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AVOIDING LOOK-AHEAD IN THE LANCZOS METHOD

AND PADÉ APPROXIMATION

Abstract. In the non-normal case, it is possible to use various look-ahead
strategies for computing the elements of a family of regular orthogonal poly-
nomials. These strategies consist in jumping over non-existing and singu-
lar orthogonal polynomials by solving triangular linear systems. We show
how to avoid them by using a new method called ALA (Avoiding Look-
Ahead), for which we give three principal implementations. The application
of ALA to Padé approximation, extrapolation methods and Lanczos method
for solving systems of linear equations is discussed.

1. Introduction. A Hankel system comes up implicitly in the Lanczos
method, in Padé approximation and in extrapolation methods. The princi-
pal submatrices of a Hankel matrix are Hankel matrices of linear systems
which are solved by using orthogonal polynomials. It is well known that
these orthogonal polynomials satisfy a three-term recurrence relation. When
some of them are singular, a breakdown (or a so-called true breakdown [8])
problem occurs in this recurrence relation. To avoid such a problem, Draux
[16] has shown how to compute regular orthogonal polynomials by using
look-ahead strategies. A look-ahead strategy consists in jumping over the
non-existing orthogonal polynomials. Draux and Van Ingelandt applied this
technique to Padé approximation in [17] where they give algorithms which
allow moving in the Padé table along a diagonal, a row, a staircase consisting
of two adjacent diagonals and a sawtooth consisting of two adjacent rows.
Gutknecht and Hochbruck used the Levinson–Schur type recurrences with
look-ahead strategies for computing Padé approximants [23, 22]. Brezinski,
Redivo Zaglia and Sadok have applied these look-ahead strategies to the
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Lanczos method [10, 12]. These strategies have also been applied to QMR
by Freund, Gutknecht and Nachtigal [18, 25].

In this paper, we will show how to substitute new intermediate polyno-
mials instead of look-ahead strategies. These intermediate polynomials are
biorthogonal and satisfy a simple three-term recurrence relation. In addi-
tion, they can be considered as an alternative for orthogonal polynomials
which are singular or non-existent.

For a given integer n ∈ Z, we consider the linear functional C(n) defined
on the space C[X] of polynomials by C(n)(xi) = cn+i. By convention, we
set ci = 0 when i < 0. We denote by Hθn

k the following determinant:

Hθn
k =

∣∣∣∣∣∣∣∣∣

cθn(0)+n cθn(0)+n+1 . . . cθn(0)+n+k−1

cθn(1)+n cθn(1)+n+1 . . . cθn(1)+n+k−1

...
...

...
cθn(k−1)+n cθn(k−1)+n+1 . . . cθn(k−1)+n+k−1

∣∣∣∣∣∣∣∣∣
where θn is a permutation of N recursively defined by associating with every
j ∈ N the smallest integer θn(j) satisfying H

θn
j+1 6= 0. So, θn(0) = i0 if i0 is

the smallest integer such that ci0+n 6= 0, θn(1) is the smallest integer such
that Hθn

2 6= 0, and so on.

2. Orthogonality. For a fixed integer n, let {P (n)
i }i be the family of

orthogonal polynomials such that, for all i, P
(n)
i has degree i and

(1) C(n)(xjP
(n)
i (x)) = 0 for j = 0, 1, . . . , i− 1.

For every i and n, if the set of all solutions of (1) is a subspace of dimen-

sion 1, then P
(n)
i is called regular. The explicit expression of each orthogonal

polynomial P
(n)
i is given in [8]:

P
(n)
i (x) =

∣∣∣∣∣∣∣∣∣∣

cn cn+1 . . . cn+i

cn+1 cn+2 . . . cn+i+1

...
...

...
cn+i−1 cn+i . . . cn+2i−1

1 x . . . xi

∣∣∣∣∣∣∣∣∣∣

/d
(n)
i ,

where d
(n)
i is the determinant

∣∣∣∣∣∣∣∣∣∣

cn cn+1 . . . cn+i

cn+1 cn+2 . . . cn+i+1

...
...

...
cn+i−1 cn+i . . . cn+2i−1

an,i0 an,i1 . . . an,ii

∣∣∣∣∣∣∣∣∣∣

.

Each choice of the coefficients {an,ij }j=0,...,i corresponds to a different nor-
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malization of the orthogonal polynomial P
(n)
i . In the sequel, we will examine

three normalizations:

1. In Padé approximation, we choose an,i0 = an,i1 = . . . = an,ii−1 = 0 and

an,ii = 1. Thus P
(n)
i is a monic polynomial of degree i.

2. For the Lanczos method, we set an,i1 = an,i2 = . . . = an,ii = 0 and

an,i0 = 1, which is equivalent to the condition P
(n)
i (0) = 1.

3. In extrapolation methods, we choose an,i0 = an,i1 = . . . = an,ii = 1,

which corresponds to P
(n)
i (1) = 1.

As we can see from the above explicit expression of P
(n)
i , the determinant

d
(n)
i can be zero. This depends on the values assigned to an,i0 , an,i1 , . . . , an,ii ,

that is, on the normalization. When P
(n)
i is singular, d

(n)
i is zero. In this

situation, we say that there is a breakdown. The aim of this work is to
introduce new regular biorthogonal polynomials with some normalization
and to use them in the computation of regular orthogonal polynomials in
order to avoid breakdown problems.

Let {P θn
i }n,i be a family of monic polynomials such that, for all i, P θn

i

has degree i and

(2) C(n)(xθn(j)P θn
i ) = 0, j = 0, 1, . . . , i− 1.

The family {P θn
i }n,i contains all the monic regular orthogonal polynomials

with respect to C(n). The explicit expression of each polynomial P θn
i is

P θn
i (x) =

∣∣∣∣∣∣∣∣∣∣∣

cθn(0)+n cθn(0)+n+1 . . . cθn(0)+n+i

cθn(1)+n cθn(1)+n+1 . . . cθn(1)+n+i

...
...

...
cθn(i−1)+n cθn(i−1)+n+1 . . . cθn(i−1)+n+i

1 x . . . xi

∣∣∣∣∣∣∣∣∣∣∣

/Hθn
i .

This shows that P θn
i is a regular orthogonal polynomial if and only if

θn({0, 1, . . . , i− 1}) = {0, 1, . . . , i− 1}.
In particular, when θn is the identity, we recover the explicit expressions
of adjacent orthogonal polynomials which are studied, in the normal case,
in [5]. When P θn

i is not orthogonal with respect to C(n), it is, in fact, a
biorthogonal polynomial, as defined in [2].

3. Recurrence relations. Assume that there exists a regular orthog-
onal polynomial P θn

k such that

C(n)(xkP θn
k ) = 0.
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From the explicit expression of P θn
k , we get C(n)(xθn(k)P θn

k ) = Hθn
k+1/H

θn
k

6= 0. In the following theorem, we see how to compute the biorthogonal
polynomials P θn

k+1, P
θn
k+2, . . . , P

θn
θn(k)

of the family {P θn
i }i, for a fixed inte-

ger n.

Theorem 3.1. For i ∈ {k, . . . , θn(k) − 1}, we have

(i) P θn
i+1 = xP θn

i + αiP
θn
k with

αi = −C(n)(xθn(k)+1P θn
i )/C(n)(xθn(k)P θn

k ),

(ii) C(n)(xjP θn
i+1) = 0 for j = 0, . . . , θn(k) and j = θn(k) + k − (i+ 1),

(iii) θn(i+ 1) = θn(k) + k − (i+ 1) and

C(n)(xθn(i+1)P θn
i+1) = C(n)(xθn(k)P θn

k ) 6= 0.

P r o o f. The proof is by induction on i from i = k. It consists in proving
that xP θn

i + αiP
θn
k satisfies the orthogonality condition (2) for P θn

i+1.

This theorem shows that P θn
θ(k)+1 is a regular orthogonal polynomial and

that P θn
k divides P θn

i for i = k, k + 1, . . . , θn(k).

Theorem 3.2. Let P θn
k0

be the regular orthogonal polynomial of the high-

est degree preceding P θn
k . Then P θn

θn(k)+1 can be computed from the recurrence

relation

P θn
θn(k)+1 = xP θn

θn(k)
+

θn(k)∑

i=k+1

αiP
θn
i + αkP

θn
k + αk−1P

θn
k0

with

αk−1 = −C(n)(xθn(k)P θn
k )/C(n)(xθn(k0)P θn

k0
) 6= 0,

αk = −(C(n)(xθn(k)+1P θn
θn(k)

) + αk−1C
(n)(xθn(k)P θn

k0
))/C(n)(xθn(k)P θn

k ),

αi = C(n)(xθn(i)P θn
k0

)/C(n)(xθn(k0)P θn
k0

), i = k + 1, . . . , θ(k).

P r o o f. Since P θn
k0

is the regular orthogonal polynomial of the highest

degree preceding P θn
k , we have θn(k0) = k − 1. For fixed n, the set {P θn

i }i
is a basis of C[X], so we can write

(3) P θn
θn(k)+1 = xP θn

θn(k)
+

θn(k)∑

i=0

αiP
θn
i .

Multiplying (3) by xθn(j) and applying C(n) gives the expressions for αi and
shows that (3) is equivalent to

(4) P θn
θn(k)+1 = xP θn

θn(k)
+

θn(k)∑

i=k+1

αiP
θn
i + αkP

θn
k + αk0

P θn
k0
.
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By Theorems 3.1 and 3.2, there exists a polynomialWθn(k)−k+1(x) of de-

gree θn(k)−k+1 such that P θn
θ(k)+1(x) =Wθn(k)−k+1(x)P

θn
k (x)+αk−1P

θn
k0

(x).

It is sufficient to remark that Pk divides P θn
i for i = k, . . . , θn(k). Different

proofs of this property were given by Draux [16], Gragg and Lindquist [19]
and Gutknecht [21]. Notice that our proof is shorter and simpler than that
of Gutknecht [21].

The polynomials P θn
q can be displayed in an array called the table P .

We suppose that this table P contains a square block of order θn(k)− k at
its kth column. This can be illustrated by the scheme

P θn
k P

θn−1

k+1 . . .

P
θn+1

k P θn
k+1 . . .

P
θn+2

k P
θn+1

k+1 . . .

...
...

. . .

where P θn
k is regular. From the preceding results, we obtain the two relations

{
P

θm+1

k = P θm
k − eθmk P

θm+1

θm+1(k−1),

eθmk = C(m)(xkP θm
k )/C(m+1)(xk−1P

θm+1

θm+1(k−1)),

for m = n, . . . , n + θn(k)− k, and
{
P

θm−1

i+1 = xP θm
i − qθm−1

i+1 P
θm−1

θm−1(i)
,

q
θm−1

i+1 = C(m)(xiP θm
i )/C(m−1)(xiP

θm−1

θm−1(i)
),

for i = k, . . . , θn(k), m = n+ k− i. These relations yield some properties of
blocks of the table P :

Theorem 3.3 For every n ∈ Z, if the table P contains a block at its kth
column as described above, then

P
θn+i

k = P θn
k , P

θn−i

k+i = xiP θn
k , i = 0, . . . , θn(k)− k,

with θn−i(k + i) = θn(k) and θn+i(k) = θn(k)− i for i = 0, . . . , θn(k)− k.
This was proved by Draux in [16]. Here, we only made the connection

with the permutation θn, which simplifies the recurrence relations. We also
note that a simple proof of this theorem can be deduced from (5) and (6).

The new biorthogonal polynomials defined above are displayed inside the
blocks of the table P .

Theorem 3.4. For every n ∈ Z, if the table P has a block at its kth
column as described above, then for i=k, . . . , θn(k) and m=0, . . . , θn(k)− i,
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we have

P
θn+m

i = P θn
i , P

θn−m

i+m = xmP θn
i ,

θn−m(i+m) = θn(i), θn+m(i) = θn(i)−m.
P r o o f. We use the properties of the permutation θn given in Theorems

3.3 and 3.1. Indeed, from Theorem 3.1, θn−m(i+m) = θn−m(i+m−1)+1,
and from Theorem 3.3, θn−m(i +m − 1) + 1 = θn−m+1(i +m − 1). Thus,
by applying Theorem 3.1 and then Theorem 3.3, m times, we deduce that
θn−m(i+m) = θn(i).

Theorem 3.3 shows that θn+m(i) = θn+m−1(i) − 1. By applying Theo-
rem 3.3, m times, we get θn+m(i) = θn(i) −m.

These relations between the permutations θj show that P θn
i and xmP θn

i

have the properties of P
θn+m

i and P
θn−m

i+m respectively, so P
θn+m

i = P θn
i and

P
θn−m

i+m = xmP θn
i .

Theorem 3.4 is a generalization of Theorem 3.3.
By using the recurrence relations of Theorems 3.1 and 3.2, we can derive

an algorithm for computing the regular orthogonal polynomials with respect
to the functional C(n). Actually, this algorithm allows one to move along
a diagonal of the table P . It makes use of the intermediate biorthogonal
polynomials for computing the regular orthogonal ones. The procedure is
called ALA (Avoiding Look-Ahead strategy).

3.1. Implementation of ALA. Define a symmetric bilinear form g1 on
C[X] by

g1(ψ,ϕ) = C(ψϕ), ∀ψ,ϕ ∈ C[X].

For simplicity, we write C and θ instead of C(n) and θn since n is fixed.

Definition 3.1. Let D = {p0, p1, . . .} and Q = {q0, q1, . . .} be two sets
of polynomials. If g1(pi, qj) = 0 for i 6= j, then we say that D and Q are
g1-biorthogonal .

We consider two bases {v0, v1, . . .} and {w0, w1, . . .} of C[X] such that,
for every integer i, the polynomials vi and wi are of degree i. We assume
that (C[X], g1) is regular. A subspace L×L′ of C[X]×C[X] is called regular
if the right-orthogonal of L,

L⊥g1 = {z ∈ C[X] | ∀y ∈ L, g1(y, z) = 0},
does not contain any element of L′, and the left-orthogonal of L′,

L′g1⊥ = {y ∈ C[X] | ∀z ∈ L′, g1(y, z) = 0},
is such that L ∩ L′g1⊥ = {0}.

As (C[X], g1) is regular, we can choose two permutations σ and θ of N
such that, for every integer i, the subspace V σ

i ×W θ
i generated by {vσ(0), . . .
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. . . , vσ(i)} × {wθ(0), . . . , wθ(i)} is regular. This choice enables us to build
two g1-biorthogonal bases D = {p0, p1, . . .} and Q = {q0, q1, . . .} of monic
polynomials such that, for every integer i, pi ∈ V σ

i \V σ
i−1 and qi ∈W θ

i \W θ
i−1.

For more details, see [2].

To each pair of bases {v0, v1, . . .} and {w0, w1, . . .}, there corresponds
another pair of bases which are g1-biorthogonal. We are interested in the
choice of {v0, v1, . . .} and {w0, w1, . . .} which yields all the regular orthog-
onal polynomials with respect to the functional C. This means that the
corresponding g1-biorthogonal bases {p0 = P θ

0 , p1 = P θ
1 , . . .} and {q0 =

Qθ
θ(0), q1 = Qθ

θ(1), . . .} satisfy Qθ
i = P θ

i = Pi for every monic regular orthog-
onal polynomial Pi of degree i.

We will introduce three interesting choices which give three different
ways for implementing the ALA method. These choices will be called C1,
C2 and C3.

We now give the recurrence relations connecting the polynomials of
{P θ

0 , P
θ
1 , . . .} and {Qθ

θ(0), Q
θ
θ(1), . . .}, in order to apply them to the Lan-

czos method. This is equivalent to substituting y for the variable x of the
polynomials Qθ

i , in order to have two biorthogonal bases with respect to the
bilinear form g2 defined on C[X]×C[Y ] by g2(x

i, yj) = C(xi+j) for i, j ∈ N.

• C1 is obtained by taking for σ the identity permutation and by choosing
recursively the polynomials of the bases {v0, v1, . . .} and {w0, w1, . . .} with
vj = xP θ

j−1 and wj = xj for j = 1, 2, . . . This choice was already studied in
Section 2 and before this subsection.

• C2 consists in setting

vj = xP θ
j−1, j = 1, 2, . . . ,

wj = xj−kQθ
k, j = k + 1, . . . , θ(k) + 1,

k = 0, θ(0) + 1, θ(θ(0) + 1) + 1, . . .

The degrees of the polynomials vj and wj are equal to their indices. The
definitions of P θ

j and Qθ
j yield the recurrence relations

Qθ
j = xj−kQθ

k, j = k + 1, . . . , θ(k),(7)
{
αj−1 = C(xP θ

j−1Q
θ
θ(k))/C(P θ

kQ
θ
θ(k)),

P θ
j = xP θ

j−1 − αj−1P
θ
k ,

j = k + 1, . . . , θ(k),(8)





αθ(k) = C(xP θ
θ(k)Q

θ
θ(k))/C(P θ

kQ
θ
θ(k)),

βθ(k) = C(P θ
θ(k)Q

θ
k)/C(P θ

θ(k−1)Q
θ
k−1),

P θ
θ(k)+1 = xP θ

θ(k) − αθ(k)P
θ
k − βθ(k)P θ

θ(k−1),

Qθ
θ(k)+1 = xQθ

θ(k) −
θ(k)∑

i=k+1

αθ(i)Q
θ
i − αθ(k)Q

θ
k − βθ(k)Qθ

θ(k−1).

(9)
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For every i, if the polynomials Qθ
i and P θ

i are both orthogonal, then Qθ
i =

P θ
i . Replacing Qθ

i by P θ
i if Qθ

i = P θ
i , these three equations lead to an

implementation of the ALA method where only three vectors need to be
stored.

The coefficients αθ(i) of the relation which gives Qθ
θ(k)+1 can also be

computed by using the polynomials of the set {P ′θ
k−1, P

′θ
k , . . . , P

′θ
θ(k), P

′θ
θ(k)+1}

which is g1-biorthogonal to {xQθ
θ(k), Q

θ
θ(k), Q

θ
θ(k)−1, . . . , Q

θ
k, Q

θ
θ(k−1)} with

P ′θ
k−1 = P θ

k−1. The computation of the polynomials P ′θ
i is via the following

relation which connects them to P θ
i :

(10)

{
λi = C(P θ

i xQ
θ
θ(k))/C(P θ

kQ
θ
θ(k)),

P ′θ
i = P θ

i − λiP θ
k−1,

i = k, k + 1, . . . , θ(k) + 1.

Thanks to these polynomials, the expression for αθ(i) is

αθ(i) = −βθ(k)C(Qθ
θ(k−1)P

′θ
θ(i))/C(Qθ

iP
′θ
θ(i)).

If we only need to compute P θ
j , then we can use the simpler relation

(11)





αj = C(xθ(k)−k+1P θ
j P

θ
k )/C(xθ(k)−kP θ

kP
θ
k ),

βj = C(P θ
j P

θ
k )/C(P θ

θ(k−1)P
θ
k−1),

P θ
j+1 = xP θ

j − αjP
θ
k − βjP θ

θ(k−1),

j = k, k +1, . . . , θ(k),

for k = 0, θ(0) + 1, θ(θ(0) + 1) + 1, . . . The initializations of this recurrence
relation are P θ

0 = 1 and P θ
−1 = 0 with θ(−1) = −1.

• C3 consists in taking

vj = xj−kP θ
k , j = k + 1, k + 2, . . . , nk,

vj+1 = xP θ
j , j = nk, nk + 1, . . . , θ(k),

wj = xj−kQθ
k, j = k + 1, k + 2, . . . , nk,

wj+1 = xQθ
j , j = nk, nk + 1, . . . , θ(k),

for k = 0, θ(0) + 1, θ(θ(0) + 1) + 1, . . . , with nk = ⌊(θ(k) + k + 1)/2⌋. The
degrees of vj and wj are equal to their indices. For a complete study of this
choice, see [2].

For C2, we deduce from (11) the following theorem which generalizes the
classical recurrence relation for regular orthogonal polynomials.

Theorem 3.5. Every regular orthogonal polynomial P θ
θ(k)+1 satisfies a

recurrence relation of the form

P θ
θ(k)+1 = xP θ

θ(k) − αθ(k)P
θ
k − βθ(k)P θ

θ(k−1),

where P θ
k is the regular orthogonal polynomial of the highest degree preceding
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P θ
θ(k)+1. The degrees of P θ

θ(k)+1, P
θ
θ(k), P

θ
k and P θ

θ(k−1) are equal to their
lower indices.

In the following, we are most interested in the application of C2 because
of its particular characteristics which are detailed in [2].

4. Application to the Lanczos method. Let us begin by describing
the Lanczos method following [13, 14].

4.1. Description. We want to find the solution of the linear system
Ax = b, where A ∈ C

n×n is supposed to be non-singular, b ∈ C
n and

x ∈ C
n.

Let x0 and y0 be arbitrary vectors in C
n and define two sequences (xk)k

and (rk)k of vectors by

xk − x0 ∈ Kk(A, r0),(12)

rk = b−Axk ⊥ Kk(A
∗, y0),(13)

where Kk(A, r) = span(r,Ar, . . . , Ak−1r) and A∗ denotes the conjugate
transpose of the matrix A.

The Lanczos method is completely defined by (12) and (13). It con-
sists recursively in projecting the initial residual r0 on the Krylov space
Kk(A,Ar0), orthogonally to Kk(A

∗, y0) with respect to the Hermitian prod-
uct 〈·, ·〉 of Cn. Here 〈·, ·〉 replaces the form g1 introduced before. From (12),
we can write

(14) xk − x0 = −α1r0 − α2Ar0 − . . .− αkA
k−1r0.

Multiplying (14) by A and subtracting b, we obtain

rk = r0 + α1Ar0 + . . . + αkA
kr0.

(13) implies

(15) 〈rk, A∗iy0〉 = 0 for i = 0, . . . , k − 1.

If we consider the polynomial Pk(ξ) = 1 + α1ξ + . . . + αkξ
k, then rk =

Pk(A)r0. Let us now define the linear functional C on C[X] by C(ξi) =
ci = 〈Air0, y0〉, i = 0, 1, . . . , and the functional C(1) by C(1)(ξi) = C(ξi+1),
i = 0, 1, . . . The polynomial Pk satisfies

C(ξiPk(ξ)) = 0 for i = 0, . . . , k − 1, Pk(0) = 1.

So, Pk is a formal orthogonal polynomial with respect to the linear functional
C normalized by the condition Pk(0) = 1.

Let P
(1)
k be the monic polynomial of degree k satisfying

C(1)(ξiP
(1)
k (ξ)) = 0 for i = 0, . . . , k − 1.

(P
(1)
k )k and (Pk)k are called adjacent families [29]. We can easily see that,

for each k ∈N∗, Pk and P
(1)
k exist and are unique if and only if the Hankel
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determinant

H
(1)
k =

∣∣∣∣∣∣∣∣

c1 c2 . . . ck
c2 c3 . . . ck+1

...
...

...
ck ck+1 . . . c2k−1

∣∣∣∣∣∣∣∣

is different from zero. In order to define uniquely the two sequences (P θ
k )k

and (P θ1
k )k with only one permutation θ, (P θ

k )k and (P θ1
k )k will be normal-

ized by P θ
k (0) = 1 and P θ1

k monic of degree k.
Even if P θ

k is not orthogonal, we set rk = P θ
k (A)r0. The polynomial P θ

k

satisfies

C(ξθ(i)P θ
k (ξ)) = 0 for i = 0, . . . , k − 1, P θ

k (0) = 1.

Consequently, (15) becomes

(16) 〈rk, A∗θ(i)y0〉 = 0 for i = 0, . . . , k − 1.

(16) is equivalent to the linear system

(S)





α1cθ(0)+1 + α2cθ(0)+2 + . . . + αkcθ(0)+k = −cθ(0),
α1cθ(1)+1 + α2cθ(1)+2 + . . . + αkcθ(1)+k = −cθ(1),
. . .
α1cθ(k−1)+1 + α2cθ(k−1)+2 + . . . + αkcθ(k−1)+k = −cθ(k−1).

According to the definition of θ, the determinant of (S) is Hθ1
k 6= 0. So, (S)

has a unique solution.
A survey of the various algorithms for implementing the Lanczos method

is given in [14]. Here, we only present the application of ALA to Lan-
czos/Orthodir which is described in [24, 31].

4.2. Lanczos/Orthodir. Several Lanczos/Orthodir type algorithms were
given, for example, in [14]. In particular, we cite the algorithm known as
Biodir [21].

According to C2, we apply ALA to Lanczos/Orthodir. This is also equiv-
alent to applying ALA to Biodir.

In order to compute Pk+1, we use the formula

(17)

{
P θ
i+1 = P θ

i − λiξP θ1
i ,

λi = C(P θ
kQ

θ1
θ(i))/C(ξP θ1

k Qθ1
θ(k)),

i = k, k + 1, . . . , θ(k).

Its proof is by induction from i = k to i = θ(k), it consists in proving that
P θ
i −λiξP θ1

i satisfies the orthogonality condition (2) for P θ
i+1. This formula

requires the knowledge of the polynomials P θ1
i , Qθ1

i . These polynomials are
obtained from (7)–(9) if we substitute C(1) for C and θ1 for θ. Therefore,
to apply ALA to Lanczos/Orthodir according to C2, we use the formulas
(7)–(9) and (17).



Avoiding look-ahead 43

Now, we are able to give an algorithm which allows avoiding the look-
ahead strategy in Biodir. This algorithm consists of three steps:

• initialization,
• determination of the next existing regular orthogonal polynomial,

which is equivalent to determining σ(k) at the iteration k,

• computation of the iterates xk+1, zk+1 and the residual vector rk+1 at
the iteration k.

Set zk = P θ1
k (A)r0 and yk = Qθ1

k (A∗)y0 for k = 0, 1, . . .

Algorithm 1

• Step 1 (Initialization): Choose x0 and y0 arbitrary in C
n, set r0 =

b − Ax0, z0 = r0, z−1 = y−1 = (0, 0, . . . , 0)t, h−1 = 1, θ(−1) = −1 and
k = 0.

• Step 2 (the determination of σ(k)):

1 i = 0

2 ei = 〈yk+i, rk〉
yk+i+1 = A∗yk+i

hk+i = 〈yk+i+1, zk〉
if |hk+i| < tol for some tolerance tol, then

i = i+ 1, go to 2

end (if)

θ(k) = k + i.

• Step 3:
bk = hθ(k)/hk−1

for i = k, . . . , θ(k)

λi = eθ(k)−i/hθ(k)
xi+1 = xi + λizi
ri+1 = ri − λiAzi
βi = 〈yθ(k)+1, Azi〉/hθ(k)
zi+1 = Azi − βizk
yθ(k)+1 ← yθ(k)+1 − βiyθ(i)

end (for)

zθ(k)+1 ← zθ(k)+1 − bkzθ(k−1)

yθ(k)+1 ← yθ(k)+1 − bkyθ(k−1)

k = θ(k) + 1

go to 1

end.
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It is important to notice that, for each iteration of this algorithm, we
have a product of A and A∗ by a vector and three inner products. The
coding of this algorithm needs the storage of 9 + m vectors, where m =
maxk(θ(k)− k + 1) < n.

4.3. Numerical results. First, let us mention that the computations were
performed on a computer working with 16 decimal digits in double precision
and our tests were run using FORTRAN 77.

Let ‖rk‖ be the residual norm obtained, at iteration k, by Algorithm 1.
The algorithm is stopped at the kth iteration if ‖rk‖ < eps, where eps is a
given tolerance.

Example 1. Consider the example of [12]:




0 0 0 . . . 0 −1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 0







1
2
3
...
n




=




−n
1
2
...

n− 1



.

We take n = 1000 and choose y0 = (1, 0, 0, . . . , 0, 0, 1)t , x0 = (0, 0, . . . , 0)t.
For tol = 10−1, 10−2, . . . , 10−16, eps = 10−12, we get

θ(0) = 0, θ(k) = 999 − k for k = 1, . . . , 998, θ(999) = 999.

There is stagnation from k = 1 until iteration k = 998. At the end of this
stagnation, we obtain ‖r999‖ = 1.58 · 104 and ‖r1000‖ = 9.55 · 10−6.

Example 2. We consider a matrix obtained from discretization of the
elliptic partial differential equation

Lu = f on [0, 1] × [0, 1],

where

Lu = −∆u+ s
∂u

∂x
,

with Dirichlet boundary conditions u = 0, using a five-point centered finite
difference scheme on a uniform 20 × 20 grid with mesh size h = 1/21.
This yields a sparse non-symmetric matrix of order n = 400 with 1920
non-zero elements. We choose s = 104. By applying Algorithm 1 to this
matrix with tol = 10−1, 10−2, . . . , 10−16, eps = 10−8, y0 = (0, 0, . . . , 0, 0, 1)t ,
x0 = (0, 0, . . . , 0)t, b = (1, 0, 0, . . . , 0)t, we get
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figure 1, example 2, n=400

As for the first example, there is stagnation at the beginning. Afterwards,
we obtain a good convergence to the exact solution. We also remark that the
convergence curve presents some peaks. It is well known that these peaks
are characteristic of Lanczos type methods.

Example 3. We consider a matrix arising from discretization of the
3-dimensional partial differential equation

Lu = f on [0, 1] × [0, 1] × [0, 1],

where

Lu = −∆u+ x
∂u

∂x
+ y

∂u

∂y
+ z

∂u

∂z
− u,

with Dirichlet boundary conditions u = 0. The operator was discretized
using a seven-point centered finite difference scheme on a uniform 5× 5× 5
grid with mesh size h equal to 1/6. This yields a sparse non-symmetric
matrix of order n = 125, with 725 non-zero elements. By using Algorithm 1
with tol = 10−1, 10−2, . . . , 10−16, eps = 10−14, y0 = (0, 0, . . . , 0, 0, 1)t ,
x0 = (0, 0, . . . , 0)t, b = (1, 0, 0, . . . , 0)t, we obtain the following convergence
curve:
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figure 2, example 3, n=125

For the values of the permutation θ, we get

θ(k) =

{
12− k for k = 0, 1, . . . , 12,
k for k = 13, 14, . . .

At the beginning, we have stagnation from k = 0 until k = 12. After this
stagnation, the residual norm converges quickly to zero. At iteration k = 28,
we obtain ‖r28‖ = 7.52 · 10−15.

Let us indicate that we have compared our estimation of the residual
norm given by Algorithm 1 with the actual one. This comparison shows
that both our estimation and the actual residual norm coincide.

4.4. Application to the non-hermitian Lanczos process. Define the sym-
metric bilinear form g1 by g1(u,w) = wtu for all u,w ∈ C

n. According to
C2, we get the following process.

Process 1. Choose v1, v2 ∈ C
n and set λ1p1 = v1, µ1q1 = v2, p0 = 0,

k = 1 (λ1 and µ1 are chosen such that ‖p1‖ = ‖q1‖ = 1).

Compute

1 i = 0

2 dk = g1(pk, qk+i)
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if |dk| < tol (for some tolerance tol), then
i = i+ 1
µk+iqk+i = A∗qk+i−1 (µk+i is chosen such that ‖qk+i‖ = 1)
go to 2

end (if)
θ(k + j) = k + i− j, j = 0, 1, . . . , i
qθ(k)+1 = A∗qθ(k)
for j = k, k + 1, . . . , θ(k):

αj = g1(Apj , qθ(k))/g1(pk, qθ(k))
pj+1 = Apj − αjpk
βj = g1(qθ(k)+1, pj)/g1(qθ(j), pj)
qθ(k)+1 ← qθ(k)+1 − βjqθ(j)
if j = θ(k), then

α′
j = g1(Apj , qk−1)/g1(pθ(k−1), qk−1)
pj+1 ← pj+1 − α′

jpθ(k−1)

β′
j = g1(qθ(k)+1, pk−1)/g1(qθ(k−1), pk−1)
µθ(k)+1qθ(k)+1 ← qθ(k)+1 − β′

jqθ(k−1)

(µθ(k)+1 is chosen such that ‖qθ(k)+1‖ = 1)
end (if)
λj+1pj+1 ← pj+1 (λj+1 is chosen such that ‖pj+1‖ = 1)

end (for)
k = θ(k) + 1, go to 1
end.

For solving a linear system, we use a process which allows us to triangu-
larize, tridiagonalize or transform the matrix of the system to another one
for which we have to find its inverse, as for example the Hessenberg matrix.
Here, for each iteration k of Process 1, we get the following factorization:

A(pk pk+1 . . . pθ(k)) = (pθ(k−1) pk pk+1 . . . pθ(k) pθ(k)+1)

(
d′tk
H̃ ′

k

)

where d′tk = α′

θ(k)(0, 0, . . . , 0, 1) ∈ C
θ(k)−k+1, and the matrix H̃ ′

k with θ(k)−
k + 2 rows and θ(k)− k + 1 columns is




αk αk+1 . . . αθ(k)

λk+1

λk+2

. . .

λθ(k)+1



.

Let us discuss the stopping criterion for this process. We consider two
Krylov subspaces W2 = Kn(A, v1) = span(v1, Av1, A

2v1 . . .) and W3 =
Kn(A

∗, v2) = span(v2, A
∗v2, A

∗2v2, . . .). There are two cases to consider:
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• The first one corresponds to not having a breakdown at iteration k
if k ≤ min{l, l′} with l = dimW2 and l′ = dimW3. This means that the
subspace (W2 ×W3, g1) is regular.

• The second case is the situation where there is a serious incurable
breakdown. It corresponds to a breakdown occurring at iteration k with
k ≤ min{l, l′} and it means that (W2×W3, g1) is not regular. Consequently,
Process 1 cannot be used and the solution is to make another choice of the
vectors v1 and v2 in C

n.

Remark 4.1. This process needs the storage of m + 5 vectors of Cn,
where m = maxk{θ(k)− k + 1}. m+ 5 is smaller than the number 2m+ 4
of vectors used in look-ahead strategies. In the regular case, the classical
Lanczos process only needs 6 vectors. This number coincides with m + 5,
since in the regular case, θ(k) = k, which implies that m = 1 for all k.

We note that the factorization of Process 1 has also been used by Ziegler
in [32, 33], where he talks about a special look-ahead strategy.

Remark 4.2. We have shown how to apply C2 to the Lanczos method.
We can do the same for the CGM-type (Conjugate Gradient Multiplied)
methods which have been simultaneously introduced by Brezinski [7] and
Gutknecht [20], and which are also known under the name of “product-type
methods”. The CGM class contains CGS (Conjugate Gradient Squared)
due to Sonneveld [27] and Bi-CGSTAB due to Van Der Vorst [28].

5. Application to Padé approximation. Orthogonal polynomials
and their associates implicitly come up in the computation of Padé approx-
imants. Blocks of a non-normal Padé table are due to the non-existence
and singularity of some orthogonal polynomials. In this section, we give
relations between orthogonal, reciprocal, associated and intermediate poly-
nomials introduced in [1], and we show how to apply them to the recursive
computation of Padé approximants.

Let f be a formal power series f(t) = c0 + c1t
1 + c2t

2 + . . . with ci ∈ C

for i ∈ N. We look for a rational fraction

R(t) =
Q(t)

P (t)
=
a0 + a1t+ . . .+ apt

p

b0 + b1t+ . . .+ bqtq

whose power series expansion in ascending powers of t agrees with f as far
as possible, which means that f(t) − R(t) = O(tp+q+1) (t → 0). Such a
rational fraction is called a Padé approximant of f and it is denoted by
[p/q]f (t). Usually these approximants are displayed in a two-dimensional
array called the Padé table. Identical Padé approximants can only occur in
square blocks in the Padé table. If there is no block, we say that the Padé
table is normal. Otherwise, it is called non-normal.
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For every n ∈ Z, define the linear functional C(n) on the space of complex
polynomials by C(n)(xi) = cn+i with the convention that ci = 0 for i < 0.
C(n) is associated with the formal power series

fn(t) = cn + cn+1t+ cn+2t
2 + . . .

5.1. The associated polynomials. For every P θn
q , we consider the associ-

ated polynomial

Qθn
q (t) = C(n)

(
P θn
q (x)− P θn

q (t)

x− t

)

where C(n) acts on x.

Lemma 5.1. If Qθn
k is associated with the polynomial P θn

k of degree k,
then

Qθn
k (t) =

m∑

i=0

tiC(n−i−1)(P θn
k (x))

where C(n−i−1) acts on x and m = n+ k − 1− θn(0). Qθn
k (t) has degree m

if m ≥ 0, otherwise Qθn
k (t) = 0.

P r o o f. Qθn
k (t) is equal to C(n)[(P θn

k (x)−P θn
k (t))/(x− t)]. By using the

equality

1/(x− t) = x−1
∞∑

i=0

(x−1t)i,

we prove that

Qθn
k (t) = C(n)

(
[P θn

k (x)− P θn
k (t)]x−1

n+k−1∑

i=0

(x−1t)i
)
.

Finally, since ci = 0 for i < θ(0), we obtain the result of the lemma.

5.2. The reciprocal orthogonal polynomials. We consider the reciprocal
series g of t−θ(0)f defined by t−θ(0)f(t)g(t) = 1. We set g(t) =

∑∞

i=0 dit
i

and we define a functional D(n) on C[X] by D(n)(xi) = dn+i for i ∈ N. D(n)

is called the reciprocal functional of C(n). By convention, we set di = ci = 0
if i < 0. Let ηn be the permutation associated with the functional D(n); it
is called the reciprocal permutation of θn. We remark that the definition of
D(0) = D implies η(0) = η0(0) = 0. We will find later a relation which gives
us the permutation ηn from θn. The complex numbers di are obtained from
the equations

cθ(0)d0 = 1, cθ(0)dj + cθ(0)+1dj−1 + . . .+ cθ(0)+jd0 = 0 for j = 1, 2, . . .

An orthogonal polynomial with respect to D(n) is called reciprocal . We
denote by {Rηn

i }i the family of all these reciprocal orthogonal polynomials.
They are useful for the recursive computation of numerators of Padé ap-
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proximants. In the following theorem, we study the connection between the
polynomials of the two families {P θn

i }i,n and {Rηn

i }i,n.

Theorem 5.1. If one of the polynomials P
θθ(0)+n+1

k and R
η
−n+1

n+k is regular

and orthogonal , then so is the other. The same holds for P
θθ(0)−n+1

n+k and

R
ηn+1

k . If P
θθ(0)+n+1

k and P
θθ(0)−n+1

n+k are regular and orthogonal , then

S
η
−n+1

n+k = d0P
θθ(0)+n+1

k , Q
θθ(0)−n+1

n+k = cθ(0)R
ηn+1

k , n = 1, 2, . . . ,




cθ(0)R
η
−n+1

n+k = P
θθ(0)+n+1

k

n∑

i=0

cθ(0)+ix
n−i +Q

θθ(0)+n+1

k ,

d0P
θθ(0)−n+1

n+k = R
ηn+1

k

n∑

i=0

dix
n−i + S

ηn+1

k ,

n = 0, 1, . . .

P r o o f. It is sufficient to remark that fθ(0) is the reciprocal series of g

(this means that C(θ(0)) is the reciprocal functional of D) and then use the
results of [5, 16]. When θ(0) = 0, the proof given in [5, 4] of the equalities
of this theorem is long. It consists in transforming the determinants of
the explicit expressions of the orthogonal polynomials. A simple proof is
obtained by using only Lemma 5.1 (see the proof of Theorem 5.2).

From this theorem, it is clear that, for a fixed integer n, R
η
−n+1

n+k , S
η
−n+1

n+k ,

P
θθ(0)+n+1

k and Q
θθ(0)+n+1

k satisfy the same recurrence relations with differ-

ent initializations. The same holds for P
θθ(0)−n+1

n+k , Q
θθ(0)−n+1

n+k , R
ηn+1

k and

S
ηn+1

k . If we set, for every n, k ∈ N, N
ηn+2

k = cθ(0)R
η
−n

k and N
η
−n+1

k =
cθ(0)R

ηn+1

k , then the Padé approximant [p/q]f can be written as [p/q]f =

Ñ
ηp−q+1
p /P̃

θθ(0)+p−q+1
q whenever P

θθ(0)+p−q+1
q is regular (see [5]).

We deduce from the preceding results that whether or not there are
blocks in the Padé table, the numerator of each Padé approximant can
be computed recursively by using the recurrence relations satisfied by the
denominators.

Corollary 5.1. The permutations ηn are connected to θn by the follow-
ing relations:

η−n+1(i) = θθ(0)+n+1(i− n) + n,

θθ(0)−n+1(i) = ηn+1(i− n) + n for i ≥ n, n ≥ 1,

θθ(0)−n+1(i) = η−n+1(i) = n− 1− i for i = 0, 1, . . . , n − 1.

P r o o f. The knowledge of the degrees of all the regular orthogonal
polynomials implies that of ηn and θn, see Theorems 3.1 and 3.2. So, from
the definition of the permutations θn, ηn and by using Theorem 5.1, we get
the assertion.
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The quantities Q
θθ(0)−n+1

n+k and P
θθ(0)+n+1

k

∑n
i=0 cθ(0)+ix

n−i + Q
θθ(0)+n+1

k

intervene in the recursive computation of the numerators of the Padé ap-
proximants. These quantities do not satisfy the equalities of Theorem 5.1

when P
θθ(0)+n+1

k and P
θθ(0)−n+1

n+k are not orthogonal. For this reason, we give
some properties of them below. For every n ∈ Z and k ∈ N, we consider the
monic polynomials R′ηn

k defined by

(18) D(n)(R′ηn

k tηn(j)) + αn,kdηn(j)−ηn(k) = 0, j = 0, . . . , k − 1,

where αn,k is a constant such that the solution R′ηn

k of (18) is monic. The
role of these polynomials is to replace the polynomials Rηn

k in the equalities
of Theorem 5.1. By substituting R′ηn

k for Rηn

k , the results of Theorem 5.1 are

true even if P
θθ(0)+n+1

k and P
θθ(0)−n+1

n+k are not orthogonal. Clearly, the family

{R′ηn

k }n,k is built in such a way that it contains all the regular orthogonal
polynomials with respect to the functional D(n). From the definition of
R′ηn

k , we can easily see that the condition for their existence and unicity
is the same as for the polynomials Rηn

k . Therefore, for every k and n, the
polynomial R′ηn

k exists, is unique and has degree k.

Theorem 5.2. We have

Q
θθ(0)−n+1

n+k = cθ(0)R
′ηn+1

k , S
′η

−n+1

n+k = d0P
θθ(0)+n+1

k , n = 1, 2, . . . ,




cθ(0)R
′η

−n+1

n+k = P
θθ(0)+n+1

k

n∑

i=0

cθ(0)+ix
n−i +Q

θθ(0)+n+1

k ,

d0P
θθ(0)−n+1

n+k = R
′ηn+1

k

n∑

i=0

dix
n−i + S

′ηn+1

k ,

n = 0, 1, . . .

P r o o f. We want to prove Q
θθ(0)−n+1

n+k = cθ(0)R
′ηn+1

k . First assume that
θ(0) = 0. In this case, thanks to Lemma 5.1, we have, for j = 0, 1, . . . , k−1,

D(n+1)[Q
θ
−n+1

n+k (t)tηn+1(j)] = D(n+1)
[ k∑

i=0

ti+ηn+1(j)C(−n−i)(P
θ
−n+1

n+k (x))
]

=

n+k∑

l=0

al

k∑

i=0

di+ηn+1(j)+n+1c−n−i+l

where D(n+1) acts on t, C(−n−i) acts on x and P
θ
−n+1

n+k (x) =
∑n+k

l=0 alx
l.

Since θ(0) is zero, Corollary 5.1 implies θ−n+1(j+n) = ηn+1(j)+n, and we
conclude that

D(n+1)[Q
θ
−n+1

n+k (t)tηn+1(j)] =

n+k∑

l=0

al

l−n∑

i=0

di+θ
−n+1(j+n)+1c−n−i+l
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= −
n+k∑

l=0

al

θ
−n+1(j+n)∑

i=0

dθ
−n+1(j+n)−ic−n+1+l−i

= −
θ
−n+1(j+n)∑

i=0

dθ
−n+1(j+n)−iC

(−n+1)(xiP
θ
−n+1

n+k (x))

= −dθ
−n+1(j+n)−θ

−n+1(k+n)C
(−n+1)(xθ−n+1(k+n)P

θ
−n+1

n+k (x))

= −dηn+1(j)−ηn+1(k)C
(−n+1)(xθ−n+1(k+n)P

θ
−n+1

n+k (x)).

Consequently, we obtain Q
θ
−n+1

n+k = c0R
′ηn+1

k .

If θ(0) 6= 0, then fθ(0) is the reciprocal series of g. So, we can use

the same reasoning as above and conclude that Q
θθ(0)−n+1

n+k = cθ(0)R
′ηn+1

k .

Similarly, we prove that S
′η

−n+1

n+k = d0P
θθ(0)+n+1

k .

The remaining two equalities are deduced from those just proved. In-
deed, from the two preceding equalities, for fixed n, the polynomials R

′η
−n+1

n+k ,

P
θθ(0)+n+1

k and Q
θθ(0)+n+1

k satisfy the same recurrence relations. The same

holds for P
θθ(0)−n+1

n+k , R
′ηn+1

k and S
′ηn+1

k . So, the last two equalities are valid
if they are initially. That is indeed the case since

S
′ηn+1

0 = Q
θθ(0)+n+1

0 = 0, P
θθ(0)+n+1

0 = R
′ηn+1

0 = 1

and

R′η
−n+1

n =

n∑

i=0

dix
n−i, P

θθ(0)−n+1
n =

n∑

i=0

cθ(0)+ix
n−i.

This theorem generalizes the result of Brezinski [4, 5] concerning the
normal case. Brezinski used properties of determinants, which makes the
proof longer.

If we set, for every n, k ∈ N, N
′ηn+2

k = cθ(0)R
′η

−n

k and N
′η

−n+1

k =

cθ(0)R
′ηn+1

k , then we conclude from this theorem that Ñ
′ηp−q+1
p /P̃

θθ(0)+p−q+1
q

is a Padé approximant denoted by [p/q]θf . If [p/q]
θ
f is inside a block, then it

is equal to the Padé approximant which is located either on the west side
or the north side of this block and on the diagonal of [p/q]θf .

We can compute the coefficients of the numerator of a Padé approximant
in two ways:

1. The first one uses the recurrence relations satisfied by the polynomials

P
θθ(0)+p−q+1
q which are located on the same diagonal of the table P , because,

from Theorem 5.2, these recurrence relations can also be applied to the
polynomials N

′ηp−q+1
p .
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For C1, C2 and C3, the computation of the coefficients of the numera-
tor of [p/q]θf requires at most 2p − 1 multiplications and 2p − 1 additions.
This supposes the knowledge of the two non-identical Padé approximants
preceding [p/q]θf and located on the same diagonal.

2. The second way uses the equations

(19)

a0 = c0b0,

a1 = c1b0 + c0b1,

...

ap = cpb0 + cp−1b1 + . . .+ cp−qbq,

which directly give the coefficients ai of the numerator of

[p/q]θf (t) =
a0 + a1t+ . . . + apt

p

b0 + b1t+ . . .+ bqtq

from those of the denominator.

In that case, the algorithmic cost is about (q+1)(q+2)/2+(p−q)(q+1)
multiplications, q(q + 1)/2 + (p − q)q additions if p ≥ q, and (p + 1)(p +
2)/2+(q−p)(p+1) multiplications, p(p+1)/2+(q−p)p additions if p ≤ q.

By comparing the two algorithmic costs, we see that it is better to use
the second method if we want to compute only one approximant. But, when
we need to compute more Padé approximants, the first method is better.

5.3. Numerical results. We use C2 to compute the coefficients of the
denominator P (t) = b0+b1t+. . .+bqt

q and numerator Q(t) = a0+a1t+. . .+
apt

p of the Padé approximant R(t) = [p/q]θf which is arbitrarily chosen. The
resulting algorithm follows a particular diagonal of the Padé table. Given the
degrees p and q and the moments ci, i = 0, 1, . . . , p+ q, this algorithm gives
the coefficients of the numerator and denominator of [p/q]θf . The algorithm

follows the diagonal which contains [p/q]θf .

We mention that, in the following examples, the coefficients of P and Q
are computed from the same recurrence relation with two different initial-
izations.

Example 1. We take the power series expansion

f(t) = 1 + t5 + t9/2 + t13/4 + t17/8 + t21/16 + . . .

of the rational function (1− t4/2+ t5)/(1− t4/2) for t ∈ ]− 4
√
2, 4
√
2[. For the

threshold of the detection of blocks, we set tol = 10−12. According to C2,
the Padé table has several blocks. We obtain

[p/q]θf = [0/0]θf = 1 for p, q ∈ {0, 1, 2, 3, 4},
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[p/q]θf = [4i+ 1/0]θf

= 1 + t5
i−1∑

j=0

t4j/2j for 4i+ 1 ≥ p ≤ 4i+ 4, q ∈ {0, 1, 2, 3}, i ≥ 1,

[p/q]θf = [0/5]θf = 1/(1 − t5) for p ∈ {0, 1, 2, 3}, q ∈ {5, 6, 7, 8},

[p/q]θf = [5/4]θf = (1− t4/2 + t5)/(1− t4/2) for p ≥ 5, q ≥ 4.

The approximants [0/0]θf , [5/0]
θ
f , [0/5]

θ
f and [5/4]θf are at the corners of a

block of order 4.
For a power series which converges to a rational function, as is the case

here, [p/q]θf = f when p and q are respectively greater than (or equal to)
the degrees of the numerator and denominator of this function.

Let us now give, according to C2, the numerators and denominators
which we obtain for two approximants located inside the same block.

[p/q]θf = P/Q [2/6]θf [3/7]θf

C2 P = 1 + 2t P = 1 + 2t+ 4t2

Q = 1 + 2t− t5 − 2t6 Q = 1 + 2t+ 4t2 − t5 − 2t6 − 4t7

We note that the numerator and denominator of [2/6]θf are different from

those of [3/7]θf , even if [2/6]θf = [3/7]θf .

Example 2. Consider the power series studied in [11],

f(t) = 1 + at+ at2 + . . . + atm−1 + tm + atm+1 + atm+2 + . . .

+ at2m−1 + t2m + at2m+1 + . . .

This is the expansion of (1+ at+ at2+ . . .+ atm−1)/(1− tm) for t ∈ ]−1, 1[.
By setting a = 0.001, tol = 10−10, and m = 7, the application of C2 gives
us the following values of the numerator and denominator of [4/4]θf which
is inside a block of order 4.

ai, bi C2

a0 0.1000000000000000D+01

a1 0.9009000000000003D+00

a2 0.8116200000000002D+00

a3 0.7311870000000003D+00

a4 −0.2621775600000001D+01

b0 0.1000000000000000D+01

b1 0.9000000000000002D+00

b2 0.8100000000000001D+00

b3 0.7290000000000001D+00

b4 −0.2624400000000001D+01



Avoiding look-ahead 55

Example 3. Consider the power series f(t) =
∑∞

i=0 cit
i = t3 − t6/2 +

t9/3− . . . which converges to ln(1 + t3) if t ∈ ]−1, 1].
We apply C2 to f to compute the elements of the main diagonal of

the Padé table. The execution of the corresponding algorithm with tol =
10−12, in order to obtain [10/10]θf , meets four blocks and shows that the

approximant [10/10]θf is inside the 4th block which is of order 2. [9/9]θf is

on the north side of this block. For [10/10]θf , we get

ai, bi C2

a3 0.1000000000000000D+01

a6 0.9999999999999951D+00

a9 0.1833333333333311D+00

b0 0.1000000000000000D+01

b3 0.1499999999999995D+01

b6 0.5999999999999954D+00

b9 0.4999999999999934D−01

The other coefficients are zero.
The exact value of ln(2) is 0.6931471805599453 . . . Set now t = 1 and

look for an approximation of the value of ln(2) by using the Padé approxim-
ants [k + 1/k]θf obtained by C2.

k S2k+1 =
∑2k+1
i=0 ci C2

3 0.5000 0.66
6 0.5833 0.6923
9 0.6166 0.693121
12 0.6345 0.6931464
15 0.6456 0.693147158
18 0.6532 0.693147179
21 0.6587 0.693147180540
24 0.6628 0.69314718055935
27 0.6628 0.693147180559927
30 0.6687 0.6931471805599447
32 0.7163 0.6931471805599454

From these results, we remark that the sequence ([k + 1/k]θf )k of Padé ap-
proximants converges faster than (S2k+1)k.

Consider now the power series h(t) =
∑∞

i=0 c
′
it

i = t − t2/2 + t3/3 − . . .
which converges to ln(1+t) if t ∈ ]−1, 1]. We have f(t) = h(t3). This proves
that [p/q]θh(t

3) is the Padé approximant [3p/3q]θf (t) of f for every p, q ∈ N.
The application of C2 to h with t = 1 shows that

[k + 1/k]θh(1) = [3k + 3/3k + 2]θf (1) for k = 1, 2, . . .



56 E. H. Ayachour

For example, we get

[2/1]θh(1) = [6/5]θf (1) = 0.7,

[6/5]θh(1) = [18/17]θf (1) = 0.6931471849621315.

The application of ALA to f meets several blocks, but it is not the case for
h. This allows us to say that ALA gives good results both in the normal
and in the non-normal case.

6. Application to the ε-algorithm. The ε-algorithm due to Wynn
[30] is defined by the relation

(20) ε
(n)
k+1 = ε

(n+1)
k−1 + (ε

(n+1)
k − ε(n)k )−1.

If ε
(n)
0 =

∑n
i=0 cit

i and ε
(n)
−1 = 0, then we get the equality ε

(n)
2k = [n+k/k]f (t),

which characterizes the ε-algorithm and which enables it to accelerate the

convergence of certain sequences. The intermediate quantities ε
(n)
2k+1 have

no special significance. The ε-algorithm suffers from a numerical instability.

Indeed, an important cancellation error due to the difference ε
(n+1)
k − ε(n)k

can affect the algorithm. This numerical instability can be avoided by using
either the following progressive form:

ε
(n+1)
k+1 = ε

(n)
k+1 + (ε

(n)
k+2 − ε

(n+1)
k )−1,

or the particular rules due to Wynn and given by Brezinski in [6]. For more
details about the numerical stability of extrapolation methods, see [9, 15].

In this section, we are concerned with the computation of the iterates

ε
(n)
2j with even indices. These iterates can be computed by the extension
of the bordering method given by Piñar and Ramirez in [26], which is an
extension of the method described in [3]. We can also use the extensions
of the bordering method obtained by the application of the ALA method.
Here, we will use ALA according to C2 for extending the bordering method,

in order to give a simple algorithm for computing the quantities ε
(n)
2j .

For every n ∈ Z and j ∈ N, we set ε
(n)
2j = [n+ j/j]θf (t). This implies

(21) ε
(n−1)
2j =

n−1∑

i=0

cit
i + tn[j − 1/j]θfn (t)

with [j − 1/j]θfn (t) = Q̃θn
j (t)/P̃ θn

j (t), Q̃θn
j (t) = tj−1Qθn

j (t−1), P̃ θn
j (t) =

tjP θn
j (t−1) and

fn(t) = cn + cn+1t+ cn+2t
2 + . . .

The polynomials of the family {P θn
j }j are obtained by C2. For every poly-

nomial P θn
j , we impose the normalization condition P θn

j (1) = 1 instead of
being monic of degree j. This family contains all the regular orthogonal
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polynomials Pj = P θn
j with respect to the functional C(n) which satisfy

Pj(1) = 1.

Consider now the family {P ′
j}j of orthogonal polynomials with respect to

the functional C ′(n) = C(n+1) − C(n), requiring P ′
j to be monic of degree j.

A reasoning similar to the one used at the beginning of Section 4 shows
that P ′

j exists if and only if Pj does. So, by applying C2, we have a unique

permutation θn and so the family {P ′θn
j }j .

For every integer j, we consider Qθn
j and Q′θn

j as the polynomials asso-

ciated respectively with P θn
j and P ′θn

j , with respect to the functional C(n).
This means that

Qθn
j (t) = C(n)

(
P θn
j (t)− P θn

j (x)

t− x

)
,

Q′θn
j (t) = C(n)

(
P ′θn
j (t)− P ′θn

j (x)

t− x

)
,

where C(n) acts on x. According to C2, we will compute the polynomials of
the family {P ′θn

j }j from the following relation which is equivalent to (11):

(22)





αj = C ′(n)(xθn(k)−k+1P ′θn
j P ′θn

k )/C ′(n)(xθn(k)P ′θn
k ),

βj = C ′(n)(xkP ′θn
j )/C ′(n)(xk−1P ′θn

θn(k−1)),

P ′θn
j+1 = xP ′θn

j − αjP
′θn
k − βjP ′θn

θn(k−1),

for j = k, k + 1, . . . , θn(k) and k = 0, θn(0) + 1, θn(θn(0) + 1) + 1, . . . , with
initialization P ′θn

0 = 1, P ′θn
−1 = 0 and θn(−1) = −1.

The polynomials of the family {P θn
j }j are computed from

(23)

{
λj = C(n)(P ′θn

k )/C ′(n)(xθn(k)P ′θn
k ),

P θn
j+1 = P θn

j − λj(x− 1)P ′θn
j ,

j = k, k + 1, . . . , θn(k),

for k = 0, θn(0)+1, θn(θn(0)+1)+1, . . . The proof of this relation is similar to
that of (17). The recurrence relations (22) and (23) yield that the associated
polynomials Q′θn

j and Qθn
j satisfy the two recurrence relationships

(24) Q′θn
j+1(t) = tQ′θn

j (t)− αjQ
′θn
k (t)− βjQ′θn

θn(k−1)(t) + C(n)(P ′θn
j (x))

and

(25) Qθn
j+1(t) = Qθn

j (t)− λj [(t− 1)Q′θn
j (t) + C(n)(P ′θn

j (x))]

for j = k, k + 1, . . . , θn(k) and k = 0, θn(0) + 1, θn(θn(0) + 1) + 1, . . . , with
initialization Q′θn

−1 = 0, Qθn
0 = Q′θn

0 = 0 and θn(−1) = −1. The coefficients
αj , βj , λj and those of the relations (22) and (23) are the same.
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The quantity C(n)(P ′θn
j (x)) can be computed recursively by using (22).

Indeed, a simple application of C(n) to (22) gives us

C(n)(P ′θn
j+1) = C(n)(xP ′θn

j )− αjC
(n)(P ′θn

k )− βjC(n)(P ′θn
θn(k−1)).

Now C(n)(xP ′θn
j ) = C(n)((x− 1)P ′θn

j )+C(n)(P ′θn
j ) is equal to C(n)(P ′θn

j ) if

j 6= θn(0) and to C(n)(P ′θn
j )+ cn+θn(0)+1− cn+θn(0) if j = θn(0). From this,

we can write the following recurrence relation:

(26) aj+1 = aj − αjak − βjaθn(k−1) + δjθn(0)(cn+θn(0)+1 − cn+θn(0))

for the coefficients ai = C(n)(P ′θn
i ), where δij is the Kronecker symbol.

In the expression of ε
(n−1)
2j , there is a division by the quantity P θn

j (1).

But P θn
j (1) = 1, so we avoid such a division and consequently, (21) implies

ε
(n−1)
2j =

∑n−1
i=0 ci +Qθn

j (1).

Remark 6.1. Even if we take the simple case t = 1, the iterates ε
(n−1)
2j

can be computed to obtain an approximation of [n + j − 1/j]θf (t) for any

fixed t not necessarily equal to 1. This is possible by substituting c′i = cit
i

for ci.

By using (25), we get

(27) ε
(n−1)
2j+2 = ε

(n−1)
2j − λjaj

for j = k, k + 1, . . . , θn(k) and k = 0, θn(0) + 1, θn(θn(0) + 1) + 1, . . . To

initialize this recurrence relation, we set ε
(n−1)
0 =

∑n−1
i=0 ci. From (23), the

expression giving the coefficient λj does not depend on the polynomials

P ′θn
j . So, to compute the iterates ε

(n−1)
2j , we need (27), (26) and (22), to

which we add (23), which gives λj . Now, we are ready to state the algorithm

which computes the elements ε
(n−1)
2j of even indices of the ε-array and which

follows an arbitrary diagonal.

For every integer i, we set P ′θn
i (x) =

∑i
j=0 q

(i)
j xj , q

(i)
i = 1.

Algorithm 2

• Step 1 (Initialization): Choose an integer n and set q
(−1)
0 = q

(−1)
−1 = 0,

h−1 = 1, k0 = −1, a−1 = 0, a0 = cn, q
(0)
0 = 1, q

(0)
−1 = 0, k = 0, ε

(n−1)
0 =∑n−1

i=0 ci.

• Step 2 (Determination of θn(k)):

1 i = 0

2 hk+i =
∑k

j=0(cn+k+i+j+1 − cn+k+i+j)q
(k)
j

if |hk+i| < tol for some tolerance tol, then
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i = i+ 1, go to 2

end (if)

θn(k) = k + i

dm−1 =
∑k

j=0(cn+θn(k)+m+j+1−cn+θn(k)+m+j)q
(k)
j , m = 1, . . . , i+1

• Step 3:
bk = ak/hθn(k)
for i = k, . . . , θn(k)

ε
(n−1)
2i+2 = ε

(n−1)
2i − bkai, αi = q

(i)
k−1 + (

∑i
j=k dj−kq

(i)
j )/hθn(k)

βi =
∑i

j=0(cn+j+k+1 − cn+j+k)q
(i)
j /hk−1

q
(i+1)
j = q

(i)
j−1, j = 1, . . . , i+ 1

q
(i+1)
j ← q

(i+1)
j − αiq

(k)
j , j = 0, . . . , k

q
(i+1)
j ← q

(i+1)
j − βiq(k0)

j , j = 0, . . . , k0

ai+1 = ai − αiak − βiak0

end (for)

if k = 0, then aθn(0)+1 = aθn(0)+1 + (cn+θn(0)+1 − cn+θn(0))

end (if)

k0 = k, k = θn(k) + 1

go to 1

end.

Let us mention that Algorithm 2 can also be applied to sequences. If
we want to apply it to a sequence {Ui}i∈N, then we set c0 = U0 and ci =
Ui − Ui−1 for i > 0.

6.1. Numerical results

Example 1. We start by applying Algorithm 2 to the power series

f(t) = 1 + at+ at2 + . . .+ atm−1

+ tm + atm+1 + atm+2 + . . .+ at2m−1 + t2m + at2m+1 + . . .

which has been studied in [11]. This is the expansion of the rational function
(1 + at + at2 + . . . + atm−1)/(1 − tm) for t ∈ ]−1, 1[. In Example 2 of
Subsection 5.3, we were interested in the computation of the coefficients of
the Padé approximants. Now, we want to get an approximation of f(t) for
a fixed t by using Algorithm 2. We set t = 0.9, a = 0.001, tol = 10−16,
and m = 7. The exact value of f(0.9) is 1.924882238575926 . . . By setting
ci = ati and applying Algorithm 2, we obtain
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ε
(0)
2k Algorithm 2

ε
(0)
0 0.1000000000000000D+01

ε
(0)
2 0.1009000000000000D+01

ε
(0)
4 0.1009000000000000D+01

ε
(0)
6 0.1009000000000000D+01

ε
(0)
8 0.1009000000000000D+01

ε
(0)
10 0.1009000000000000D+01

ε
(0)
12 0.9999745519928722D+00

ε
(0)
14 0.1924882238573816D+01

A true breakdown is avoided from iteration k = 2 to k = 5. As the
power series f converges to a rational function and from the properties of
the Padé approximants, we deduce that, in exact arithmetic, the sequence

{ε(0)2k }k gives at the 7th iteration the exact value of f(0.9). This explains

that ε
(0)
14 gives us a good approximation of f(0.9) by using Algorithm 2.

Example 2. Consider the power series f(t) =
∑∞

i=0 4t
5i/(2i+ 1) which

converges to the function S defined by

S(t) =

{
(4/
√
t5) arctanh(

√
t5) for t ∈ ]0, 1[,

(4/
√
−t5) arctan(

√
−t5) for t ∈ ]−1, 0[,

S(0) = 4, S(−1) = π = 3.1415926535897932384626433 . . .

For t = −1, the application of Algorithm 2 to this power series with tol =
10−14 gives the following results:

k S2k−1 ε
(−1)
2k obtained by Algorithm 2

1 4.000 4.000000000000000

6 2.666 3.166666666666667

11 3.466 3.142342342342341

16 2.895 3.141614906832296

21 3.339 3.141593311879925

26 2.976 3.141592673030332

31 3.283 3.141592654163364

36 3.017 3.141592653606703

41 3.252 3.141592653590289

46 3.041 3.141592653589791

From these results, it is obvious that Algorithm 2 accelerates the con-
vergence of the sequence S1 = 4, S11 = 4 − 4/3, S21 = 4 − 4/3 + 4/5, . . .
given by Leibniz to the exact value of π.
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