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Abstract: Museum records have great potential to provide valuable insights into the vulnerability, historic
distribution, and conservation of species, especially when coupled with species-distribution models used to pre-
dict species’ ranges. Yet, the increasing dependence on species-distribution models in identifying conservation
priorities calls for a more critical evaluation of model robustness. We used 11 bird species of conservation
concern in Brazil’s highly fragmented Atlantic Forest and data on environmental conditions in the region to
predict species distributions. These predictions were repeated for five different model types for each of the 11
bird species. We then combined these species distributions for each model separately and applied a reserve-
selection algorithm to identify priority sites. We compared the potential outcomes from the reserve selection
among the models. Although similarity in identification of conservation reserve networks occurred among
models, models differed markedly in geographic scope and flexibility of reserve networks. It is essential for
planners to evaluate the conservation implications of false-positive and false-negative errors for their specific
management scenario before beginning the modeling process. Reserve networks selected by models that mini-
mized false-positive errors provided a better match with priority areas identified by specialists. Thus, we urge
caution in the use of models that overestimate species’ occurrences because they may misdirect conservation
action. Our approach further demonstrates the great potential value of museum records to biodiversity studies
and the utility of species-distribution models to conservation decision-making. Our results also demonstrate,
however, that these models must be applied critically and cautiously.

Evitando Dificultades Resultantes del Uso de Modelos de Distribución de Especies en Planeación de Conservación

Resumen: Los registros de museos tienen un gran valor potencial al proporcionar entendimiento sobre la
vulnerabilidad, distribución histórica y conservación de especies, especialmente cuando se combinan con
modelos de distribución de especies utilizados para predecir los rangos de distribución de las especies. No
obstante, la mayor dependencia sobre los modelos de distribución de especies para la identificación de pri-
oridades de conservación requiere una evaluación cŕıtica de la robustez del modelo. Utilizamos 11 especies
de aves de interés para la conservación en el muy fragmentado Bosque Atlántico en Brasil aśı como datos de
condiciones ambientales en la región para predecir la distribución de las especies. Estas predicciones fueron
repetidas para cinco tipos diferentes de modelos para cada una de las 11 especies de aves. Luego combinamos
estas distribuciones de especies para cada modelo por separado y aplicamos un algoritmo de selección de
reservas para identificar sitios prioritarios. Comparamos los resultados potenciales de la selección de reservas
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entre modelos. Aunque hubo similitud entre los modelos en la identificación de redes de reservas, los modelos
difirieron marcadamente en el alcance geográfico y la flexibilidad de las redes de reservas. Es de importancia
fundamental para los planificadores evaluar las implicaciones sobre la conservación de errores falsos posi-
tivos y falsos negativos para su escenario de manejo espećıfico antes de comenzar el proceso de modelado.
Las redes de reservas seleccionadas por modelos que minimizaron los errores falsos positivos proporcionaron
mejor correspondencia con las áreas prioritarias identificadas por especialistas. Por lo tanto, instamos a tener
precaución con el uso de modelos que sobreestiman la ocurrencia de especies porque pueden desviar las ac-
ciones de conservación. Nuestro método demuestra además el gran potencial de los registros de museos en
estudios de biodiversidad y la utilidad de los modelos de distribución de especies para la toma de decisiones
de conservación. Sin embargo, nuestros resultados demuestran que estos modelos deben ser aplicados cŕıtica
y cuidadosamente.

Introduction

Museum records have great potential to provide insights
into the vulnerability, historical distribution, and conser-
vation of species (e.g., Davis 1996; Ponder et al. 2001).
Knowledge of the historic distribution of a species is nec-
essary to assess changes relative to the current distribu-
tion. For example “hotspots” are areas with high species
richness coupled with habitat loss exceeding 70% (Myers
et al. 2000). Species-distribution models (SDMs) are pow-
erful tools for converting individual point-locality data,
such as museum collection records, into the hypotheti-
cal distributional range of a species (Corsi et al. 2000; da
Fonseca et al. 2000) or predicted ranges following global
climate change (e.g., Polansky et al. 2000; Peterson et al.
2002). Thus, SDMs have great potential utility to conser-
vation, especially because conservation biologists are of-
ten pressed to make recommendations about conserving
biodiversity based on limited species-distribution data (da
Fonseca et al. 2000; Peterson et al. 2000). However, the va-
riety of existing SDM algorithms could produce different
species distributions and hence different recommenda-
tions to conservation planners. Little attention has been
paid to how robust these different species-distribution
models (SDMs) are and whether the use of these models
in reserve-selection processes lead conservation policy-
makers to different outcomes (e.g., Elith 2000). Discrep-
ancies between individual SDMs used for conservation
planning and actual organismal distributions may have
profound effects on conservation (Smith & Catanzaro
1996).

We produced hypothetical distributional ranges based
on historic museum record data for 11 threatened or en-
dangered cotingids (BirdLife International 2000) (Aves) in
the Atlantic Forest region of Brazil (Fig. 1). We selected the
Atlantic Forest region because it is a biodiversity hotspot
and one of the most endangered regions of the world,
with >90% forest loss (Mittermeier et al. 1998; Myers
et al. 2000). To test the sensitivity of reserve selection to
underlying SDMs, we first produced species distributions
from five model types for all 11 cotingid species. We quan-
titatively compared prediction errors and examined the

degree of spatial overlap among a subset of the models.
To determine whether the different model types result
in similar recommendations to conservation-reserve plan-
ners, we compared the number and location of minimum
sites needed to conserve all species and the flexibility
of potential reserve sites. Flexibility occurs when multi-
ple localities capture the same essential set of species,
and thereby provides options for negotiating and estab-
lishing reserve networks (Williams et al. 1996). We also
compared reserve-selection results from different mod-
els with “key areas” identified by experts from BirdLife

Figure 1. Original extent of the Atlantic forest region
(shaded) in Brazil and its proximity to select densely
populated cities. Codes for state names: RN, Rio
Grande do Norte; PB, Paraı́ba; PE, Pernambuco; AL,
Alagoas; SE, Sergipe; BA, Bahia; MG, Minas Gerais; ES,
Espı́rito Santo; RJ, Rio de Janeiro; SP, São Paulo; PA,
Parana; SC, Santa Catarina; RS, Rio Grande do Sul.
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International (Wege & Long 1995). Our approach adds to
the increasing awareness of the value of museum data to
biodiversity studies and the great utility of SDMs to conser-
vation decision-making when applied appropriately and
cautiously.

Methods

In the following sections we describe the four-step pro-
cess that was necessary to evaluate the impact of different
SDMs on conservation planning. These steps included (1)
acquiring bird locality data from museums, (2) overlaying
bird locality data with environmental layers to produce
species distributions using different models, (3) combin-
ing SDMs to produce a composite map in which identi-
ties of bird species occurring in each pixel of the map are
known, and (4) selecting the conservation reserve net-
work based on the species-richness maps and a comple-
mentarity algorithm. Step three also allowed for creation
of species-richness maps, which provided some graphical
indication of the differences among the models.

Specimen Data and Study Species

We compiled data on known species occurrences from
museums and private collections in North America
and Brazil and from verified records from BirdLife In-
ternational for 11 species of Cotingidae that occur
in the Atlantic Forest of Brazil (step 1). Three study
species are considered critically endangered (Cotinga
maculata, Xipholena atropurpurea, Iodopleura pipra),
three are vulnerable (Laniisoma elegans, Carpornis
melanocephalus, Lipaugus lanioides), four are near
threatened (Phibalura flavirostris, Tijuca atra, Procnias
nudicollis, Carpornis cucullatus), and the remaining
species is of “special conservation concern” (Pyroderus
scutatus) (The Nature Conservancy 1999; BirdLife Inter-
national 2000). Two species of cotingids of conservation
concern (Calyptura cristata, Tijuca condita) were not
included because of the paucity of historical records. Al-
though historical records with specific locality informa-
tion date back to the last decade of the nineteenth cen-
tury; the majority came from 1920–1970. Most museum
specimens were examined to verify identifications. Spec-
imen data came from 276 spatially referenced localities
well distributed throughout the Atlantic Forest of Brazil.
Verified records of occurrence represent presence data.

The number of presence records used in model devel-
opment generally ranged from 24 to 71; Tijuca atra mod-
els, however, had only four independent locality records.
Because the primary focus of this project was to com-
pare outcomes from SDMs for conservation planning, we
included all museum presence records in generation of
SDMs. Museum, herbarium, and other locality data sets
provide only presence data; extensive plot or census data

are required for reliable absence data. In our case, reli-
able plot or census data were not available over a large
number of sites in the Atlantic Forests, and we therefore
needed to generate absence data. We assigned species-
specific absence based on a subset of relatively well-
collected localities (>3 independent [in time] collections
of cotingids; n = 150 localities of the original 276) within
the zoogeographic region(s) of each species (Parker et al.
1996). Our assumption was that if multiple expeditions
did not result in a collection, then the species was likely
absent. Given that we were dealing with mostly range-
restricted species from the same family, we believe in-
dividuals, if encountered, would most likely have been
collected and not passed over by the collectors. We used
absence data for logistic-regression models and for later
validation of all models. An alternative would have been
to use random points for model validation and as absence
points in logistic-regression models. Both methods of se-
lecting localities undoubtedly include areas where either
the species is present and unrecorded or the habitat is
suitable but the species is not present. We believed, how-
ever, that the former method was more likely to identify
sites that represent true absences than the latter. Having
both true absence and presence sites are key for evaluat-
ing model performance (e.g., Fielding & Bell 1997).

Environmental Data Layers and Species-Distribution
Modeling

To produce hypothetical species distributions we needed
to combine museum records and environmental data lay-
ers (step 2). Environmental layers (seven total) came from
existing digital data sets and new data digitized from pub-
lished sources. The soils map was produced by Empresa
Brasileira de Pesquisa Agropecuária (EMBRAPA) in Brazil
and digitized at EROS Data Center, in Sioux Falls, South
Dakota. The vegetation map, which represents historical
vegetation cover, was produced by Ministério da Agricul-
tura at the Instituto Brasileiro de Desenvolvimento Flore-
stal (IBDF) and was digitized by the Fundação Instituto
Brasileiro da Geografia e Estat́ıstica (IBGE). Both soils and
vegetation map closely approximated those found within
Atlas Nacional do Brasil (IBGE 1992). This atlas was the
data source for geology, effective humidity, and elevation
coverages. Mean annual precipitation and temperature
were digitized from climate maps produced in 1975 by
the United Nations Agency for Education, Science and
Culture.

The SDMs we compared varied from simple sets of
rules based on overlays of environmental and species
occurrence data (e.g., Bioclim [Nix 1986; Busby 1991]
and Simple Overlay), to sophisticated multivariate analy-
ses (e.g., Domain [Carpenter et al. 1993] and logistic re-
gression [Pereira & Itami 1991]), to artificial intelligence
techniques using rule-based sets of algorithms (e.g., GARP
[Stockwell 1999; Godown & Peterson 2000]). The SDMs
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we used cover most of the methods used most commonly
in the literature. The logistic, Domain, and GARP models
each had three variants. Logistic-regression model vari-
ants include 50%, 85%, and 95% probability of occurrence
(LOG50, LOG85, LOG95), and Domain model variants
have cut-offs of 85%, 90%, and 95% (DOM85, DOM90,
DOM95). The GARP SDM produced a potentially differ-
ent distribution model during each run, so we ran the
model five times and randomly chose the results of one
model (GARP1). The GARP4 model represents the range
of a species for which at least four GARP models selected
cells as suitable; GARP5 included cells for which all five
runs of GARP selected the cell as suitable. The Simple
model included as areas of occupancy only those sites
in which all seven environmental conditions were suit-
able as indicated by overlays between known locations
of birds and environmental layers.

All models had the same historic museum locality data
and environmental data layers; scale of analysis was 4 ×
4 km raster cells. All models included species presence
data, and the logistic-regression model also included ab-
sence data. For comparison, we included maps based on
the extent of occurrence for each taxon from published
accounts (Ridgley & Tudor 1994). The extent of occur-
rence reflects the range over which a species is found
and is usually shown as a single area or polygon unless
there is some notable disjunction in occurrence. In the
latter case, the extent may be shown from two up to a
few areas.

Species-Richness Maps and Complementarity Analyses

We created composite maps (step 3) by combining the
SDMs from all 11 species; any location on the map could
have species richness ranging from 0 to 11. In addition,
bird distributions based on extent-of-occurrence maps
(i.e., those from Ridgley & Tudor 1994) were combined
to generate a composite map. Prior to producing the com-
posite maps, we scaled the SDMs for individual species
up to a 15-minute resolution (i.e., approximately 26 ×
26 km) to better reflect the area from which conserva-
tion reserves might be selected across a region like the
Atlantic Forest (step 4). To scale up, we converted the
4 × 4 km raster into a vector polygon coverage by using
ARC/INFO (version 8.1, Environmental Systems Research
Institute, Redlands, California) and then converted the
polygon coverage back into a raster with a cell size of 15
minutes on a side by using majority rules (i.e., if >50% of
the grid cell has a polygon value of 1, indicating presence,
then the cell receives a value of 1). These composite maps
serve two purposes. First, for each pixel on the map, we
know the identity of all species predicted to occur there.
This step is necessary for selection of reserve sites (step
4). Second, we can produce a species-richness map from
each of the SDMs, which provides a graphical indication
of differences among the SDMs.

The use of quantitative methods, such as comple-
mentarity, for selecting and prioritizing areas within a
conservation-reserve network is now well established
(Williams et al. 1996; Margules & Pressey 2000; Myers
et al. 2000; Peterson et al. 2000). We chose complemen-
tarity (Pressey et al. 1993; Williams et al. 1996) to select
reserve networks because of its efficiency in “capturing”
species. We used complementarity rules in Worldmap to
identify the minimum number of “cells” (i.e., 15-minute
grid cells) that “captured” all 11 species (near-minimum
set) from composite maps (step 4). Cells were then re-
ordered and ranked by complementary richness into
conservation-reserve sets. Each “set” contains the grid
cells that represent one or more “goal-essential species”
(Williams et al. 1996; Williams 1999a). However, any set
of goal-essential species justifying selection of a set may
occur together elsewhere within the geographic region.
Cells that contain the same combination of goal-essential
species are identified as fully flexible alternative cells.
Here we also map all fully flexible grid cells as “options”
for each selected reserve set presented to conservation
decision-makers. This set of fully flexible sites should be
viewed as an upper bound that may overestimate the
options available.

Statistical Analyses

The accuracy of SDMs requires independent testing and
validation. Models can be accurate in two ways and in-
accurate in two ways. Ideally, a model should correctly
predict both species absence and presence. In practice,
however, incorrect classification occurs when a model
predicts either that a species should be at a location when
in fact it is not (i.e., false-positive error or Type I error;
often termed commission) or that a species should not
be at a location when in fact it is (i.e., false-negative error
or Type II error, often termed omission) (Fielding & Bell
1997). An overall index of the performance of a species-
distribution model is given by its Kappa value (Fielding
& Bell 1997). Kappa is given by the formula

[(a + d ) − (((a + c)(a + b) + (b + d )(c + d ))/N)

[N − (((a + c)(a + b) + (b + d )(c + d ))/N)]
,

where a is the number of times when both model and ob-
servations predict occurrence, b is the number of times
when observations indicate absence and model predicts
occurrence, c is the number of times observations pre-
dict occurrence and model absence, and d is the num-
ber of times when both model and observations pre-
dict absence. We used Kappa because it incorporates all
four ways in which a model’s predictions reflect obser-
vations. Here we calculated the average percentage of
false-positive and false-negative errors by using existing
presence/absence data from museum records and Kappa
values for each species-distribution model we generated.
We tested for significant differences in Kappa values
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across the models with one-way analysis of variance.
Individual species were the replicates in the statistical
model.

We used regression analyses to identify general “rules”
that emerged to guide conservation decision-making by
determining whether model characteristics (Kappa, false-
positive or false-negative errors) predicted the flexibility
of reserve set selection. In this case, we determined the
average number of fully flexible sites (i.e., cells) selected
within the first two minimum reserve sets determined
by complementarity analyses. In these regressions the re-
sponse variable was the average number of fully flexible
sites, and the predictor variable was either the average
value of Kappa, false-positive error, or false-negative er-
ror. These latter values were averaged over all 11 bird
species for each model type. We used only the first two
reserve sets identified by complementarity analysis be-
cause at least two minimum sets were identified by all
models. Some models required a third or fourth set to
capture remaining species, but because of the small num-
ber of species in this study (n = 11), these third or fourth
sets often included only one species. Consequently, the
number of fully flexible sites for these latter sets that cap-
tured only one species equals the number of 15-minute
grid cells in which that species occurred. This greatly
increased the variation in the average flexibility for a
model and obscured what we believe are meaningful
relationships.

Results

Species-richness maps created by combining SDMs across
species were consistent among models in predicting the
greatest concentration of species along the coast of south-
east Brazil (Fig. 2). Pockets of species richness for Cotingi-
dae extended north into Bahia and south into Parana.
In nearly all models, inland areas within Minas Gerais
were also modeled to contain areas of high species rich-
ness. These species-richness maps provided an indica-
tion of how the 11 SDMs models varied in their pre-
dictions of species occurrences (Fig. 2). For example,
species richness produced by the extent of occurrence
maps as well as some models encompassed broad regions
(e.g., Simple, Bioclim, LOG50, DOM80, GARP1), whereas
other models encompassed narrower regions (LOG95,
DOM95).

We determined whether models differed consistently
among species in the relative area predicted to be occu-
pied by any one species using a randomized-block anal-
ysis of variance. In this model, we divided the predicted
area for each model by the maximum area predicted by
any one model for each species separately. This provided
the proportional area relative to the maximum for each
model, with values ranging from 0 to 1 (proportional area

was the dependent variable in the model). The main ef-
fect was model type and blocks were the bird species.
Significant differences occurred among models in the
proportional area predicted to be occupied by a species
(F10,100 = 16.4, p < 0.001). The models with consis-
tently low proportional areas of occupancy were DOM95,
LOG95, and GARP5, whereas Bioclim and LOG50
had consistently high proportional areas of occupancy
(Table 1). These differences reflect the degree to which
the individual SDM’s area of predicted occupancy fills the
extent of occurrence (Maurer 1994). The extent of oc-
currence generally encompasses a continuous area over
which a species’ records are known and are typically
shown as range maps in field guides. Areas of occupancy,
on the other hand, only include those areas within the ex-
tent to which the species is known (or modeled) to occur.
In these models, the average percentage of the full range
extent occupied by a species varied from 20% (DOM95)
to 78% (LOG50). Further, when the percent overlap
among models was examined, on average 96% of the area
predicted to be occupied by DOM95 was encompassed
by the LOG50 predictive models. Compared with the Sim-
ple SDM, an intermediate model in terms of proportional
area occupied, average overlap was 86% and 79% with
LOG50 and DOM95, respectively. These results empha-
size that some models appear to be consistently conser-
vative and may underestimate range and area occupied,
whereas other models potentially overestimate species
distributions. Moreover, the species-richness maps (Fig.
2) and our examination of individual SDMs demonstrate
that models differed in the degree to which the species’
range periphery was included.

We used complementarity rules in Worldmap to se-
lect hypothetical conservation reserve networks based
on the composite maps derived from the 11 SDMs and
extent-of-occurrence maps (see Fig. 2 for representa-
tion of species richness from these maps). Conservation
decision-makers would receive different answers regard-
ing priorities for reserve area selection with the different
composite maps (Fig. 3). From two to four reserve areas
(minimum sets) were necessary to represent all 11 bird
species in the Atlantic Forest of Brazil, depending on the
species-distribution model used, but these two to four ar-
eas do not necessarily overlap geographically (Table 2,
Fig. 3). Nearly all outputs from complementarity analyses
selected areas near Rio de Janeiro and farther north along
the coast in northern Esṕırito Santo or southern Bahia.
Reserve-selection networks differed in their propensity
to include the more southern and northern sectors of the
Atlantic Forest. Selected networks also differed in the flex-
ibility of the areas selected (Table 2, Fig. 3). The number
of flexible alternatives for any reserve network depended
on the range extent of the most restricted taxa captured
by that set and on the frequency of co-occurrence of the
goal-essential taxa elsewhere in the region (Table 2). Re-
serve sets that appeared to have high flexibility generally
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Figure 2. Species-richness maps (result of step 3) of Cotingidae based on predicted occurrences derived from
species-distribution models. Species richness values can range from 0 to 11. The figures correspond to the
species-distribution models used to predict occurrence: (a) extent of occurrence, (b) Bioclim, (c) Simple, (d)
DOM95, (e) DOM90, ( f ) DOM85, (g) GARP5, (h) GARP4, (i) GARP1,( j) LOG95, (k) LOG80, (l) LOG50. Darker
colors represent cells containing greater number of species.

captured only one to two goal-essential species of the 11
taxa (e.g., see ellipse 3 in Fig. 3d; Table 2).

Models differed in the degree to which they made false-
positive and false-negative errors and in their overall per-
formance as measured by Kappa (F10,110 = 5.6, p < 0.001;
Fig. 4). We found a significant negative correlation be-
tween false-positive and false-negative errors (r = −0.62,
n = 11, p < 0.05), although DOM95 tended to minimize
both errors and thus had the highest Kappa value. Only
Kappa values for DOM95 approached 0.6, a value rec-
ommended as representing a “good” model by Fielding
and Bell (1997). Neither Kappa nor false-negative errors
were related to the average flexibility of sets selected by
reserve algorithms. There was a significant relationship,
however, between false-positive errors and average flex-
ibility of the first two reserve sets selected (r2 = 0.64,

df = 8, F = 7.13, p < 0.02; Fig. 5). As false-positive er-
rors increased, reserve sets contained increasingly more
fully flexible sites on average, thus apparently offering a
greater number of choices for decision-makers.

The models we developed naturally should be followed
with field validation, although this is problematic given
the dramatic habitat loss in the region. To provide an
indication of how well our models reflect current condi-
tions and priorities, we compared the overlap between
reserve-network areas selected by the models (Fig. 4) with
BirdLife International’s “key areas” for the same set of
threatened cotingid species in the Atlantic Forest region
(Wege & Long 1995). Models with low false-positive er-
rors (DOM95, GARP5, LOG95) included the greatest num-
ber of key areas in selected reserve networks (50–62.5% of
40 key areas included), whereas four of five models with
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Table 1. Mean proportional area (and standard error, SE) occupied
by a species as a function of the species-distribution model type.∗

Model Mean proportional area SE

DOM95 0.23a 0.040
LOG95 0.27a 0.068
GARP5 0.46a,b 0.048
DOM90 0.54b,c 0.063
LOG80 0.62b,c,d 0.064
Simple 0.66b,c,d 0.057
GARP4 0.69b,c,d 0.054
GARP1 0.76c,d,e 0.056
DOM85 0.80c,d,e 0.070
Bioclim 0.83d,e 0.089
LOG50 0.96e 0.042

∗Values can range from 0 to 1. See text for description of models
and how proportional area was calculated. The replicates were the
11 species of Cotingidae. Different letters (a–e) indicate a significant
difference in a post-hoc Tukey comparison.

the highest percentage of false-positive errors (extent of
occurrence, LOG50, DOM85, Bioclim) included only 10–
37.5% of key areas. The GARP1 was an exception in that
this model, with high false-positive errors, included 30
key areas. However, species distribution models based
on GARP produced a different prediction during every
run. We randomly selected one of the five GARP runs for
this analysis. If we were to repeat the analysis, we would
expect the new GARP1 to include a different number of
key areas.

Discussion

Given the significant negative correlation between false-
positive and false-negative errors within models, conser-
vationists may wish to use models that minimize one or
the other error. Type I errors may lead to failure to con-
serve a species because sites selected as reserves do not
contain the target taxa. A Type I error does not neces-
sarily mean the reserve is unsuitable for occupancy; the
area could be suitable but, by chance, the species is not
presently found there. Type II errors, on the other hand,
potentially result in sites not being selected even though
target taxa may be present. In the latter case, one may
fail to select sites that are of importance to the overall
survival of a species, such as those that represent viable
populations or unique genotypes. Conservation decision-
makers must decide which error is more “dangerous.”
A prudent solution would be to select SDMs that mini-
mize false-positive errors because of the danger that con-
servationists may identify reserve areas that do not actu-
ally contain the target taxa. It is true that species might
be able to occur there at a later time through disper-
sal or range expansion, but this assumes that such op-
portunities exist. Moreover, if models with high false-

positive errors overestimate species’ ranges, then high
species richness may appear to occur because of overlap
among species at range peripheries. Thus, areas selected
first for reserve sites based on complementarity may not
be ideal because some species are represented from the
edge of their ranges instead of the center. This problem
may be reduced by using the probability of persistence
(Williams 1999b; Williams & Araújo 2000) or probabil-
ity of occurrence (Polansky et al. 2000) directly from in-
dividual species-distribution models. The former down-
weights marginal habitats, whereas the latter quantifies
the uncertainty of a species’ occurrence at a location. The
two are not necessarily correlated because greater popu-
lation densities can be found in areas where fitness values
are lower (e.g., van Horne 1983). Reliable persistence or
probability estimates, however, require considerable in-
formation on species occurrences or densities. Such data
are especially difficult to obtain for rare taxa, the species
of highest conservation concern.

When a species is not present at a location predicted
by the model, uncertainty exists as to whether the model
prediction is in error or whether the absence reflects low
population size, random or patchy distribution of organ-
isms, or natural variation in occurrence (e.g., seasonal or
temporal variation in distribution). Assigning probabili-
ties of occurrence is one treatment for this kind of ecolog-
ical uncertainty (Regan et al. 2002). Estimates of the prob-
ability of occurrence can be obtained from certain mod-
els (e.g., logistic regression; Margules & Nicholls 1987;
Margules & Stein 1989), and reserve-selection algorithms
have been adapted to deal with probability rather than
presence/absence data (Polansky et al. 2000). Compared
with presence/absence data, efforts to maximize species
richness resulted in different sites being selected by prob-
abilistic occurrence data. These differences were more
pronounced when uncertainty was higher (i.e., probabil-
ity values farther from 0 or 1). Thus, incorporating un-
certainty may lead to different recommendations in con-
servation planning. The application of these algorithms
that use probability-of-occurrence data are somewhat lim-
ited, however, due to the computational time necessary to
find optimal solutions (Polansky et al. 2000). Continued
efforts to design reserve-selection algorithms that max-
imize expected occurrence (or persistence) of species
and provide some method for error estimation, especially
in cases where error can be accumulated across mod-
els, would greatly facilitate decision-making processes in
conservation.

Our approach further demonstrates the great poten-
tial of using museum records for biodiversity studies. Al-
though our findings do not provide guidance for reserve
selection in the Atlantic Forest of Brazil because they rep-
resent only a subset of the threatened taxa and are based
on historic specimen data, they do demonstrate inherent
differences among SDMs and the dangers in identifying
priorities for reserve selection based on these models if
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Figure 3. Reserve-network hypotheses (result of step 4; from Worldmap) based on extent of occurrence and
species-distribution models as lettered in Fig. 2. Cells with the same shading represent a reserve set that captures the
same combination of goal-essential species, and individual cells represent fully flexible sites within that reserve set.
Ellipses are drawn around reserve sets to aid in identification.

Table 2. Number of reserve sets selected by complementarity analyses when applied to the composite of species distribution maps.∗

Set 1 Set 2 Set 3 Set 4

Model Number of reserve sets sites species sites species sites species sites species

Bioclim 2 1 8 15 3 — — — —
DOM85 2 1 8 6 3 — — — —
DOM90 3 6 9 2 1 32 1 — —
DOM95 4 1 7 1 2 1 1 254 1
GARP1 3 5 7 30 2 45 2 — —
GARP4 2 4 7 12 4 — — — —
GARP5 3 2 6 15 3 150 2 — —
LOG50 2 16 8 49 3 — — — —
LOG80 2 7 6 11 5 — — — —
LOG95 4 4 6 1 2 85 2 91 1
Simple 2 2 8 4 3 — — — —

∗Model refers to the species-distribution model used to derive predictions about each individual species distribution. Also shown are number of
fully flexible sites (sites) and number of goal-essential species (species) captured for each reserve set.
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Figure 4. Kappa values for the 11 species-distribution
models. Kappa values could not be calculated
for extent-of-occurrence maps. Intuitively, extent-
of-occurrence maps have maximum false-positive
errors and minimum false-negative errors when
compared with species-distribution models. Kappa
values typically range from 0 to 1, where values
approaching 1 have fewer overall errors.

Figure 5. Relationship between mean false-positive
errors and average flexibility for the first two reserve
sets selected by the reserve algorithm. Mean false-
positive errors were calculated by averaging
false-positive error scores across species for each
species-distribution model. The number of fully
flexible sites for each reserve set is given in Table 2. A
quadratic equation provided the best fit for the
regression model (y = −24.12x + 140.61x2 + 28.36).

they are applied uncritically. The appearance of quantita-
tive tools and spatial models in the conservationists’ tool
box is a significant step forward, yet major challenges
remain in ensuring that these tools are applied wisely
in a management context (Smith & Catanzaro 1996;
Prendergast et al. 1999; Myers et al. 2000; Williams &
Araújo 2000). It is essential for planners to evaluate
the conservation implications of false-positive and false-
negative errors for their specific management scenario
before beginning the modeling process. Well-intentioned
but overgenerous models (with high commission or false-
positive errors), when combined with optimizing selec-
tion techniques, could misdirect conservation action and
policy (Smith & Catanzaro 1996). Conservation decisions
are ultimately based on a combination of biological and
nonbiological factors, and many decisions may be highly
constrained by present-day realities. The consequences of
decisions made today are not likely to be felt until decades
in the future (Pimm & Raven 2000).
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