. The covariance matrix of the cavity state
corresponds to the left upper 4�4 submatrix of Vt that is the
solution of Eq. �4� with Are and Dre given in Eqs. �9� and
�10�. Note that the cavity state is the reduced one with the
detector mode traced out. We here focus only on the network
where the first cavity interacts with the field dispersively. For
the control Hamiltonian, we use the same coefficient vector

f̄ = �0.1212,2.2196,−0.3163,−3.2277�T. It should be noted
that, in this realistic case, we cannot follow the discussion in
Sec. III B to obtain a reasonable coefficient vector f .

First, consider Fig. 6�a�. This shows some plots of EN
with the time constant � changing in the range 0.01��
�0.6 and with the fixed transmittance �=1 �i.e., no loss in
the channel�. The uppermost line almost coincides with the
ideal one shown in Fig. 4�a�. That is, the entanglement in the

realistic situation continuously converges to the ideal one as
�→0. We also observe that the degradation of EN is small
with respect to �. Since the detector is regarded as a compo-
nent of the controller, these results imply that the realistic
direct feedback is robust against signal loss in the LPF. In
other words, direct feedback control is reliable even in this
realistic situation.

On the other hand, Fig. 6�b� plots EN for some values of
the channel loss �ª1−� with fixed �=0.01. We find that EN
converges to the ideal value as �→0, similar to the above
case. However, in this case, EN rapidly decreases with re-
spect to �. Even for the very small loss �=0.01, a visible
degradation occurs. Moreover, when �=0.1, which still
means we have a high-quality quantum channel, EN de-
creases to less than half of the ideal value. That is, the en-
tanglement is fragile to realistic channel loss.

The above results are reasonable because the channel loss
directly reflects the decrease of interaction strength, while
the finite bandwidth of LPF simply implies loss of a classical
signal. Hence the former should be a critical factor for en-
tanglement generation.

V. CONCLUSION

The contributions of this paper are summarized as fol-
lows. First, it was shown that, when the first cavity is un-
damped and the second one is damped, the overall cavity
state obtains a significant amount of entanglement, which
however disappears in a finite time. Then we showed that
direct measurement feedback can avoid this entanglement
sudden death, and, further, enhances the entanglement.
Moreover, it was shown that the direct feedback controller is
reliable under the influence of signal loss in a realistic detec-
tor, although imperfection in the quantum channel is a criti-
cal issue that greatly degrades the achieved entanglement.
We believe that the case study we have presented provides
useful insights that may be of use for more complex quantum
network engineering.

APPENDIX A: QUANTUM CASCADE SYSTEMS

1. General theory

In this Appendix, we begin with a review of the theory of
quantum cascade systems which was originally developed by
Carmichael �26,27� and Gardiner and Zoller �28� in a quan-
tum optics framework and recently reformulated in a more
general setting by Gough and James �29�. We then apply the
theory to our model and derive the corresponding system
matrices.

The most general form of quantum dynamics that inter-
acts with M optical input fields is described by the following
unitary evolution:

dÛt = ��− iĤ −
1

2�
k=1

M

L̂
k
*L̂k	dt + �

k=1

M

L̂kdB̂
k,t
* − �

k,j=1

M

L̂
j
*ŜjkdB̂j,t

+ �
k,j=1

M

�Ŝkj − �kj�d�̂kj�Ût, Û0 = Î . �A1�

This is also called the Hudson-Parthasarathy equation �30�.
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FIG. 5. �Color online� Trajectories of the parameters (�̃ ,det�V�)
with feedback control. Tdam

c
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c
correspond to the damped-

damped and dispersive-damped cases, respectively. The initial state
is the same as before: V0=2I.
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FIG. 6. �Color online� Logarithmic negativity of the steady cav-
ity state with feedback control. g is the control gain. �a� From the
top downward, the lines correspond to �=0.01,0.2,0.4,0.6, while
�=1. �b� From the top downward, the lines correspond to �
=1,0.99,0.95,0.90, while �=0.01. In both cases, the LPF noise is
very small; a4=0.01. The parameters are m=0.2 and =1.
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Here, the operators B̂k,t and B̂
k,t
* represent the quantum anni-

hilation and creation processes on the kth field, respectively.

The operator �̂kj represents the scattering process from the

kth state to the jth state, and it satisfies d�̂ijd�̂kl=� jkd�̂il.

The matrix of operators Ŝª �Ŝij� must satisfy Ŝ†Ŝ= ŜŜ†= I in

order for Ût to be unitary. The system is completely charac-

terized by the triple �= �Ŝ , L̂ , Ĥ�, where L̂ is a vector of

operators L̂ª �L̂1 , . . . , L̂M�T. Let X̂ be an operator of the sys-
tem. Then this evolves in time according to the Heisenberg

equation X̂→ jt�X̂�ª Û
t
*X̂Ût. In particular, we can define M

output fields B̂k,t� ª jt�B̂k,t�, which yields

dB̂t� = jt�L̂�dt + jt�Ŝ�dB̂t,

where we have defined B̂t�ª �B̂1,t� , . . . , B̂M,t� �T , jt�L̂�
ª �jt�L̂1� , . . . , jt�L̂M��T, etc.

Let us now consider two systems �1= �Ŝ1 , L̂1 , Ĥ1� and

�2= �Ŝ2 , L̂2 , Ĥ2�. Note that the number of inputs �i.e., out-
puts� of these systems can always be matched by introducing

additional components 0 in L̂ and I in Ŝ as L̂ � 0 and Ŝ � I.
These systems can be connected so that the outputs of �1 are
the inputs of �2, as depicted abstractly in Fig. 7. We denote
this cascade system by �2��1. Then, from �29�, we have

�2��1 = �Ŝ2Ŝ1,L̂2 + Ŝ2L̂1,Ĥ1

+ Ĥ2 +
1

2i
�L̂2

†Ŝ2L̂1 − L̂1
†Ŝ2

†L̂2�	 , �A2�

where L̂k
†= �L̂

1,k
* , . . . , L̂

M,k
* � �k=1,2� and Ŝ†= �Ŝ

ji
*�.

Direct measurement feedback �19,20� is no more than a
cascade of the system and the controller. Hence, the overall
system representation of the controlled network is readily
derived using Eq. �A2� as follows. For simplicity, let us con-

sider a single-input single-output system �= �Ŝ , L̂ , Ĥ+utF̂�,
where ut represents the control input. An ideal homodyne

detector yields a classical signal yt= jt�B̂t+ B̂
t
*�. Then, the di-

rect feedback ut=gyt closes the loop and realizes

�fb = �1,− igF̂,0���Ŝ,L̂,Ĥ� = �Ŝ,L̂ − igF̂,Ĥ +
g

2
�F̂L̂ + L̂*F̂�	 .

�A3�

For a more detailed discussion, see �29�.

2. Ideal network

Let us then apply the above formulas to our system. First,
we consider an ideal network composed of the following
three subsystems:

Cavity 1: C1 = �I,L̂1,1,Ĥ1� ,

Cavity 2: C2 = �I,L̂1,2,Ĥ2� ,

Controller: F = �I,− igF̂,0� ,

where L̂1,i and Ĥi are given in Sec. II, and F̂ª F̂1+ F̂2
= f1

Tx̂1+ f2
Tx̂2. The abstract configuration of the network is

given in Fig. 8. Thus, the network is given by

F�C2�C1 = �I,L̂id,Ĥid� , �A4�

where

L̂id = L̂1,1 + L̂1,2 − igF̂ = ��1
T − igf1

T,�2
T − igf2

T��x̂1

x̂2
�¬ Lidx̂

and

Ĥid = Ĥ1 + Ĥ2 +
1

2i
�L̂1,2

* L̂1,1 − L̂1,1
* L̂1,2�

+
g

2
�F̂�L̂1,1 + L̂1,2� + �L̂1,1

* + L̂1,2
* �F̂�

=
1

2
x̂T�� G1 Im��1�2

†�
Im��1�2

†�T G2
�

+ gf Re���T + g Re���fT	x̂

¬

1

2
x̂TGidx̂ .

Here, �ª ��1
T ,�2

T�T and fª �f1
T , f2

T�T. From the definition, we
then obtain the system’s A and D matrices Aidª�2�Gid
+Im�Lid

† Lid�� and Didª�2 Re �Lid
† Lid��2

T, and they are given
in Eqs. �5� and �6�.
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FIG. 7. Abstract illustration of the cascade system. The black
circles represent the interaction of the subsystem with the field.
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FIG. 8. Abstract illustration of the ideal network.
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3. Realistic network

We next consider a realistic model of the network. Each
component is given as follows.

Cavity 1: C1 = �I,L̂1,1

0

0
�,Ĥ1� ,

Beam splitter: B = �� − � 0

� � 0

0 0 1
�,0,0� ,

Cavity 2: C2 = �I,L̂1,2

0

0
�,Ĥ2� ,

Detector: D = �I,L̂1,3

0

L̂3,3

�,Ĥ3� ,

Controller: F = �I, 0

0

− igF̂
�,0� .

The kth element of the above vectors corresponds to the kth

quantum field B̂k,t. Figure 9 abstractly illustrates the structure
of the interactions in the network. Note that the detector part
includes the beam splitter with local oscillator shown in Fig.
1. Iteratively using Eq. �A2�, we obtain

F�D�C2�B�C1

= �� − � 0

� � 0

0 0 1
�,�L̂1,1 + L̂1,2 + L̂1,3

�L̂1

L̂3,3 − igF̂
�,Ĥre� ,

where

Ĥre = Ĥ1 + Ĥ2 + Ĥ3 +
�

2i
�L̂1,2

* L̂1,1 − L̂1,1
* L̂1,2�

+
1

2i
�L̂1,3

* ��L̂1,1 + L̂1,2� − ��L̂1,1
* + L̂1,2

* �L̂1,3�

+
ga4

2
�F̂L̂3,3 + L̂3,3

* F̂� .

It should be noted that a4 appears in the last term of Ĥre

because dB̂3,tdB̂
3,t
* =a4dt. We now look at the relation

�Ŝ , L̂ , Ĥ�= �Ŝ ,0 ,0���I , Ŝ†L̂ , Ĥ�. This implies that any sys-

tem �Ŝ , L̂ , Ĥ� is equivalent to the system without scattering

noise, �I , Ŝ†L̂ , Ĥ�, as long as we focus on the unconditional

state. This is because �Ŝ ,0 ,0� just corresponds to the modu-
lation of the output that is to be discarded. �Note that, if we
consider the conditional state based on the measurement re-
sult, the above equivalence does not hold.� Consequently, our
system is given by

� = �I,L̂re,Ĥre� , �A5�

where

L̂re = L̂1,1 + �L̂1,2 + �L̂1,3

− �L̂1,2 − �L̂1,3

L̂3,3 − igF̂
�

=  �1
T ��2

T 0 − i�a2

0 − ��2
T 0 i�a2

− igf1
T − igf2

T a3/2a4 0
�x̂1

x̂2

x̂3
�¬ Lrex̂

�A6�

and Ĥre= x̂TGrex̂ /2 with

Gre = 
G1 � Im��1�2

†� a3gf1/2 �a2 Re��1�
� Im��1�2

†�T G2 a3gf2/2 a2 Re��2�
a3gf1

T/2 a3gf2
T/2 0 a1

�a2 Re��1�T a2 Re��2�T a1 0
� .

�A7�

Hence, we can now obtain the drift and diffusion matrices:

Ãre = �3�Gre + Im�Lre
† Lre�� = �Are 0

0 − a1
� ,

D̃re = �3 Re�Lre
† Lre��3

T = �Dre 0

0 a3
2/4a4

� , �A8�

where Are and Dre are given in Eqs. �9� and �10�. Since the
sixth column and low elements do not affect the others, it
suffices to consider the reduced 5�5 matrices Are and Dre.

APPENDIX B: REALIZATIONS OF LINEAR STOCHASTIC
MODELS

The purpose of this section is to discuss possible physical
realizations of the linear stochastic models making up the
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^

1,2

^
B 1,t

^

F
^
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1,3

^

3,3

^
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^
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^

Cavity 1 Cavity 2BS Detector

L L

L

F
^

-ig 1

FIG. 9. Abstract illustration of the realistic network.
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entanglement scheme considered in Secs. III and IV. Linear
models are approximations of real physical systems that are
valid under various assumptions such as the dipole moment
approximation and rotating wave approximation. In particu-
lar, we will describe approximate realizations of these mod-
els using optical cavities. Discussions of the physical mean-
ing of the abstract linear models considered herein can be
found in, e.g., �31–33�.

1. Quadratic Hamiltonian

Let â= �q̂+ ip̂� /�2 and â*= �q̂− ip̂� /�2 be the cavity anni-
hilation and creation operators. Then a quadratic Hamil-
tonian

Ĥ = �â*â +
i

2
��ei�â*2 − �*e−i�â2�

can be realized with a degenerate parametric amplifier �DPA�
with a classical pump ��28�, Sec. 10.2� in a rotating frame at
half the pump frequency, where �ei� ��, � real� is the effec-
tive pump intensity and � is the detuning frequency of the
cavity mode of the DPA from the half the pump frequency
�i.e., �=�cav−�p /2, where �cav is the cavity resonance fre-
quency and �p is the pump frequency�. It is then easy to
verify that by choosing

� =
1 + m

2
, � =

1 − m

2
, � = 0

the Hamiltonian can be written, in terms of the quadratures,

as Ĥ= �mq̂2+ p̂2� /2. The latter is the form of the Hamiltonian
used in our models.

2. Models with dissipative coupling L̂=��â and direct
measurement feedback

Linear systems with dissipative coupling L̂=�â are quite
standard and can be implemented as an optical cavity with a
leaky mirror, but here we shall also consider how the direct

measurement feedback term F̂=utf
Tx̂, with f = �f1 , f2�T, can

be implemented in this system. Such an implementation is
shown in Fig. 10. The cavity has two partially transmitting
mirrors M1 and M2 with coupling constants � and ��, re-
spectively. Here � is chosen such that ��1 and ��. The
cavity interacts with an incident vacuum noise field at mirror

M1 via the dissipation coupling L̂=�â. The feedback F̂ is
implemented as follows. First, the �real-valued� control sig-

nal ut is amplified with gain 1 /�� and multiplied with f̃

= �1 /�2��−f2 , f1�T to give the real signal vt= �v1,t ,v2,t�T

= �1 /��� f̃ut. vt is then sent to a modulator that displaces a
vacuum bosonic field by the classical field �0

t vs
Cds with vt

C

=v1,t+ iv2,t to produce a coherent control field ûc,t �31� satis-

fying dûc,t=vt
Cdt+dB̂o,t, where B̂o,t is a vacuum noise field

independent of B̂in,t. This displacement can be physically
implemented by an electro-optical modulator �see �44�, Sec.
III B 5�. Mathematically, the displacement of a vacuum field

B̂o,t by a classical field �0
t vs

Cds is represented by the unitary

Weyl operator Ŵ�vt�
C� �here vt�

C�s�=vs
C for 0�s� t, and 0 oth-

erwise� satisfying the quantum stochastic differential equa-
tion �QSDE�:

dŴ�v�t�
C � = �v�t�

C dB̂o,t
* − v�t�

C*dB̂o,t −
1

2
�v�t�

C �2dt	Ŵ�v�t�
C �;

Ŵ�v�0�
C � = I ,

with which we can write ûc,t=Ŵ�vt�
C�*B̂o,tŴ�vt�

C�. The coher-
ent field ûc,t then interacts with the cavity via mirror M2 with
coupling coefficient ��; thus the total cavity-field interaction
is described by the following QSDE:

dÛt = �−


2
â*âdt + ��âdB̂in,t

* − â*dB̂in,t�

−
�

2
â*âdt + ���âdû

c,t
* − â*dûc,t�	Ût.

For a sufficiently small value of �, the effect of the noise B̂o,t
can be considered to be negligible and if also �� then its
contribution to the system noise will be negligible compared

to that of B̂in,t. As a result, we find that the feedback term is
included in the interaction

dÛt = �− iF̂dt −


2
â*âdt + ��âdB̂in,t

* − â*dB̂in,t�	Ût.

The entire scheme is depicted in Fig. 10. Note that a pumped
��2� nonlinear crystal can be placed inside the cavity to
implement these linear couplings together with the quadratic
Hamiltonian discussed in the preceding section.

3. Models with dispersive coupling L̂=��q̂ and direct
measurement feedback

For realization of a dispersive coupling of the form L̂
=�q̂, consider the configuration shown in Fig. 11. This con-
figuration consists of a ring cavity with mode â, an auxiliary

ring cavity with mode b̂, a ��2� nonlinear crystal in which the

cavity modes â and b̂ interact with a classical pump beam,
and a beam splitter. The frequency of the auxiliary cavity is
matched to half the frequency of the pump beam. The clas-
sically pumped nonlinear crystal implements a two-mode

squeezing Hamiltonian given by ĤTMS= i
2 ��e−i�ptâ*b̂*

−�*ei�ptâb̂� �where � is the effective intensity of the classical
pump and �p is the pump frequency�, while the beam splitter

Control
field
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MOD
ut

1/��

2
ˆˆˆ piqa �

�

tinB ,
ˆ

toutB ,
ˆ

tcu ,ˆ tv

�<<�

Tfff ),(
2

1~
12��

FIG. 10. Implementation of a dissipative coupling together with
the linear control.
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implements the Hamiltonian ĤBS=�â*b̂+�*âb̂* for a com-
plex parameter �. Suppose now that � and � are chosen to
satisfy � /2= i�=� for a real constant �
0 �in particular �
=−i��. Then, in a rotating frame at the frequency �p /2, the

overall interaction Hamiltonian between the modes â and b̂
is thus given by

Ĥâb̂ = i��â*b̂* − âb̂ − â*b̂ + âb̂*� .

Assume that the coupling coefficient of the mirror M is

large such that the mode b̂ is heavily damped compared to
mode â and has much faster dynamics than â. For simplicity,
in the following we will use the formalism of quantum
Langevin equations and a formal method to show that the

configuration shown implements the dispersive coupling L̂ in

the reduced dynamics for mode â only, after mode b̂ is adia-
batically eliminated.2 See �32� for a more rigorous derivation
using QSDEs and the mathematical theory for adiabatic
elimination developed in �45�.

Let B̂in,t be an input field and B̂out,t an output field coupled

to b̂ at the mirror M as shown in Fig. 11 and suppose that M
has the coupling coefficient �. In particular, notice the 180°

phase shift in front of B̂in,t before it strikes the mirror. Define

�̂ to be a quantum white noise formally related to B̂in,t as

B̂in,t=�0
t �̂�s�ds and �̂out be the output noise at the mirror M

formally related to B̂out,t by B̂out,t=�0
t �̂out�s�ds. The quantum

Langevin equations for the dynamics of â, b̂, and �̂out are
��28�, Chap. 5�

ȧ̂ = i�Ĥâb̂, â� = ��b̂* − b̂� , �B1�

ḃ̂ = i�Ĥâb̂, b̂� −
�

2
b̂ + ���̂ = ��â* + â� −

�

2
b̂ + ���̂ ,

�B2�

�̂out = ��b̂ − �̂ . �B3�

Setting b̂=0 and solving Eq. �B2� for b̂ in terms of â*, â, and
�̂ we obtain

b̂ =
2

�
���â* + â� + ���̂� . �B4�

Substituting Eq. �B4� into Eqs. �B1� and �B3�, we obtain that
the reduced dynamics for â only and �̂out are given by the
following quantum Langevin equations:

ȧ̂ = ��b̂* − b̂� =
2�

��
�− �̂ + �̂*� , �B5�

�̂out =
2�

��
�â + â*� + �̂ . �B6�

The pair of equations �B5� and �B6� shows that the reduced

system after adiabatic elimination of the mode b̂ is a single
degree of freedom quantum harmonic oscillator with mode â

coupled to the field B̂in,t by the linear coupling operator L̂
=2�2�q̂ /��, where q̂= �â+ â*� /�2, producing the output

field B̂out,t=�0
t �̂out�s�ds. By suitably choosing � and � such

that 2�2�=��, we see that with this scheme it is possible

to implement any dispersive coupling of the form L̂=�q̂.
Moreover, by placing a pumped nonlinear crystal inside the
cavity �pumped with the same frequency �p� and adding a
partially transmitting mirror in the ring cavity of â that
couples it to a control field, one can easily combine this
dispersive coupling together with the quadratic Hamiltonian
in Appendix B 1 as well as the control shown in Fig. 10.

2As pointed out in �46�, in general one has to be careful when
using such a formal method. However, in the particular case con-
sidered here where the dynamics are linear it does turn out that the
formal method gives a consistent result in that the adiabatically
eliminated system is a bona fide quantum-mechanical system.

Bin,t

a

Auxiliary
cavity

M

b

eiπ

^

Bout,t
^

^
^

Pump

FIG. 11. Configuration of two cavities, a two-mode squeezer
�depicted by the square with an arrow to indicate classical pump-
ing�, and a beam splitter, to implement a dispersive coupling of the

cavity mode â to the field B̂in,t when the second cavity mode b̂ is

adiabatically eliminated. Note that B̂in,t is phase shifted by 180°
before reaching the mirror M.
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