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Avoiding Exponential Parameter Growth in Fuzzy Systems
Mustafa K. Güven and Kevin M. Passino

Abstract—For standard fuzzy systems where the input mem-
bership functions are defined on a grid on the input space, and
all possible combinations of rules are used, there is an exponen-
tial growth in the number of parameters of the fuzzy system
as the number of input dimensions increases. This “curse of
dimensionality” effect leads to problems with design of fuzzy
controllers (e.g., how to tune all these parameters), training of
fuzzy estimators (e.g., complexity of a gradient algorithm for
training, and problems with “over parameterization” that lead to
poor convergence properties), and with computational complexity
in the implementation for practical problems. In this paper, we
introduce a new fuzzy system whose number of parameters grows
linearly depending upon the number of inputs, even though it is
constructed by using all possible combinations of the membership
functions in defining the rules. We prove that this new fuzzy
system is equivalent to the standard fuzzy system as long as its
parameters are specified in a certain way. Then, we show that
it still holds the Universal Approximator Property by using the
Stone–Weierstrass theorem. Finally, we illustrate the performance
of the new fuzzy system via an application.

Index Terms—Curse of dimensionality, number of parameters,
standard fuzzy systems, Universal Approximation Property.

I. INTRODUCTION

T HE NUMBER of parameters is one of the main concerns
for fuzzy systems, especially when it is desired to increase

the number of inputs and rules, since for the standard fuzzy
system the number of parameters increases exponentially when
the number of inputs or rules are increased, and computational
complexity increases accordingly. For instance, for a fuzzy
system that has five inputs and five membership functions on
each universe of discourse, the number of parameters in it will
be 34 375 when it is assumed that all possible combinations of
the membership functions are used for defining rules.

Different approaches have been proposed to solve the rule ex-
plosion problem. In the earlier works, rule reduction in fuzzy
systems has been attempted via genetic algorithms, neural net-
works, and a variety of clustering techniques [1]–[3], in an ef-
fort to select only those rules that contribute the most to the in-
ference outcome. Another approach is presented in [4]. In this
paper, the authors attempt to eliminate the curse of dimension-
ality by providing a disjunctive form of the conjunctive rule in
fuzzy IF–THEN rules. Another approach to eliminate the rule ex-
plosion problem is to introduce the hierarchical fuzzy system
configuration in [5] and [6]. In this approach, instead of using a
single fuzzy system with a high-dimensional input, a number of
lower-dimensional fuzzy systems are linked in an hierarchical
manner. While these methods are able to significantly reduce
the number of rules, they do not address the exponential growth
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in parameters in fuzzy systems when the number of inputs or
the number of rules are increased.

To avoid this problem, in Section II, we introduce a new fuzzy
system whose number of parameters grows linearly depending
upon the number of inputs. This fuzzy system is constructed by
using all possible combinations of the membership functions
and we prove that this new fuzzy system is in a certain sense
equivalent to the standard fuzzy system. In Section III, we show
that it still holds the Universal Approximator Property by using
the Stone–Weierstrass theorem. In Section IV, we present the
simulation results of a fuzzy estimator for a transformer’s be-
havior during “inrush” by using the fuzzy system.

II. FUZZY SYSTEMS AND THESIZE OF THEIR PARAMETERS

One way to define a fuzzy system is to let

(1)

where is the input, is the output, ,
are the centers of the output membership func-

tions and is the certainty of the premise of theth rule.
Here, in (1) is an -dimensional vector ( is the number of
parameters in (1)) that holds the parameters of the fuzzy system
(i.e., the , , and defined later). Suppose we use singleton
fuzzification, product to represent the premises, and center-av-
erage defuzzification. Furthermore, we will use input member-
ship functions that are Gaussian and of the form

so that

(2)

where ( ) is the center (relative width) of the membership
function of the th rule for th universe of discourse.

When defining a fuzzy system, one can either use some of
the input membership functions or all possible combinations of
the input membership functions to construct the rule base. For
the former case, the number of parameters may not increase
exponentially by increasing the number of inputs or the number
of rules. However, for latter case, the number of parameters
grows exponentially by the growth in the number of inputs or
number of rules.
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For (1), the number of parameters which can be tuned is

(3)

where is the number of inputs, is the number of rules,
of are the , of are the , and of are the ,
where and . Assume that the
th universe of discourse has membership functions, where

, and the rules result from all possible combina-
tions of these membership functions. This is usual case in fuzzy
control applications [7]. In this case the number of rules can be
represented as

so that using (3), the total number becomes

Clearly, for either large or , can be very large and
there is an exponential increase in the number of parameters for
additional inputs leading to the “curse of dimensionality.” Here
we will focus on how to reduce the number of parameters needed
to define a fuzzy system.

First, note that in many practical applications (e.g., most con-
trol applications [7]) wefirst define the membership functions
on the input and the output universes of discourse and then
define the rules based on these membership functions. Define

to be the center of theth input membership function on
the th universe of discourse where ,

. Note that this notation is not to be confused with
the above. In particular, for , there are

centers on theth universe of discourse, but for , there
is a center on theth universe of discourse foreachrule,

. Similarly, we define to be the spread of theth
membership function on theth universe of discourse, where

, . Using these definitions we
introduce a function (fuzzy system)

(4)

where

such that

and

where , and

Here, is the th membership function on theth universe
of discourse. The parameters will be used later to specify
the output membership function centers, which are defined
the same as the output membership function centers in standard
fuzzy systems. Note that with this approach output membership
function centers will be able to be specified after the identifi-
cation process through the as in (6). Obviously, the conse-
quent part of the fuzzyIF–THEN rules cannot be defined before
the identification process, and this might make the use of this
structure limited in the sense of standard fuzzy controller de-
sign.

Next, we will provide conditions under which (1) and (4) are
equivalent.

Theorem 1: Assume that is the number of mem-
bership functions on the th universe of discourse where

and for rules are constructed by
all possible combinations of membership functions on the
universes of discourses. In this case,

if we specify and properly.
Proof: We will first show that if is given, an equiv-

alent can be defined, and second, if is given,
can be defined. Assume that we have

Note that as shown in the equation at the bottom of the next
page. Assume that is the certainty of the premise ofth rule
for , so

and is the center of output membership function of theth
rule. Since we assume that the rules are constructed such that
the rule base contains all possible combinations of the member-
ship functions in the universes of discourse, we can define the
certainty of the premise of the rules as

...
...

...

(5)
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and

...
...

...

(6)

where

So with these definitions becomes

Hence,

To show that given we can define , we simply use
(5) and (6) in a similar manner. This process is actually involves
finding the equivalent polynomial in the form of multiplications
of summations for the one in the summations of multiplications.
Since the standard fuzzy system is in the form of the latter, the
transition from the standard fuzzy system back to the new one
merely involves some algebra and taking into the consideration
the new definitions for the input membership function centers

and spreads .
Note that the number of parameters, introduced by the new

fuzzy system, , is

since the number of each, , and are , even
though is formed from a fuzzy system that uses all possible

combinations of the membership functions as rules. Clearly,
and satisfy

if
if

Also, it is clear that will only grow by with each unit
increase in .

III. M EETING THE UNIVERSAL APPROXIMATION PROPERTY

WITH FEWER PARAMETERS

The question is, however, whether by reducing the number
of parameters we have reduced the representational capability
of to be less than . We will answer this question
by investigating whether has the universal approxima-
tion property usingUniversal Approximation Theorem. One
proof of Universal Approximation Theorem is based on the
Stone–Weierstrass Theorem.

Theorem 2: The fuzzy system satisfies the Stone–Weier-
strass theorem and hence it possesses the universal approxima-
tion property (as does).

Proof: In [8], it is shown that the fuzzy systemsatisfies
the “universal approximation property”; hence it can approxi-
mate any continuous function on a compact set with an arbitrary
degree of accuracy (if we allow for an arbitrary number of pa-
rameters in ). Next, we show that also satisfies the uni-
versal approximation property so we then know that even though

is described with fewer parameters, it has the same basic
representation capabilities.

Let be a compact set, andbe the set of all fuzzy systems
in the form of . We now show that is an algebra, separates
points on , and vanishes at no point of .

Let so that we can write them as

where is the number of inputs, and are the number
of membership functions for each universes of discourse, where
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, , , , and are the parameters
of the new fuzzy system which are defined likeand in (4).

Note that as shown in the equation at the bottom of the page.
Since

and

we have

Next, we show that

Since can be represented in the form of, and
can be represented in the form of,

For ,

Since can be represented in the form of, . Hence,
is an algebra.
We now show that separates points on by constructing a

required fuzzy system . Let , be two arbitrary
points, . We then choose the parameters of as
follows: and where ,
and where , , and

where and , and
where and .

For ,

where . So
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Fig. 1. Fuzzy system output (i predicted), the test data� (i actual) and the approximation error are plotted.

For ,

...

and

Obviously, . Hence, separates points on.
Finally, to show that vanishes at no point of , we simply

observe that any fuzzy system with all has the
property that , . Hence, vanishes at no
point on .

IV. SAMPLE SIMULATION : IDENTIFICATION OF THETRANSIENT

MODEL OF A TRANSFORMER

In this section, an inrush model of a transformer will be
produced by using the new fuzzy system as defined earlier.

Since the new fuzzy system is not linear in parameters, gradient
method will be used for training. The update formulas of the
gradient method for the new fuzzy system can be found easily
by following the procedure for the standard fuzzy system [7]
and therefore the tedious algebra is omitted here.

In this simulation, a 2-input–1-output fuzzy model of the in-
rush behavior of a transformer is produced by using the new
fuzzy system. The inputs are chosen as the current primary and
secondary currents, , and the output is chosen as the
next value of the primary current, . The transient be-
havior of the transformer is represented by a data set, a portion
of which is used for training, which will be called, and the
remaining portion is used for testing, which will be called.
Note that the training and testing data sets contains different data
points and the number of data in is greater than the one in

.
For each input universe of discourse 3 membership functions

are used and the centersand relative widths are defined as

for , where is the training data set, max and min
are maximum and minimum values of, so that the member-
ship functions are distributed uniformly on each universe of dis-
course.
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The simulation results are given in Fig. 1. In this figure, first
the predicted primary current is plotted. Second, the
actual primary current , which is given in the test data
set , is plotted, and last the approximation error, is
plotted. As can be seen, a model for the transient behavior of a
transformer can be produced by the new fuzzy system. It should
be noted that it may be possible to have a better approxima-
tion by using different initial parameters, step sizes or training
method (e.g., Levenberg–Marquardt). Also, noted that the pur-
pose of the given application is to show that introduced fuzzy
system can be trained. The purpose of this example is not to
compare the performance of the two types of fuzzy systems.

V. CONCLUSION

The new fuzzy system defined earlier avoids exponential
growth in parameters and, at the same time, still satisfies the
Universal Approximation Property. The new fuzzy system
in (4) becomes very useful if one would like to increase the
number of inputs or rules; since the growth of the number
of parameters is linear, one may be able to avoid problems
with computational complexity. On the other hand, this new
fuzzy system is not linear in parameters anymore. Therefore,
for some applications, it may not be useful. For instance,
linear least-squares methods cannot be used to train this fuzzy
system. However, a steepest descent gradient method or the
Levenberg–Marquardt method can be used to train it. So, for
systems with a high number of inputs, this fuzzy system can be
very useful. It should also be noted that the new fuzzy system

(4) is not local in the same sense as the standard fuzzy system
(1). When one of the in (4) changes, then the centers of each
membership in the output universe of discourse will change,
which is obvious from (6). This new fuzzy system has been ap-
plied to the modeling of transformers for inrush behavior. In the
process, a gradient method has been used and satisfactory re-
sults have been produced.
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