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Abstract. We look at modelling of a choice between several ‘bursts’ of
concurrent actions in a Petri net. If ‘silent’ transitions are disallowed, a
construction based on Cartesian product is traditionally used, resulting
in an exponential explosion in the model size.
We demonstrate that this exponential explosion can be avoided. We show
the equivalence between this modelling problem and the problem of find-
ing an edge clique cover of a complete multipartite graph, which gives
major insights into the former problem as well as linking it to the existing
results from graph theory.
It turns out that the exponential number of places created by the Carte-
sian product construction can be improved down to polynomial (quadra-
tic) in the worst case, and down to logarithmic in the best (non-degraded)
case. For example, to express a choice between 10 pairs of concurrent
transitions, the Cartesian product construction creates 1024 places, even
though 6 places are sufficient. We also derive several lower and upper
bounds on the numbers of places and arcs.
As these results affect the ‘core’ modelling techniques based on Petri
nets, eliminating a source of an exponential explosion, we hope they
will have applications in Petri net modelling and translations of various
formalisms to Petri nets. As an example, applying them to translate
Burst Automata to Petri nets reduces the size of the resulting Petri net
from exponential down to polynomial.

Keywords: Petri net · complete multipartite graph · edge clique cover
· control flow · Burst automata

1 Introduction

Petri nets (PN) are often used as a modelling formalism, and their advantages
include the simplicity of semantics, the intuitive graphical notation, the abun-
dance of software tools, and the possibility of capturing behaviours concisely
without making subsequent processing (e.g., formal verification or synthesis) un-
decidable. In particular, the possibility to create concise models is often the key
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advantage of PNs over simpler formalisms like Finite State Machine (FSMs). In-
deed, it is generally accepted that one is likely to encounter the exponential state
space explosion [9] during, e.g., formal verification — this problem is believed
to be fundamental (unless P=PSPACE), and mitigating this explosion using
heuristics has been a hot research topic for many years. However, encountering
an exponential explosion already during the modelling stage is both regrettable
and indicative of problems in modelling techniques or even the formalism itself.

Unfortunately, some common PNs modelling techniques can indeed result in
exponentially large models, even in common cases of simple control flows. As a
motivating example we consider Burst Automata (BA) [3] — a more general ver-
sion of Burst Mode [8] formalism from the area of asynchronous circuits design.
Intuitively, BAs are similar to FSMs, except that their arcs are labelled not by
single actions but by sets of actions (‘bursts’) which fire concurrently. One can
define the interleaving semantics of BAs by allowing the actions in a burst to
fire in any order, which results in the usual FSM, see the example in Figure 1.
For the purposes of formal verification and circuit synthesis, it would be advan-
tageous to develop a translation from BAs to PNs, in order to be able to use
existing PN software. This means some kind of behavioural equivalence between
the FSM expressing the interleaving semantics and the reachability graph of the
resulting PN is required, e.g., language equivalence or bisimulation. As BAs are
a very simple FSM-like formalism, it would be reasonable to expect that such a
translation would be quite simple and efficient.

Fig. 1. A BA specification of the C-element and an FSM expressing its interleaving
semantics. A C-element waits for both inputs to switch to 1 (actions i+1 and i+2 ) before
switching its output to 1 (action o+), and then waits for both inputs to switch to 0
(actions i−1 and i−2 ) before switching its output to 0 (action o−). It is assumed that the
environment fulfills its part of the contract, i.e. each input switches only once before
the output switches.

However, developing a compact translation from BAs to PNs is more com-
plicated than one might expect. In particular, efficiently expressing a choice
between several bursts of concurrent transitions is not trivial in PNs. In [3], a
language-preserving linear size translation is proposed, that prefixes each burst
with a silent ‘fork’ transition and then uses another silent ‘join’ transition after
the burst to detect completion. Unfortunately, there are situations when this
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Fig. 2. A BA with singleton bursts, so coinciding with the FSM expressing its inter-
leaving semantics (left); its PN translation prefixing each burst with a silent transition
(middle); and the reachability graph (FSM) of this PN (right). Note that the two FSMs
are language-equivalent but not weakly bisimilar.

translation is unacceptable. First of all, silent transitions turn a deterministic
model into a non-deterministic one which is often undesirable (e.g., non-deter-
minism cannot be directly implemented physically, say in an asynchronous logic
circuit [4]). Second, language equivalence may be too weak (e.g., it does not
preserve branching time temporal properties or even deadlocks), and prefixing
bursts with silent transitions breaks not only strong but also weak bisimulation,
see Figure 2.

To preserve strong bisimulation, the following Cartesian Product Construc-
tion (×-construction) is traditionally used, see e.g., [2]. To express a choice
between several bursts (i.e., sets of concurrent transitions) B1, B2, . . . , Bn, this
construction would create a set of places corresponding to tuples in the Cartesian
product B1×B2×· · ·×Bn, so that a place corresponding to a tuple (b1, . . . , bn)
is connected to each transition bi occurring in the tuple. This means that the
number of created places is |B1| · |B2| · . . . · |Bn|, i.e., the PN size is exponential
in the number of bursts.

In this paper we focus on efficiently expressing a choice between several bursts
without using silent transitions. We demonstrate that the ×-construction is often
sub-optimal, in particular one can always avoid an exponential explosion — a
polynomial (quadratic) number of places is sufficient even in the worst case.
Moreover, in the case of each burst containing two transitions, the×-construction
requires 2n places while the construction proposed in this paper needs only log2 n
places (asymptotically) — a dramatic double-exponential reduction.

We believe that the proposed construction, which is the main contribution
of the paper, will have many applications, as it affects the ‘core’ modelling tech-
niques for PNs. In particular, translations from various formalisms to PNs rely-
ing on the ×-construction can be significantly improved by using the proposed
construction instead, thus eliminating a source of exponential explosion. In Sec-
tion 8, we show how to improve the bisimulation-preserving translation from
BAs to PNs described in [3], from exponential down to polynomial. Note that
the developed translation is just a simple example of applying the proposed
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construction rather than the focus of the paper, and there are more applica-
tions, e.g., in our forthcoming paper [7] we develop a polynomial PN translation
for arbitrary control flows built from atomic actions using sequencing, parallel
composition, and choice.

The proposed construction is based on the observation that the problem
of implementing a choice between concurrent bursts in a PN using k places is
equivalent to finding an edge clique cover of a complete multipartite graph with
k cliques. Hence, the minimal possible number of places is equivalent to the
edge clique cover number (a.k.a. intersection number [5]) of a certain complete
multipartite graph. The latter is a problem investigated for decades. Even though
it is not completely solved, there are many useful published results, and we prove
several new results helping to improve some upper bounds on the number of PN
places and arcs. In practice, the optimality is usually not required, and one can
use simple approximations with useful lower and upper bounds.

2 Basic notions

In this section, we provide some basic notions related to Petri nets, complete
multipartite graphs, and edge clique covers.

Petri nets

We focus on safe (i.e., at most one token per place) PNs, which are often used for
modelling control flows. For a safe PN, the total number of tokens in its initial
marking cannot exceed the number of places, so we can define its size as the
total number of places, transitions, and arcs, disregarding the initial marking.
Note that the size of a PN is dominated by its arcs, except the uninteresting
degraded case when there are many isolated nodes.

In this paper, the set of transitions is usually given (e.g., when translating a
model from some other formalism to PNs, the transitions often correspond to the
occurrences of actions in that model), and the objective is to express the intended
behaviour using small numbers of places and arcs. Note that having a small
number of places is often desirable for formal verification as they correspond to
state variables, and having a small number of arcs is desirable as they dominate
the PN size.

Complete multipartite graphs

We consider undirected graphs with no parallel edges and no self-loops. A graph
is called multipartite if its vertices are partitioned into several sets in such a way
that there are no edges between vertices in the same partition. A multipartite
graph is complete if, for every pair of vertices from different partitions, there is an
edge connecting them. A complete multipartite graph with the partitions of sizes
t1 ≤ t2 ≤ · · · ≤ tn will be denoted Kt1,t2,...,tn . Note that for the purposes of this
paper one can assume that multipartite graphs have at least two partitions and
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that each partition contains at least two vertices — violating these assumptions
leads to simple degraded cases. If the sizes of all partitions in Kt1,t2,...,tn are
equal, t1 = t2 = · · · = tn = t, the graph is called balanced and will be denoted
Kn(t).

Edge clique covers

A clique in a graph is a set of vertices which are pairwise connected by edges. A
clique is called maximal if it is not a subset of any other clique. Note that for a
complete multipartite graph, every maximal clique contains exactly one vertex
from each partition, and vice versa, by picking one vertex from each partition
one always obtains a maximal clique.

A set of cliques in a graph form an edge clique cover (ECC) if for every edge
in the graph there is at least one clique that contains both endpoints of this edge.
The number of cliques in an ECC is called its size. Note that, given an ECC, one
can expand each clique in it to some maximal one, without increasing the size
of the ECC. The minimum possible size of an ECC of a graph G is called the
edge clique cover number (a.k.a. intersection number) of G, and will be denoted
ecc(G).

3 Equivalence between the problems of modelling a
choice between bursts in a PN and finding an ECC of a
complete multipartite graph

Suppose that we have pairwise disjoint3 bursts B1, B2, . . . , Bn where each burst
is a non-empty set of transitions, and the intention is to create a choice between
these bursts. Hence, the problem is to add some places and connect them to
these transitions (by place→transition arcs) so that the transitions within each
burst must be concurrent,4 but any pair of transitions from different bursts must
be in conflict. More precisely, the following requirements must be satisfied:

ReqChoice For every pair of transitions from different bursts, there is a place
connected to both of them (this creates choices between transitions from
different bursts).

ReqConc A place cannot be connected to more than one transition from the
same burst (otherwise these transitions would not be concurrent). An alter-
native and stricter formulation of this requirement is that a place must be

3 In practice, transitions are often labelled by actions, and there is no requirement for
the sets of labels corresponding to bursts to be disjoint, e.g., it is possible to have
bursts B1 = {t1} and B2 = {t2} where t1 and t2 are distinct transitions labelled by
the same action a. In particular, BAs allow non-determinism, and the PN translation
in Section 8 expresses it by creating distinct transitions with the same label.

4 Note that the |Bi|-ary concurrency relation intended here is not reducible to pairwise
concurrency.
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connected to exactly one transition from each burst — this in addition en-
sures that no tokens are left behind after a burst fires, which is essential for
control flows containing cycles, a common case in practice. We will denote
this strict formulation by ReqConc(strict). Note that if ReqConc(strict)
is satisfied then the number of arcs can be determined from the number of
places by multiplying the latter by the number of bursts, i.e., by n.

ReqNoDups No two places are connected to the same set of transitions (this
would create redundancy – one of such places can be removed without af-
fecting the PN’s behaviour).

Furthermore, we define the problem size as |B1| + · · · + |Bn| — the upper and
lower bounds on the number of required places and arcs will be relative to it.

One can see that the ×-construction satisfies the above conditions, including
ReqConc(strict). However, it generates |B1| · |B2| · . . . · |Bn| places and n · |B1| ·
|B2| · . . . · |Bn| arcs, i.e., the PN size is exponential.

The natural questions now are whether the above requirements are possible
to achieve with fewer places and arcs — in particular, whether the PN size can
be polynomial in the problem size, what would be the minimal number of places,
and whether it is possible to derive some useful lower and upper bounds on the
size of the smallest PN. We show that these problems can be reformulated in
terms of finding ECCs of a complete multipartite graph, which provides revealing
insights and helps one to find positive answers to these questions.

Consider the conflict (i.e., choice) relation between the transitions. It is sym-
metric and irreflexive, and so can be represented by an undirected graph without
self-loops such that there is an edge between two vertices iff the transitions cor-
responding to these vertices belong to different bursts. Thus, the graph is a
complete multipartite graph with its partitions corresponding to the bursts, i.e.,
K|B1|,|B2|,...,|Bn|. Furthermore, any complete multipartite graph represents the
conflict relation for some family of bursts.

Now consider a place connected to several transitions picked from different
bursts. The vertices corresponding to these transitions form a clique in the graph
representing the conflict relation. Thus, given any ECC of this graph, one can
create a place for each clique in the ECC and connect it to transitions corre-
sponding to the vertices occurring in the clique, and the resulting set of places
will satisfy the above requirements. Furthermore, one can in addition satisfy Re-
qConc(strict) by extending every clique in the ECC to a maximal one. Hence,
there is a 1-to-1 correspondence between cliques and places, or between maximal
cliques and places in the ReqConc(strict) case. This simple observation allows
one to answer some of the posed questions:

– The trivial ECC where each edge is covered by a clique with two vertices
(which can then be extended to a maximal clique if necessary) has only a
quadratic number of cliques at most, which yields a polynomial translation
with a quadratic number of places and either quadratic (for ReqConc) or
cubic (for ReqConc(strict)) number of arcs — already a huge improvement
on the exponential ×-construction.
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– In bipartite graphs there are no cliques with more than two vertices, and
so the minimal ECC coincides with the trivial one. Consider the case of
two bursts of equal size, |B1| = |B2| = k. One can see that the graph
of the conflict relation is the bipartite graph Kk,k, i.e., the number of PN
places cannot be smaller than k2. This observation yields a quadratic worst
case lower bound on the number of places, that matches the above upper
bound. Furthermore, this gives a quadratic worst case lower bound on the
number of arcs, that matches the above upper bound for the ReqConc case,
though there is still a gap between this lower bound and the upper bound
for ReqConc(strict).

These simple observations, though giving matching worst case upper and
lower bounds on the number of places as well as the number of arcs in the
ReqConc case, do not provide the full picture. It turns out that one can often
do much better than the above quadratic worst case lower bound suggests, e.g.,
in the next section, we give an example where a logarithmic number of places is
sufficient.

Furthermore, the ReqConc(strict) case is more important in practice, and
given that the size of a PN is normally dominated not by places but by arcs,
the gap between quadratic lower and cubic upper bounds on the number of arcs
needs narrowing and ideally closing. In what follows, we derive some improved
upper bounds in the ReqConc(strict) case, including a quadratic upper bound
for the cases where the sizes of bursts are the same or at least not too different,
i.e., the graph of the conflict relation is balanced or almost balanced.

4 A logarithmic case

Above we derived a polynomial (quadratic) worst-case bound on the number of
places, which is an exponential improvement over the ×-construction. In this
section, we consider the best-case scenario, excluding the degraded cases of a
single burst, and the situation when some of the bursts are singletons. The
former is trivial, and the latter can be reduced to a smaller non-degraded case
by removing all singleton bursts. It turns out that in the best case a logarithmic
number of places is both necessary and sufficient, yielding a dramatic double-
exponential improvement on the ×-construction.

Consider the case of each burst containing two transitions. The ×-construc-
tion would create 2n places, but it turns out that log2 n places are sufficient
(asymptotically). The conflict relation graph in this case is Kn(2), and the prob-
lem boils down to finding a small ECC of this graph. This problem was solved
in [6], which proved that ecc(Kn(2)) ∼ log2n.

The idea of the construction is as follows. For simplicity, we assume that
n =

(
k−1
k/2

)
for some even k. One can check (e.g., using wolframalpha.com) that

lim
k→+∞

log2 n

k
= lim

k→+∞

log2

(
k−1
k/2

)
k

= 1 ,
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and so k ∼ log2n. Consider the family of subsets of size k/2 of {1, . . . , k}. One
can build a multipartite graph with these subsets as vertices, and with two
vertices being connected iff their intersection is non-empty (this construction is
called the intersection graph [5] of a family of sets). In our case each subset has
a non-empty intersection with all but one other subset in the family, viz. its
complement, and so Kn(2) is the intersection graph of this family of subsets.
One can then observe that the vertices corresponding to subsets sharing some
element i are pairwise connected and so form a clique. Moreover, the cliques
corresponding to the elements of {1, . . . , k} form an ECC of size k.

For example, let n = 10 =
(
6−1
6/2

)
, i.e., k = 6 places are sufficient to express all

the conflicts between 10 binary bursts (compared to 210 = 1024 places created
by the ×-construction). We consider all 3-element subsets of the set {1, . . . , 6}
and pair subsets with their complements:

{1, 2, 3} {4, 5, 6}
{1, 2, 4} {3, 5, 6}
{1, 2, 5} {3, 4, 6}
{1, 2, 6} {3, 4, 5}
{1, 3, 4} {2, 5, 6}
{1, 3, 5} {2, 4, 6}
{1, 3, 6} {2, 4, 5}
{1, 4, 5} {2, 3, 6}
{1, 4, 6} {2, 3, 5}
{1, 5, 6} {2, 3, 4}

One can see that the intersection graph of this family of subsets is K10(2) where
the vertices in each of the 10 partitions correspond to these 10 pairs of compli-
mentary sets. Furthermore, one can cover all the edges of this graph by 6 cliques,
where the i-th clique comprises vertices corresponding to the subsets containing
i, for each i = 1, . . . , 6.

In the corresponding PN, the pairs of transitions in these 10 bursts can
be labelled by the above pairs of subsets, the places be labelled by the numbers
1,. . . ,6, and the connection be such that there is an arc from place i to a transition
labelled by subset S iff i ∈ S, see Figure 3.

5 Upper bounds for the balanced case

In this section, we provide two different upper bounds on the number of places
and arcs for the balanced case, i.e., when all the bursts have the same size. It
turns out one can improve the trivial upper bound on the number of arcs derived
in Section 3.

The idea of the first bound is based on the observation that, by generating
a sufficient number k of random cliques, one can cover every edge with high
probability (in the sense that the expected number of uncovered edges is <1),
which implies that there is an ECC of size k. Furthermore, the probability of



Avoiding Exponential Explosion in Petri Net Models of Control Flows 9

Fig. 3. A PN model with 6 places expressing a choice between 10 binary bursts. The
transitions are labelled by 3-element subsets of {1, . . . , 6}, e.g., ‘123’ corresponds to
{1, 2, 3}.

an edge being uncovered falls exponentially with k, so k does not have to be
large. The following result was inspired by [1, Lemma 3.2]. Using the specifics
of balanced complete multipartite graphs, we reformulated that result to avoid
references to graph’s complement, streamlined the proof, and obtained a better
multiplicative constant.

Proposition 1. ecc(Kn(t)) ≤
⌈
2t2 ln tn√

2

⌉
if n, t ≥ 2.

Proof. One can pick a random maximal clique in Kn(t) by randomly and uni-
formly picking a vertex from each of the n parts. Suppose that k (to be chosen
appropriately below) such cliques are picked independently.

Given a random clique as above, an edge (u, v) is covered by it iff both u and
v were picked from their partitions, i.e., the probability that a particular edge is
covered by a random maximal clique is 1/t2. Hence the probability that an edge
is not covered by any of the k chosen random cliques is(

1− 1

t2

)k

≤ e−k/t
2

,

where the inequality follows from 1− x ≤ e−x for all real x.

There are t2n(n−1)
2 < t2n2

2 edges in Kn(t), so the expected number of edges
not covered by any of the k cliques does not exceed

t2n2

2
e−k/t

2

.
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We now choose k =
⌈
t2 ln t2n2

2

⌉
> t2 ln t2n2

2 (note that the inequality here

is indeed strict because n, t ≥ 2 are integers and the natural logarithm of an
integer distinct from 1 is never an integer). Substituting this value for k into
the above formula for the expected number of edges not covered by any of the
k cliques, we have

t2n2

2
e−

⌈
t2 ln t2n2

2

⌉
t2 <

t2n2

2
e−

t2 ln t2n2

2
t2 = 1 ,

i.e., it is strictly below 1. Hence, it is possible to choose

k =

⌈
t2 ln

t2n2

2

⌉
=

⌈
2t2 ln

tn√
2

⌉
cliques forming an ECC of Kn(t). ut

One can see that the proof of the above proposition yields a randomised
algorithm for generating a small ECC, and the derived upper bound is usually
good in practice. However, it is expressed in terms of the number n of partitions
in Kn(t) and their (common) size t rather than the number v = t · n of vertices
Kn(t) (note that v is the problem size that was defined as the total size of all
bursts). Reformulating this bound in terms of v yields⌈

2
v2

n2
ln

v√
2

⌉
= O

(
v2

n2
log v

)
,

which means that the number of places in the PN is O
(
v2 log v

)
if n is fixed.

This means that in some cases this upper bound can be worse than the trivial
quadratic one derived in Section 3. However, the above expression allows one to
improve on the trivial cubic upper bound on the number of arcs in the Req-
Conc(strict) case derived in Section 3. Recall that in this case the number of
arcs equals to the number of places multiplied by n, i.e.,

n

⌈
2
v2

n2
ln

v√
2

⌉
= O

(
v2

n
log v

)
.

This bound is quite good, and becomes O (v log v) if n is linear in v. The worst
case is when n is fixed — the bound then becomes O

(
v2 log v

)
, which almost

(but not quite) matches the quadratic worst case lower bound.
The natural question now is whether one can achieve quadratic (in v) upper

bounds on the numbers of both places and arcs, thus completely closing the gap
between the worst case lower and upper bounds at least in the balanced case.
The following simple result provides a new (to our knowledge) upper bound on
the edge clique cover number of Kn(t) that allows one to answer this question
affirmatively.

Proposition 2. ecc(Kn(t)) ≤ nt2/2, where t, n ≥ 2.
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Proof. We construct an ECC comprised of the cliques:

– Cpij , where p = 1, . . . , n, i = 2, . . . , t and j = 1, . . . , i − 1, such that Cpij

comprises the i-th vertex from p-th partition and the j-th vertex from every
other partition.

– Ci, where i = 1, . . . , t, containing the i-th vertex from every partition.

Note that the edge from the i-th vertex from p-th partition to j-th vertex in
some other partition p′ is covered by either Cpij (if i > j) or Cp′ji (if j > i) or
Ci (if i = j), so it is indeed an ECC. The size of this ECC is

nt(t− 1)/2 + t = nt2/2− nt/2 + t ≤ nt2/2 ,

and so ecc(Kn(t)) ≤ nt2/2. ut

The above result can be used to derive quadratic upper bounds on the num-
bers of both places and arcs. Indeed, when expressed in terms of v, this bound

becomes v2

2n and so cannot be worse than O(v2) even if n is fixed. Furthermore,
the number of arcs in ReqConc(strict) case can be obtained by multiplying by

n, which yields v2

2 .
Hence, in the balanced case we have obtained quadratic worst case upper

bounds on both places and arcs, which match the quadratic worst case lower
bound derived in Section 3.

6 Upper bounds for the almost balanced case

In this section, we show that the upper bounds from the previous sections can
be transferred (up to a multiplication by a constant) to the unbalanced case pro-
vided it is not ‘too unbalanced’. The idea is based on the following observations:

– Kt1,t2,...,tn is an induced sub-graph in Kn(tn), and so ecc(Kt1,t2,...,tn) ≤
ecc(Kn(tn)), as any ECC of the latter can be turned into an ECC of the
former by deleting the vertices which are not in Kt1,t2,...,tn from each clique
(and then extending each clique to a maximal one if required).

– The number of vertices in Kn(tn) is not much greater than that in Kt1,t2,...,tn

provided that the latter is not ‘too unbalanced’, so the upper bounds derived
in the previous section do not become too large w.r.t. the size of Kt1,t2,...,tn .

Formally, let b ≥ 1 be some fixed real number. A complete multipartite graph
Kt1,t2,...,tn is called b-balanced if tn ≤ b

n

∑n
i=1 ti = b

nv, i.e., the size of the biggest
partition is within the factor b of the average partition size. One can observe that
the number of vertices in Kn(tn) is then

ntn ≤ n

(
b

n
v

)
= bv ,

i.e., within the factor b of the number v of vertices in Kt1,t2,...,tn . Hence the
bounds derived in Section 5 can be lifted to ‘almost balanced’ graphs as follows.
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Proposition 3 (Lifting Propositions 1 and 2 to almost balanced case).
Suppose that Kt1,t2,...,tn is b-balanced and n, ti ≥ 2. Then

ecc(Kt1,t2,...,tn) ≤
⌈

2
(bv)2

n2
ln

bv√
2

⌉
and

ecc(Kt1,t2,...,tn) ≤ (bv)2

2n
,

where v =
∑n

i=1 ti is the number of vertices in Kt1,t2,...,tn .

Proof. Follows directly from the
⌈
2 v2

n2 ln v√
2

⌉
and v2

2n bounds for the balanced

case derived in Section 5. ut

Hence, in the almost balanced case the numbers of places and arcs are
quadratic in the worst case. Furthermore, Proposition 5 below improves the for-

mer bound down to
⌈
2tntn−1 ln v√

2

⌉
. Note that, for a b-balanced graph, tn−1 ≤

tn ≤ bv
n and, moreover, b is removed from under the logarithm.

7 Upper bounds for the unbalanced case

In this section, we consider the case of complete multipartite graphs Kt1,t2,...,tn

which are ‘very unbalanced’. We slightly improve on the trivial upper bound on
the number of arcs. However, this may still be cubic in the worst case, e.g., if n,
tn and tn−1 are linear in v.

First, we recall the following result from [5]. It refers to edge clique partitions,
which are a special case of ECCs with every edge covered exactly by one clique.
We denote the edge clique partition number ecp(G) of a graph G as the smallest
possible number of cliques in an edge clique partition of G. Trivially, ecc(G) ≤
ecp(G).

Proposition 4 (adapted from [5]). Let G be a graph with v vertices. Then
G has an edge clique partition of size at most

⌊
v2/4

⌋
consisting of edges and

triangles. Moreover, ecp(G) =
⌊
v2/4

⌋
if and only if G is Kbv/2c,dv/2e.

This translates into a
⌊
v2/4

⌋
upper bound on the number of places and

n
⌊
v2/4

⌋
upper bound on the number of arcs in ReqConc(strict) case, which

may be O(v3) if n (the number of bursts) grows linearly in v.
It should be noted that this bound is rather pessimistic: Edge clique partition

is a very special case of ECC, and moreover only edges and triangles are used in
this partition. Hence one can hope that the bound on arcs could be improved:

– The worst case for Proposition 4 is a balanced bipartite graph, in which case
n = 2 and so the number of arcs is quadratic (and it remains quadratic for
any fixed n).
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– When n grows linearly, much larger cliques than edges and triangles can be
formed.

As a result, we hope that a sub-cubic or even a quadratic bound on the number
of arcs can be obtained, and leave this question for future research.

We now generalise Proposition 1 to the unbalanced case, which gives a slightly
better bound than that derived in Section 6.

Proposition 5. ecc(Kt1,t2,...,tn) ≤
⌈
2tntn−1 ln v√

2

⌉
where v is the number of

vertices in Kt1,t2,...,tn and n, ti ≥ 2.

Proof. One can pick a random maximal clique in Kt1,t2,...,tn by randomly and
uniformly picking a vertex from each of the n partitions. Suppose that k (to be
chosen appropriately below) such cliques are picked independently.

Given a random clique as above, an edge (u, v) is covered by it iff both u
and v were picked from their partitions, i.e., the probability that an edge (u, v)
is covered by a random maximal clique is 1/(tutv), where tu and tv are the sizes
of partitions u and v are coming from. Hence the probability that an edge (u, v)
is not covered by any of the k chosen random cliques is(

1− 1

tutv

)k

≤ e−k/(tutv) ≤ e−k/tntn−1 ,

where the former inequality follows from 1− x ≤ e−x for all real x.

There are 1
2

(
v2 −

∑s
i=1 t

2
i

)
< v2

2 edges in the graph, so the expected number
of edges not covered by any of the k cliques does not exceed

v2

2
e−k/tntn−1 .

We now choose k =
⌈
tntn−1 ln v2

2

⌉
> tntn−1 ln v2

2 (note that the inequality

here is indeed strict because v ≥ 4 and ti ≥ 2 are integers and the natural
logarithm of an integer distinct from 1 is never an integer). Substituting this
value for k into the above formula for the expected number of edges not covered
by any of the k cliques, we have

v2

2
e
−

⌈
tntn−1 ln v2

2

⌉
tntn−1 <

v2

2
e
−

tntn−1 ln v2

2
tntn−1 = 1 ,

i.e., it is strictly below 1. Hence, it is possible to choose

k =

⌈
tntn−1 ln

v2

2

⌉
=

⌈
2tntn−1 ln

v√
2

⌉
cliques forming an ECC of Kt1,t2,...,tn . ut
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8 A polynomial bisimulation-preserving translation from
BAs to PNs

In [3], three translations from BAs to PNs were developed. One of them is linear
— but it uses silent ‘fork’ and ‘join’ transitions for each burst and so preserves
only language equivalence but not bisimulation (not even weak bisimulation)
— as illustrated in Figure 2. The second translation uses ‘join’ (but not ‘fork’)
transitions and the ×-construction. As a result, it preserves weak bisimulation
but is exponential. The third translation uses neither ‘fork’ nor ‘join’ transitions,
and preserves strong bisimulation, but it also depends on the ×-construction and
thus is exponential (and often larger than the second translation).

We now show how to eliminate a source of exponential explosion in the lat-
ter construction by replacing the ×-construction by the ECC-based one, thus
obtaining a polynomial bisimulation-preserving translation from BAs to PNs.
Note that the developed translation is just a simple example of applying the
proposed ECC-based construction rather than the focus of the paper, and there
are more applications, e.g., in our forthcoming paper [7] we develop a polyno-
mial PN translation for arbitrary control flows built from atomic actions using
sequencing, parallel composition, and choice.

The improved translation is illustrated in Figure 4 and works as follows.

- Each burst B is represented by |B| transitions corresponding to occurrences
of actions in B and labelled by the corresponding actions. (Empty bursts
are interpreted as ε-transitions in FSMs, and so for the purposes of this
translation are replaced by singleton bursts {ε}.) No other transitions are
created by the translation. Then each state s of the BA is considered in turn,
together with its incoming and outgoing bursts.

- For the incoming bursts of s, a set P in
s of new places is created, so that

|P in
s | is the maximal input burst cardinality (and hence of linear size). The

transitions in the input bursts are then connected by transition→place arcs
to the places in P in

s , so that the i-th transition in each burst is connected to
the i-th place in P in

s . Moreover, for bursts with fewer than |P in
s | transitions,

extra arcs are added so that each place in P in
s is connected to exactly one

transition in the burst (e.g., one can connect the first transition in the burst
to all the unmatched places in P in

s ).
- For the outgoing bursts of s, the ReqConc(strict) variant of the ECC-based

construction presented in this paper is applied, yielding a set P out
s of places.

Note that |P out
s | is at most quadratic, and the number of created arcs is at

most cubic (in the total size of all output bursts).
- To enforce the causality between the input and output bursts, a set of places

P
(in,out)
s = P in

s × P out
s is created,5 where each place (pin , pout) ∈ P

(in,out)
s

inherits its incoming arcs from pin and its outgoing arcs from pout . After

5 This aspect of the translation can be improved as explained in our forthcoming
paper [7]. In fact, the number of places in the Petri net in Figure 4(bottom) can
be reduced from 12 down to 6. However, the given simple construction is already
sufficient for the translation to be polynomial.
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Fig. 4. An example of bisimulation-preserving BA to PN translation: (top-left) A BA
state with its incoming and outgoing bursts; (top-middle) PN translations of the in-
coming bursts — the maximal incoming burst size is two, so two places are created;
(top-right) PN translations of the outgoing bursts — ecc(K2,2,3) = 6 places are created;
(bottom) combined PN — the places corresponds to pairs in {p1, p2} × {q1, . . . , q6}.

that, the places in P in
s and P out

s are removed from the PN, together with
their arcs.

- Finally, if s is the initial state of the BA, all the places in P
(in,out)
s are

initially marked.

Clearly, the resulting PN is strongly bisimilar with the original BA (in fact, its
reachability graph is isomorphic to the FSM expressing the interleaving seman-
tics of BA, which is an even stronger equivalence), and its size is polynomial in
the size of BA, improving thus the exponential translation of [3].

It should be noted that self-loops with non-singleton bursts in BAs may cause
the resulting PN to be unsafe (2-bounded). If this is undesirable, the problem can
be easily avoided by replicating BA states with self-loops before the translation,
as follows. If s is a state with a self-loop, a new state s′ is created that inherits all
the incoming and outgoing arcs of s, except the self-loops. Then each self-loop
at s labelled by a burst B is replaced by two B-labelled arcs, s→ s′ and s′ → s.
This transformation at most doubles the size of the BA.
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9 Conclusions

In this paper, we observed that the ×-construction often used for the modelling
of a choice between concurrent bursts is sub-optimal and causes an exponential
explosion in the size of PNs that can be avoided by better modelling. We showed
equivalence between this modelling problem, and the problem of finding an ECC
of a complete multipartite graph. It provided helpful insights into the former
problem as well as linking it to existing results from graph theory. This enabled
us:

– To show that the exponential number of places created by the ×-construction
can be improved down to polynomial (quadratic) even in the worst case, and
down to logarithmic in the best (non-degraded) case.

– To derive quadratic worst case lower and upper bounds on the number of
places.

– To derive quadratic worst case lower and upper bounds on the number of
arcs in ReqConc case.

– To derive quadratic worst case lower and upper bounds on the number of
arcs in ReqConc(strict) case for the balanced and ‘almost balanced’ cases.

– To derive a quadratic worst case lower bound and a cubic worst case upper
bound on the number of arcs in ReqConc(strict) case, as well as several
upper bounds which in some situation can be better than cubic. There is
still a gap between the quadratic lower and cubic upper bounds, closing
which we leave for future research.

– To obtain a polynomial bisimulation-preserving translation from BAs to
PNs, as an example of applying the proposed construction to improve the
exponential translation in [3].

These results eliminate a source of exponential explosion in PNs when mod-
elling control flows and in translations from various formalisms to PNs. We
believe that these results will have wide applications, as they affect the ‘core’
modelling techniques based on PNs.

In our future work, besides improving the upper bounds as explained above,
we plan to lift the proposed ECC-based construction to the case of more general
control flows, and in our forthcoming paper [7] we present a polynomial PN
translation for arbitrary control flows built from atomic actions using sequencing,
parallel composition, and choice.
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