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The explicit tau-leaping procedure attempts to speed up the stochastic simulation of a chemically
reacting system by approximating the number of firings of each reaction channel during a chosen
time increment 7 as a Poisson random variable. Since the Poisson random variable can have
arbitrarily large sample values, there is always the possibility that this procedure will cause one
or more reaction channels to fire so many times during 7 that the population of some reactant
species will be driven negative. Two recent papers have shown how that unacceptable occurrence
can be avoided by replacing the Poisson random variables with binomial random variables, whose
values are naturally bounded. This paper describes a modified Poisson tau-leaping procedure that
also avoids negative populations, but is easier to implement than the binomial procedure. The
new Poisson procedure also introduces a second control parameter, whose value essentially dials the
procedure from the original Poisson tau-leaping at one extreme to the exact stochastic simulation
algorithm at the other; therefore, the modified Poisson procedure will generally be more

accurate than the original Poisson procedure. © 2005 American Institute of Physics.

[DOLI: 10.1063/1.1992473]

I. INTRODUCTION

We consider a well-stirred system of N chemical species
{8,,...,8y} undergoing M chemical reactions {R;,...,Ry}.
The current state of the system is specified by the vector x
=(xy,...,xy), where x; is the current number of S; molecules
in the system. Each reaction channel R; is characterized by
its propensity function a;(x) and its state-change vector v;
=(V1j, ,VNj); here, aj(x)dt gives the probability that the
system will experience an R; reaction in the next infinitesi-
mal time df, and v;; is the change in the number of §; mol-
ecules caused by one R; reaction.

A mathematically exact procedure for simulating the
evolution of this system is the stochastic simulation algo-
rithm (SSA), which advances the system in time from one
reaction event to the next.' The simplest implementation of
the SSA is the so-called “direct method,” which goes as fol-
lows.

(1) 1In state x at time ¢, evaluate all the propensity func-
tions, and also their sum a(x) EEj’Z]aj(x).

(2) Generate a time increment 7 as a sample of the expo-
nential random variable with mean 1/a(x).

(3) Generate a reaction index j as a sample of the point
probability function a;(x)/ay(x) (j=1,...,M).
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(4) Update t«t+7 and X —Xx+w,.
(5) Record (z,x) if desired. Return to 1, or else stop.

Carrying out steps 2 and 3 here is mathematically
straightforward: We draw two random samples r; and r, of
the unit-interval uniform random variable, and then compute
7=[1/ay(x)]In(1/r;), and j as the smallest positive integer
for which Ej:,zlajr(x) exceeds ryan(x).

Although the SSA is mathematically exact (assuming the
definition of the propensity functions accurately reflects the
dynamics of the system), the task of explicitly simulating
each and every reaction event often makes the SSA too slow
for practical implementation. A faster but approximate sto-
chastic simulation procedure is the explicit Poisson tau-
leaping algorithm.2 The basic idea of this procedure is to
advance the system by a preselected time increment 7 (in
contrast with the generated time increment 7 in the SSA),
which is large enough that many reaction events occur in that
time, but nevertheless small enough that no propensity func-
tion value is likely to change “significantly” as a conse-
quence of those reaction events. The latter restriction is
called the leap condition. One strategy for satisfying it is to
require that the expected change in each propensity function
during a leap be bounded by eay(x), where £ (0<e<<1) is
the error control parameter. One way to estimate the largest
value of 7 that meets this particular requirement is as
follows:* First, compute
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Using this tau-selection procedure, the explicit Poisson tau-
leaping algorithm goes as follows:*?

(1) 1In state x at time ¢, evaluate all the propensity func-
tions, and their sum ay(x) EZ?i]aj(x).

(2) Using Egs. (1)-(3), compute the largest time step 7 that
is not likely to result in any propensity function chang-
ing its value by more than eay(x).

(3) If the 7 value chosen in step 2 is less than some small
multiple (say 10) of 1/ay(x), then reject it and execute
instead a moderate number (say 100) of successive
single-reaction SSA steps before again attempting a tau
leap. Alternatively, if 7 is larger than the chosen small
multiple of 1/ay(x), then accept it and proceed to step
4,

(4) For each j=1,...,M, generate k; as a sample of the
Poisson random Varlable with mean a;(x)7.

(5) Update t<t+7and x—x+3" =ik,

(6) Record (¢,x) if desired. Return to step 1, or else stop.

In this procedure, k; represents the number of times re-
action R; fires in time [7,7+ 7). The Poisson approximation to
k; in step 4 is justified theoretically by the fact that, to the
extent that a J-(x) remains constant over the next =i.e., to the
extent that the leap condition is satisfied—the number of R;
events that will occur in that next 7 will by definition be the
Poisson random variable with mean a; (x)T The caveat in
step 3 is inserted because 1/ay(x) is the mean time step to
the next reaction event in the exact SSA, so if satisfying the
leap condition restricts 7to only a few multiples of that time,
then it would be computationally more efficient (and also
more accurate) to step according to the SSA. And since such
a restriction to a small 7 would likely persist for awhile, it
seems reasonable to continue stepping according to the SSA
for some time before again engaging the somewhat elaborate
tau-selection procedure of Egs. (1)—(3) in the hope of making
a tau leap.

The forgoing tau-leaping procedure has been shown ca-
pable of giving an acceptably accurate simulation that is sub-
stantially faster than the SSA for many “not-too-stiff”’
systems—i.e., systems in which the difference between the
characteristic time scales of the fastest and slowest dynami-
cal modes is not too large. But a potential problem with the
procedure is that, since the Poisson random variable can
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have arbitrarily large sample values, we always run the risk
that the Poisson approximation to k; may result in reaction R;
firing so many times that more molecules of one of its reac-
tants will be consumed in the 7 leap than are actually avail-
able. When that happens, step 5 may produce a negative
population for that reactant species, which is unacceptable.

In Sec. II, we will review how a recently proposed “bi-
nomial” tau-leaping strategy manages to avoid simulating
negative populations. After that we will present a “modified”
Poisson tau-leaping procedure that resolves the negative
population problem rather more easily, and in the process
provides for increased accuracy relative to the original Pois-
son tau-leaping.

Il. BINOMIAL TAU-LEAPING

Recently, Tian and Burrage,4 and independently Chatter-
jee et al.’ proposed a way to avoid negative molecular popu-
lations in explicit tau-leaping. Their idea is to further ap-
proximate k; as a binomial random variable, one that has the
same mean a j(x)r as the original Poisson random variable,
but whose upper limit parameter is deliberately chosen to
keep k; from being so large that more reactant molecules are
consumed than are actually available.

We recall that the binomial random variable with param-

eters p (0<p<1) and L (any positive integer) has mean Lp
and variance Lp(1-p), and its sample values range over all
the integers in [0,L]. For the binomial random variable with
mean a;(x)7 and upper limit L;, the parameter p will thus be
given by p=a;(x)7/L;. The condition p<<1, which is re-
quired for a non-negative binomial probability, then requires
that
L @)
a;(x)
This is an additional restriction on the size of the leap vari-
able =—one that must be imposed in addition to the restric-
tions imposed by the leap condition through the tau-selection
procedure (1)—(3). (The leap condition is just as necessary
for binomial tau-leaping as it is for Poisson tau-leaping.)
Although the mean a;(x) 7 of the resulting binomial estimate
of kj is, by construction, the same as the mean of the Poisson
estimate, the variance of the binomial estimate of k; will be
a;(x)1[1-a;(x)7/L;], which is less than the variance a; (x)T
of the P01sson estimate, as was noted by Chatterjee et al

To use the binomial tau-leaping procedure, we must
choose for each reaction channel R; a value for the parameter

.j» the maximum number of permltted ﬁrmgs of R; during 7.
T1an and Burrage and Chatterjee et al’ use bas1cally the
same recipe for doing this: For the reaction S; — S, they take
L;=x;, for the reaction §;+S,—S3+S; they take L;
=min(x;,x,), for the reaction S;+S;— S, they take L; to be
the greatest integer in x;/2, etc. In general, for any unimo-
lecular or bimolecular reaction R;, L; is assigned the value’

(V,-j<0) )
L;= min i (5)

i=1,... |vlj|

T<

where the square brackets denote the ‘“greatest integer in”
operation. Notice that the minimization in (5) is taken over
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only those species that get decreased in an R; reaction.

But it should be noted in passing that there is some ar-
tificiality in restricting k; to be less than or equal to the value
(5), because that restriction is quite often nor obeyed in the
actual evolution of the system. For example, in the case of
the two reaction channels S| =S,, restricting the total num-
ber of forward reaction events in the next 7to x; and the total
number of backward reaction events to x, ignores the fact
that far more of both reactions might actually occur in time
7, because, in the absence of other reaction channels involv-
ing these two species, these two reactions actually observe
the less restrictive conditions that the number of forward
reactions minus the number of backward reactions must be
=<x,, and the number of backward reactions minus the num-
ber of forward reactions must be <x,. In general, requiring
k;<L; will be overly restrictive if there are other reactions
present that can increase the populations of the consumed R;
reactants.

But there is another side to this coin, which turns out to
be rather more troublesome: Requiring k;<L; will not be
restrictive enough if there are other reactions present that can
decrease the populations of the consumed R; reactants; be-
cause, if there are two or more reaction channels with a
common consumed reactant, we must take care that the total
number of firings of all those reaction channels should not
consume more molecules of the common reactant than are
available. This requirement is clearly recognized by both
Tian and Burrage4 and Chatterjee et al.,” but they address it
in different ways.

Chatterjee et al’ propose to handle the problem by gen-
erating a binomial k; subject to the limit (5) for each of the
consuming reactions in succession, decreasing the common
reactant population on the right side of (5) appropriately after
each k; is chosen. But there is a bias in this strategy that
makes its outcome dependent on the arbitrary order in which
the reactions are considered: Earlier considered reactions
will tend to fire more often than later considered reactions;
indeed, later considered reactions will not be allowed to fire
at all if the earlier considered reactions have used up all the
molecules of the common reactant. Chatterjee et al’ try to
correct this bias by randomly changing the order in which
the reactions are considered from one leap to the next.

Tian and Burrage4 take a more analytical approach. They
prove theorems for constraining the sum of two independent
Poisson random variables that allow them to do the follow-
ing: If two reactions R; and R, both consume one molecule
of a common reactant species, and if there are only L mol-
ecules of that species present, then Tian and Burrage gener-
ate the number of times k; and k, that those two channels fire
subject to the constraint ky+k,<L. Since this is done in a
way that treats the two reaction channels equitably, there is
no bias. Tian and Burrage state that this procedure can be
extended to more than two reactions, although they do not
give detailed instructions for doing that. But there would
appear to be other situations remaining to be addressed. For
instance, if reaction R, in the aforementioned example con-
sumed mwo molecules of the common species (as happens in
a dimerization), then the constraint would read k;+2k, <L,
and such a linear combination constraint is not covered by
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the sum constraint theorems of Tian and Burrage.4 Or, if in
some bimolecular reaction, one of the two reactants is also a
consumed reactant in a second reaction while the other con-
sumed reactant is also a consumed reactant in a third reac-
tion, then the constraints on the numbers of times each of
those three reactions could fire would be complicated even to
write down, much less develop theorems for.

It thus appears that the problem of multiple reactions
with common consumed reactants poses issues for the bino-
mial tau-leaping strategy that have not yet been fully re-
solved, and writing a general binomial tau-leaping program
that reliably handles all situations that could possibly arise
would seem to be a very challenging task. In Sec. III, we
describe a modified Poisson tau-leaping procedure that re-
solves the negativity problem without having to address
these particular issues.

lll. MODIFIED POISSON TAU-LEAPING

If the leap condition is strictly obeyed, in the sense that
we never leap by a 7 that changes the value of any propensity
function by a “significant amount,” we would arguably never
drive any reactant population negative; because, a change
from positive to negative in the value of any propensity func-
tion is arguably always “significant,” even if it happens to be
smaller than the bound eay(x) that is imposed by the tau-
selection procedure (1)-(3). In other words, if a;(x) goes
from a positive value to zero (or less) in a time leap 7, we
cannot fairly regard it as “staying approximately constant”
during 7, so we have no justification for approximating the
number of R; firings during 7 as a Poisson random variable,
much less a binomial random variable. The approximation
simply requires a smaller value of 7 than the one proposed
by Egs. (1)—(3). This remedy is clearly involved in the bino-
mial approach described in Sec. II, where the 7 value sug-
gested by Egs. (1)—(3) occasionally gets reduced by binomial
condition (4).

Therefore, one obvious, if unsophisticated, way to avoid
negative populations in Poisson tau-leaping would be to sim-
ply not accept any 7 that produces a negative species popu-
lation, and to keep trying again using smaller values of 7,
reduced, say, by a factor of 1 until no negative populations
are obtained.

But while one or two applications of this “try again”
procedure during a simulation run should be tolerable, fre-
quent applications are not only annoyingly inefficient, but
also indicative of compromised accuracy. The first step to-
ward developing a better strategy is to recognize that nega-
tive values of a consumed reactant are likely to arise only
when the population of that reactant is already small. For
example, the single reaction S; — S, will rarely be a problem
for Poisson tau-leaping if x; =20; because, in the case x;
=20, for example, no 7-selection procedure that is truly con-
sistent with the leap condition should allow more than eight
firings of that reaction (otherwise the propensity function
would suffer a significant change during the leap of more
than 40%), and the probability that a Poisson random vari-
able with mean 8 will give a sample value that is greater than
20 is only about 107*. But if we scale this situation down by
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a factor of 10, taking x;=2 and using a Poisson random
variable with mean 0.8, the probability of getting a sample
value greater than x; increases by a factor of about 500.

It therefore seems prudent to monitor the populations of
the consumed reactants for each reaction channel during a
Poisson tau-leaping simulation, and to flag any reaction
channel as being “critical” if it is currently in danger of ex-
hausting any of its reactants. Taking a cue from the binomial
strategy described in Sec. II, we propose to call R; a critical
reaction if L;, as computed from formula (5), is found to be
less than or equal to some critical value n.. The value as-
signed to n, is discretionary, but typically it might be some-
thing between 2 and 20. Of course, since the species popu-
lations change as the system evolves in time, the roster of
critical reactions will have to be regularly updated as the
simulation proceeds. But note that any reaction whose pro-
pensity function happens to be zero should not be placed on
the critical reactions list; because, since such a reaction
would have zero probability of firing, it would be incapable
of driving any species population negative.

The following modified Poisson tau-leaping procedure
incorporates the forgoing strategy in a way that ensures that
no more than one firing of a critical reaction can occur in a
single 7 leap. That makes it impossible for any critical reac-
tion to produce a negative species population count. The the-
oretical justification for each step in this modified tau-
leaping procedure will be explained in detail in Sec. IV.

(1) In state x at time 7, evaluate all the propensity functions
and their sum a(x) EEinlaj(x).

(2) Identify the currently critical reactions, namely, those
reaction channels R; for which a;(x)>0 and L;<n,,
where L; is as defined in Eq. (5).

(3) Using a modified version of Egs. (1)—(3), compute the
largest time step 7' that is not likely to result in any
propensity function changing its value by more than
eay(x). The modification here is that the index j’ in
Eqgs. (1) and (2) should now run over only the noncriti-
cal reactions. If there are no noncritical reactions (i.e.,
if all the reactions are critical), then ignore Egs. (1)—(3)
and put 7' =00,

(4) If the 7" value chosen in step 2 is less than some small
multiple (say 10) of 1/ay(x), then reject it and execute
instead a moderate number (say 100) of successive
single-reaction SSA steps before again attempting a tau
leap. Alternatively, if 7’ is larger than the chosen small
multiple of 1/ay(x), then accept it and proceed to step
5.

(5) Compute the sum ag(x) of the propensity functions of
the critical reactions. Generate 7' as a sample of the
exponential random variable with mean 1/aj(x).

(6a) If 7/ <7": Take 7=7'. For all the critical reactions R s
set k j=0. For all the noncritical reactions R > generate k ;
as a sample of the Poisson random variable with mean
a;(x)7.

(6b) If 7"<7': Take 7=7". Generate j. as a sample of the
integer random variable with point probabilities
a;(x)/ay(x), where j runs over the index values of the
critical reactions only. Set kjczl, and for all the other
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critical reactions set k;=0. For all the noncritical reac-
tions R;, generate k; as a sample of the Poisson random
variable with mean a;(x) 7.

(7) Update ¢+ t+7 and x<—x+2j"ilkjvj.

(8) If any component of x is now negative, undo step 7,
replace 7"« 7'/2, and return to step 6.

(9) Record (z,x) if desired. Return to step 1, or else stop.

IV. RATIONALE FOR THE MODIFIED POISSON
TAU-LEAPING PROCEDURE

Step 2 in the modified Poisson tau-leaping algorithm de-
termines which reactions are currently critical. This step has
been interposed between the first two steps of the original
Poisson tau-leaping algorithm. But two changes have been
introduced in step 3: First, the tau value produced by the
selection procedure (1)—(3) has been labeled 7 instead of 7.
Second, Egs. (1) and (2) have been modified, in a sense
simplified, in that the index j' now runs over only the non-
critical reactions. [But the index j in Egs. (1)—(3) still runs
over all the reactions. ]

As regards the first of these two changes, 7’ is now only
a candidate for the actual tau leap. Step 5 will produce a
second candidate 7, and step 6 will then choose as the actual
time leap 7the smaller of 7" and 7”. We will explain in detail
why this is done momentarily.

The justification for the change in the range of the index
J' in Egs. (1) and (2) is this: Since there will be no more than
one firing among all the critical reactions, we need be con-
cerned only with the propensity function changes that are
caused by potentially multiple firings of the noncritical reac-
tions. An examination of the derivation of Egs. (1)-(3) in
Ref. 3 will reveal that the index j in those equations specifies
the reaction whose propensity function change is being esti-
mated, while the index j' specifies the reaction whose firings
are causing those changes. Since we are concerned here only
with the changes caused by the noncritical reactions, then j’
can now be restricted to the noncritical reactions. But the
index j still needs to runs over all the reactions since, for
reasons that will be explained momentarily, we must ensure
that the propensity functions of the critical reactions will not
be substantially changed during a leap by the firings of the
noncritical reactions.

Step 4 is exactly the same as the third step in the ordi-
nary Poisson tau-leaping. It essentially abandons tau leaping
in favor of the exact SSA whenever the tau-selection proce-
dure (1)—(3) produces a value on the order of the expected
time to the next reaction.

To understand the logic behind steps 5 and 6, first note
that if the noncritical reactions were not firing, then the pro-
cedure specified in step 5 to generate 7' would make it the
time to the next firing of a critical reaction (cf. step 2 of the
SSA in Sec. I); likewise, the procedure used in step 6b to
generate j,. would make it the index of the next-firing critical
reaction (cf. step 3 of the SSA). But if firings of the noncriti-
cal reactions induce changes in the values of the propensity
functions of the critical reactions, this SSA logic is no longer
exact. That is why we must let j in Egs. (1)—(3) run over the
critical reactions as well as the noncritical reactions. For
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then, the 7’-selection procedure in step 3 should ensure that
the changes in the propensity functions of the critical reac-
tions caused by firings of the noncritical reactions during the
leap will not be “significant.” Then, to a first approximation,
those changes can be ignored. And then we will have a logi-
cal basis for regarding 7’ and j, as reasonably good approxi-
mations to the time to and the index of the next-firing critical
reaction.

In steps 6a and 6b, the two alternatives 7" <7" and 7”
<7’ are considered separately. If 7/ <<7”, then no critical
reaction will fire during [7,2+ 7], since the earliest critical
reaction fires at the later time ¢+ 7”; therefore, a leap by 7
=7 proceeds according to the recipe described in step 6a.
Alternatively, if 7/< 7', then a leap by 7" would be allowed
by the leap condition (since the leap condition actually al-
lows a leap by the larger amount 7’'), and that leap would
carry us to the occurrence of the next critical reaction, R js
therefore, a leap by 7=7" proceeds according to the recipe
described in step 6b.

Notice that in no case can more than one critical reaction
occur in a leap, and whatever critical reaction channel does
fire (once) will necessarily have a positive propensity func-
tion. Thus, it will be impossible under this procedure for the
firing of a critical reaction to produce a negative species
population. Of course, multiple firings of the noncritical re-
actions could still produce negative populations. But that be-
comes less and less probable as n, is assigned larger and
larger values. Step 8 is introduced to take care of this usually
improbable eventuality. Arguably, step 8 should also have
appeared in the original tau-leaping procedure (in Sec. I)
between its last two steps. Steps 7 and 9 of the modified
Poisson tau-leaping algorithm are exactly those last two
steps of the original Poisson tau-leaping algorithm.

V. TUNING THE PARAMETER n,

If the value of the parameter n, were taken to be zero,
then no reaction channels would ever be identified as “criti-
cal” in step 2. In that case, the modified Poisson tau-leaping
procedure would reduce to the original Poisson tau-leaping
procedure.

At the other extreme, if the value of n. were taken so
large that every reaction channel was always deemed critical,
then the computation of 7’ via Egs. (1)—(3) in step 3 would
never be performed (7 would always be assigned the value
), and step 6b would always be selected. But no Poisson
random numbers would have to be generated in step 6b,
since there would be no noncritical reactions. The modified
Poisson tau-leaping procedure would then reduce to the ex-
act SSA. Of course, the simulation would then be very slow;
therefore, we should always try to take n,. “as small as pos-
sible.” A foo small value for n, would be signaled by the
need to use the try-again procedure of step 8 more often than
we would like.

These considerations show that, by adjusting the value
of the parameter n., we can cause the modified Poisson tau-
leaping procedure to perform anywhere between the original
Poisson tau-leaping procedure (n.=0) and the exact SSA
(n.=). This should give us added flexibility in finding a

J. Chem. Phys. 123, 054104 (2005)

TABLE I. Reaction channels and rates for the LacZ/LacY model of Kierzek
(see Ref. 6).

Reaction channel Reaction rate

R, PLac+RNAP— PLacRNAP 0.17

R, PLacRNAP — PLac+RNAP 10

R; PLacRNAP — TrLacZ1 1

Ry TrLacZ1 — RbsLacZ+PLac+TrLacZ2 1

Rs TrLacZ2 — TrLacY1 0.015
R¢ TrLacY1— RbsLacY +TrLacY2 1

R, TrLacY2 —RNAP 0.36

Ry Ribosome+RbsLacZ — RbsRibosomeLacZ 0.17
Ry Ribosome+RbsLacY — RbsRibosomeLacY 0.17
Rig RbsRibosomeLacZ — Ribosome+RbsLacZ 0.45
Ry RbsRibosomeLacY — Ribosome+RbsLacY 0.45
Ry, RbsRibosomeLacZ — TrRbsLacZ+RbsLacZ 0.4

Rz RbsRibosomeLacY — TrRbsLacY +RbsLacY 0.4

R4 TrRbsLacZ — LacZ 0.015
Ris TrRbsLacY — LacY 0.036
Rie LacZ— dgrLacZ 6.42X 107
Ry, LacY —dgrLacY 6.42x 107
Rig RbsLacZ — dgrRbsLacZ 0.3

Ryo RbsLacY — dgrRbsLacY 0.3

Ry LacZ+lactose — LacZlactose 9.52X 107
Ry, LacZlactose — product+LacZ 431

Ry, LacY — lactose+LacY 14

satisfactory compromise between simulation speed and
simulation accuracy. Experience thus far suggests that a
value for n, somewhere between 5 and 15 will usually be
optimal. But it would appear that, so long as n, is large
enough that step 6b is sometimes selected, the modified Pois-
son tau-leaping procedure should be somewhat more accu-
rate than the original Poisson tau-leaping procedure.

VI. NUMERICAL TESTS

To test our modified Poisson tau-leaping procedure, we
have applied it, along with the original Poisson tau-leaping
procedure, the binomial tau-leaping procedure, and the exact
SSA, to the LacZ/LacY reaction model of Kierzek.® This
model was used by Tian and Burrage4 to test their binomial
tau-leaping procedure because they found that simulating
this model using ordinary Poisson tau-leaping regularly pro-
duced negative populations. The LacZ/LacY model has 19
species and 22 reactions. We simply list the reactions in
Table 1 and refer to Kierzek® for an explanation of the un-
derlying biology, and to Tian and Burrage4 for a broader
discussion of the model.

The results of our comparison runs are shown in Table
II. In evaluating these results, it should be kept in mind that
the exact SSA run required 3938 s of CPU time, and simu-
lated 1.66 10° individual reaction events. For error toler-
ance £=0.03, the original Poisson tau-leaping simulation
took 5.15% 103 leaps; however, over 10* of those leaps pro-
duced a negative species population. Whenever a negative
species population was encountered, the precipitating leap
was immediately undone and repeated with 7 decreased by a
factor of % In every case this was sufficient to resolve the
negative population problem. But the presence of so many
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TABLE II. CPU time and total number of leaps taken for one simulation run of the LacZ/LacY model over a
common time interval from a common initial condition, using three different tau-leaping methods and two
different values of the error control parameter €. Also shown for the original Poisson tau-leaping run is the
number of times during the run that the selected value of 7 had to be rejected because it produced a negative
population; such leaps were undone and repeated with 7reduced by a factor of % The corresponding exact SSA
run required 3938 s of CPU time, and took 1.66 X 10° steps (individual reactions).

Original Poisson Binomial Mod. Poisson (n,=10)

P Time (s) Leaps Rejects Time (s) Leaps Time (s) Leaps
0.03 57 5.15%X 103 10 493 89 7.75 X 10° 72 6.31%10°
0.05 36 320X 10° 21968 85 7.73 X 10° 47 413X 10°

obvious errors in leaping suggests that less obvious errors are
probably slipping through, and hence that the simulation is
not being done as accurately as we might wish. Increasing &
to 0.05 reduced the number of leaps in the original Poisson
tau-leaping by 38%, but more than doubled the number of
rejections due to negative populations.

No 7 rejections were encountered in the binomial tau-
leaping runs or the modified Poisson tau-leaping runs. For
£=0.03 the binomial run took 50% more leaps than the origi-
nal Poisson run, demonstrating that avoiding negative popu-
lations generally requires taking smaller leaps. But surpris-
ingly, increasing & to 0.05 did not reduce the number of
binomial leaps very much; we shall explain the reason for
this shortly.

All of the modified Poisson tau-leaping runs used n,
=10, so that a reaction channel was deemed “critical” when-
ever it was within ten-firings of exhausting any of its reac-
tants. The modified Poisson procedure took 23% more leaps
than the original Poisson procedure for £=0.03, and 29%
more leaps for £=0.05, but fewer leaps in both cases than the
binomial procedure. Of course, these results could be
changed either way by suitably changing n., since taking
n,=0 would turn the modified Poisson procedure into the
original Poisson procedure, and taking n.=% would turn it
into the SSA.

We investigated the relative accuracies of the three tau-
leaping methods for the LacZ/LacY model by running en-
sembles of 10 000 runs using each method (with £=0.03)
over a short time interval, and then comparing the final popu-
lation distributions of the 19 species with those obtained in a
like ensemble of SSA runs. For most species, both the bino-
mial and the modified Poisson procedures gave noticeably
more accurate distributions than the original Poisson proce-
dure. But there was no clear winner in accuracy between the
binomial and modified Poisson procedures, since for some
species the binomial results were slightly more accurate
while for other species the modified Poisson results were
slightly more accurate.

To gain more insight into how the individual tau-leaping
procedures actually functioned, we repeated the three long
£=0.03 tau-leaping runs of Table II and plotted for each the
7 values that were used on every thousandth leap over a
representative time interval. Figure 1 shows the results for
the original Poisson tau-leaping run. The open squares in
this plot identify the 7 values that were originally twice as
large, but got reduced to avoid negative populations. As an

aside, we note that further testing revealed that practically all
of the 7 values lying on the up-sloping limiting line in Fig. 1
were determined by the second (o) argument on the right-
hand side of Eq. (3), while the 7 values (at least those rep-
resented by solid dots) below that line were determined by
the first (u;) argument on the right-hand side of Eq. (3).

Figure 2 shows the 7 values used on every thousandth
leap of the binomial tau-leaping run. The limiting plateau
that kicks in shortly after time =600 was found to arise from
the binomial condition (4) as it applies to reaction R,: The
reaction rate for R,; is 431, so if there are n LacZlactose
molecules, the right-hand side of condition (4) evaluates to
n/(431n) =0.0023, which is precisely the level of the pla-
teau. Increasing the error tolerance & from 0.03 to 0.05 has
no effect on this plateau value, and that explains why there is
so little difference between the run times of the binomial
procedure for those two values of €.

Figure 3 shows the 7 values used on every thousandth
leap of the modified Poisson tau-leaping run. In this plot, a
solid dot indicates that the leap contained no firings of a
critical reaction (step 6a of the algorithm), while an open
circle indicates that the leap contained one firing of a critical
reaction (step 6b of the algorithm). The appearance of more
open-circled low 7 values than occurred in the original Pois-
son run in Fig. 1 and the binomial run in Fig. 2 shows the
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FIG. 1. Showing, for a simulation of the LacZ/LacY reactions in Table I
using the original Poisson tau-leaping method with €=0.03, the tau values
that were used every thousandth leap. The open squares indicate the tau
values that had been reduced by a factor of % from the values that had first
been proposed by the tau-selection procedure (1)—(3), in order to avoid
negative populations.

Downloaded 04 Nov 2005 to 129.215.32.81. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



054104-7 Avoiding negative populations in tau-leaping

0.012
0.010 1
0.008

50-006 7

ta

0.004 7

o.ooz-/(". : tote r
e 2 L .

0.000 T T T T — T T
1800

2000

FIG. 2. Showing, for a simulation of the LacZ/LacY reactions using the
binomial tau-leaping method with £=0.03, the tau values that were used
every thousandth leap.

modified Poisson procedure “being careful” not to leap over
more than one firing of a critical reaction. But the appearance
of points (and open circles) above the 0.0023 limit of Fig. 2
shows that not leaping over more than one firing of a critical
reaction can often be done using a 7 value that is actually
larger than what would be allowed by the binomial condition
(4). This illustrates the point made in the paragraph follow-
ing Eq. (5), that the binomial condition (4) can be overly
restrictive when the number of molecules of a species that
gets consumed in one reaction can be increased by some
other reaction. In this case, LacZlactose gets consumed by
the limiting reaction R,;, but it also gets produced by reac-
tion R,

Finally, we made comparison simulations of the simple
model system

o] (%)

Sy S (6)

with ¢;=10 and ¢,=0.1, and initial populations x;(0)=9,
x,(0)=2 X 10%, and x3(0)=0. More specifically, we made
four sets of 10° simulation runs from time O to time 0.1,

S5,
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S 0.006

tal

0.004
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FIG. 3. Showing, for a simulation of the LacZ/LacY reactions using the
modified Poisson tau-leaping method with £=0.03 and n,=10, the tau values
that were used every thousandth leap. A solid point indicates that the leap
occurred without the firing of any critical reaction (step 6a), while an open
circle indicates that the leap occurred with one critical reaction firing once
(step 6b).
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TABLE III. Total CPU time, average number of steps per run, and average
number of step rejections per run, for sets of 10° simulations from time 0 to
time 0.1 of the model (6) using the SSA, original Poisson tau-leaping, bi-
nomial tau-leaping, and modified Poisson tau-leaping.

Original Modified
SSA Poisson Binomial Poisson
Total CPU time (s) 353 4.5 4.1 10.2
Avg. steps per run 204.7 2.0 2.0 6.7
Avg. rejects per run 0 0.13 0 0

using the SSA, the original Poisson tau-leaping method, the
binomial tau-leaping method, and the modified Poisson tau-
leaping method. All three tau-leaping simulations had &
=0.03, and the modified Poisson run had additionally n,
=10.

Table IIT shows for each simulation set the CPU time for
all 10° runs, the average number of steps per run, and the
average number of step rejections per run. (A “step” is one
reaction for the SSA, and one leap for the three tau-leaping
procedures.) The histogram distributions for x,(0.1) and
x3(0.1) were found to be practically indistinguishable among
the four simulation sets, but as Fig. 4 shows, marked differ-
ences were found in the final-state distributions for species
S,: The original Poisson and binomial runs produced x;(0.1)
distributions that differ noticeably from that of the SSA run,
whereas the modified Poisson runs gave a distribution for
x1(0.1) that is practically indistinguishable from that of the
SSA runs. The modified Poisson runs required on average
over twice as much CPU time, and over three times as many
steps per run, as the other two tau-leaping runs. But still, the
average CPU time for the modified Poisson method was less
than one-third of that for the SSA, and the average number
of steps per run for the modified Poisson method was less
than 4% of that for the SSA.

The increased accuracy of the modified Poisson tau-
leaping method over the other two tau-leaping methods for
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FIG. 4. Showing, for four sets of 10° simulation runs of reactions (6) from
the initial state (x;,x,,x3)=(9,20000,0) to time 0.1, using the exact SSA
and the three tau-leaping methods, histograms of the final distributions of
the S, population. The three tau-leaping methods all used £=0.03, and the
modified Poisson tau-leaping method also used n.=10. (The final-state dis-
tributions of the S, and S; populations for the four simulation methods were
practically indistinguishable.)
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this simple example is due to the fact that the number of $;
molecules was always less than n., so reaction R; was al-
ways treated as a critical reaction. The lesson here is that, by
taking care not to leap over more than one R, reaction in this
simple model, we will get results that are practically as ac-
curate as the SSA but in less time. Of course, we might not
always need that level of accuracy, but the modified Poisson
method gives us the option of obtaining it, simply by choos-
ing the value of the parameter n,.

VIl. CONCLUSIONS

We have shown that the modified Poisson tau-leaping
procedure described in Secs. III and IV avoids the negative
population problems of original Poisson tau-leaping, and can
be made to perform anywhere “between” the original tau-
leaping procedure and the exact SSA simply by tuning the
parameter n,. between 0 and c. Therefore, modified Poisson
tau-leaping appears to represent a clear improvement over
the original Poisson tau-leaping.

As compared to the recently proposed binomial tau-
leaping procedure“’5 for avoiding negative populations, the
modified Poisson procedure seems to offer several advan-
tages. First, although both procedures make use of the rather
arbitrary values L; in Eq. (5), those L; values do not get
“quantitatively propagated” in the modified Poisson proce-
dure as they do in the binomial procedure. The only purpose
served by the L; values in the modified Poisson procedure is
to decide which reaction channels should be put on the criti-
cal reaction list. We need not even compute L; for any reac-
tion R; that we are confident will never be a critical reaction.

Second, the modified Poisson procedure never has to
worry about two or more reactions with a common con-
sumed reactant “colluding” to drive the population of that
common reactant negative. (This assumes that all potentially
colluding reactions will be on the critical list, but that should
always be so.) This follows from the fact that in a modified
Poisson tau leap, there can never be more than one firing
among all the critical reactions. In contrast, binomial tau-
leaping in principle allows any reaction to fire enough times
in a leap that its propensity function could actually be
brought to zero. But whenever multiple firings of a reaction

J. Chem. Phys. 123, 054104 (2005)

channel bring its propensity function to zero, there is always
a possibility that the leap condition will have been “violated
in spirit,” since such a change in the value of a propensity
function is arguably always “significant” regardless of what
Eqgs. (1)—(3) might suggest. Since violations of the leap con-
dition generally imply quantitative inaccuracies in the leap,
then even though a binomial tau leap will never lead to nega-
tive populations, it may sometimes be accompanied by an
unanticipated degradation in accuracy.

In most practical cases, such as the LacZ/LLacY model
considered in Sec. VI, we expect that the modified Poisson
and binomial procedures will have comparable accuracies for
comparable run times. But the modified Poisson procedure
will be much easier to program than the binomial procedure
if the latter is required to take proper account of all possible
“collusions” among reaction channels with common con-
sumed reactants. Thus, we believe that its simplicity, reliabil-
ity, and tunable accuracy give the modified Poisson tau leap-
ing a practical edge over binomial tau-leaping.
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