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Abstract 

Memory bandwidth limitation is one of the major im-
pediments to high-performance microprocessors. This 
paper investigates a class of store misses that can be 
eliminated to reduce data traffic. Those store misses 
fetch cache blocks whose original data is never used. 
If fully overwritten by subsequent stores, those blocks 
can be installed directly in the cache without access-
ing lower levels of the memory hierarchy, eliminating 
the corresponding data traffic. Our results indicate 
that for a 1MB data cache, 28% of cache misses are 
avoidable across SPEC CPU INT 2000 benchmarks. 
We propose a simple hardware mechanism, the Store 
Fill Buffer (SFB), which directly installs blocks for 
store misses, and substantially reduces the data traffic. 
A 16-entry SFB eliminates 16% of overall misses to a 
64KB data cache, resulting in 6% speedup. This 
mechanism enables other bandwidth-hungry tech-
niques to further improve system performance. 
 
1.   Introduction 

As the speed gap between microprocessor and 
main memory grows, main memory accesses become a 
significant bottleneck to processor performance. Mem-
ory systems face the problems of long memory access 
latencies and limited memory bandwidth. Numerous 
techniques, such as value prediction and speculative 
execution [7,12], prefetching [2] and multithreading 
[14], have been proposed to reduce or tolerate long 
memory access latencies. In return, many of those 
latency-hiding techniques demand high memory 
bandwidth, which is already a bottleneck in several 
systems [3,6,13]. Hence, memory bandwidth limitation 
becomes one of the major impediments to high-
performance microprocessors. 

In modern processors, write-allocate caches are 
usually preferred over non-write-allocate caches [9]. 
Write-allocate caches fetch and allocate cache blocks 
upon store misses, while non-write-allocate caches 
send the data to lower levels of the memory hierarchy 

without allocating the corresponding blocks. Compar-
ing with non-write-allocate caches, write-allocate 
caches lead to better performance by exploiting the 
temporal locality of recently written data [9]. 

This paper investigates the reduction of memory 
bandwidth requirement of write-allocate caches by 
avoiding fetches of fully modified blocks. A store-miss 
allocated cache block is fully modified if 1) the block’s 
original data is never used, and 2) the block is com-
pletely overwritten by subsequent stores. Those two 
properties ensure that the fetches of the original data of 
fully modified blocks from the lower level of the 
memory hierarchy can be avoided without affecting 
program correctness. Accordingly, in this paper, the 
store misses allocating fully modified blocks are called 
avoidable misses, and the corresponding data traffic is 
avoidable data traffic. 
 

 
Figure 1. States and transitions of store-miss allocated 
blocks.  
 

Not all store-miss allocated blocks are fully modi-
fied. Those non-fully modified blocks can be further 
categorized into two types. If a block’s original data is 
read by a load instruction, the block is called load 
unmodified. A non-load-unmodified, non-fully-
modified block is partially modified since it is evicted 
from the cache with unmodified portions. Although not 
used by the processor, the original data of partially 
modified blocks is still needed to ensure that whole 
cache blocks, instead of modified block segmentations, 
are written back to lower levels of the memory hierar-
chy. Hence, data traffic fetching non-fully-modified 
blocks cannot be avoided. The states and transitions of 
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store-miss allocated blocks are illustrated in Figure 1. 
Initially, a newly allocated block is partially modified. 

To reduce the avoidable data traffic, we propose a 
simple hardware mechanism, the Store Fill Buffer 
(SFB), which is a small buffer accessed in parallel with 
the L1 data cache. Data traffic is reduced by directly 
installing store-miss allocated blocks in the SFB, with-
out accessing lower levels of the memory hierarchy. 
Compared with previous schemes [8,9,15], this 
mechanism has advantages such as requiring no com-
pile-time support and incurring minimal hardware 
overhead. Moreover, by allowing load-miss allocated 
blocks staying longer in the L1 data cache, a SFB 
reduces both load and store misses, improving the 
performance considerably.  

This work makes three contributions. 1) We dem-
onstrate that programs usually have abundant avoid-
able cache misses, regardless of varying cache con-
figurations. For a 1MB data cache, 28% misses that 
access memory are avoidable. 2) We analyze the vari-
ous characteristics of store-miss allocated blocks. The 
results indicate that it is feasible to effectively reduce 
avoidable misses and data traffic via a low-cost hard-
ware approach. 3) Based on those findings, a hardware 
mechanism, the Store Fill Buffer, is proposed to re-
duce data traffic that loads fully modified blocks. With 
much smaller hardware costs, a SFB reduces more 
load misses than a write-validate cache, and performs 
better than a victim cache on overall miss reduction. A 
16-entry SFB eliminates 16% of overall misses to a 
64KB data cache, resulting in 6% speedup across 
SPEC CPU INT 2000 benchmarks. 

The rest of the paper is organized as follows: Sec-
tion 2 discusses previous efforts in the area, and Sec-
tion 3 describes the simulation environment and 
evaluation methodology. The characteristics of avoid-
able data traffic are presented in Section 4. Section 5 
proposes the Store Fill Buffer and evaluates its per-
formance impact. Finally, we conclude in Section 6. 

 
2.   Related work 

There have been many studies on reducing data 
traffic. One of such schemes is the write-validate cache 
[9], in which no data is fetched upon a store miss. 
Instead, the data is written directly into the cache, and 
extra valid bits indicate the valid (i.e., modified) por-
tions of the blocks. One of write-validate’s deficiencies 
is the significant implementation overhead, especially 
when per-byte valid bits are required in architectures 
such as Alpha [5]. More importantly, a write-validate 
cache reduces store misses at the expense of increased 
load misses arising from reading invalid portions of 
directly installed blocks, negating write-validate’s 

traffic advantage. As a comparison, a SFB reduces 
both load and store misses, and incurs less hardware 
overhead to yield better cache performance to a write-
validate cache (Section 5.2.2). 

Cache installation instructions, such as dcbz in 
PowerPC [8], are proposed to allocate and initialize 
cache blocks directly [15]. Unfortunately, several 
limitations prevent broader application of the approach. 
First, to use the instruction, the compiler must assume 
a cache block size and ensure that the whole block will 
be modified. Consequently, executing the program on 
a machine with wider cache blocks may cause errors. 
Furthermore, the use of the instruction is limited by the 
compiler’s limited scope since it cannot identify all 
memory initialization operations. 

A hardware mechanism [11] is proposed to iden-
tify stores that initialize heap objects, and trigger cache 
installation instructions to reduce data traffic dynami-
cally. The mechanism’s dependence on the system 
routine malloc() limits its application to programs 
that use the routine exclusively, and can hardly work 
on other programs, e.g., Java programs. Furthermore, 
the mechanism cannot identify fully modified blocks 
arising from program activities other than heap object 
initialization. In contrast, SFB identifies almost all 
fully modified blocks with no software assistance, and 
is effective for programs written in any languages. 

Another related scheme is the write cache/buffer 
[9], which assists write-through caches to coalesce 
missed stores before written to lower levels of the 
memory hierarchy. Write-allocate caches, usually 
employing the write-back policy, rarely use write 
caches since a write-back cache inherently possesses 
the capability of write coalescing. Furthermore, a write 
cache can only reduce the downward data traffic, i.e., 
traffic to lower levels of the memory hierarchy. Since 
in a write-allocate cache, the data traffic incurred by 
store misses is upward, a write cache is unable to 
minimize the avoidable data traffic as a SFB. 

 
3.   Methodology 

This work uses a modified version of the Simples-
calar/Alpha version 3.0 toolset [4] to characterize  
store-miss allocated blocks and evaluate the perform-
ance impact of the Store Fill Buffer. Simplesca-
lar/Alpha includes a suite of simulation tools for the 
Alpha ISA [5], and its timing simulator incorporates a 
detailed execution-driven out-of-order processor that 
accurately executes user-level instructions. The base-
line machine is configured as an aggressive 8-way out-
of-order processor with two levels of caches, as given 
in Table 1. 



 
 
 
 
 

To perform our evaluation, we collect results from 
SPEC CPU INT 2000 benchmarks [16]. The bench-
marks are compiled with SPEC peak settings, which 
perform many aggressive optimizations. For each 
benchmark, the execution of its first billion instruc-
tions is fast-forwarded to warm up the simulator, and 
statistics are collected during the execution of the 
second billion instructions. Each benchmark’s input set, 
level-one data cache miss rate, and proportion of store 
misses are summarized in Table 2. On average, 23% of 
overall misses are store misses for a 64KB L1 data 
cache. SPEC CPU 2000 floating-point benchmarks are 
not evaluated in this paper since we could not obtain 
the Alpha binaries of those benchmarks. 

 
4.   Characterizing avoidable misses 

In a write-allocate cache, a cache block is allo-
cated due to either a load or a store miss. As discussed 
in Section 1, a store-miss allocated cache block can be 
either fully modified, load unmodified, or partially 
modified. And the store misses allocating fully modi-
fied blocks are avoidable since the corresponding data 
traffic is never used by the program, and can thus be 
eliminated without affecting program correctness. 

In this section, we demonstrate that large amount 
of store misses are avoidable, regardless of varying 
cache configurations. We also obtain the various char-
acteristics of store-miss allocated blocks. The results 
indicate that it is feasible to effectively reduce avoid-
able misses and data traffic using a low-cost hardware  
approach. 

4.1   Avoidable misses 
Figure 2 breaks down store-miss allocated blocks 

for write-allocate caches ranging from 64KB to 4MB. 
Load miss rates represent the differences between the 
top of the accumulated bars and 100% of overall 
misses. Modern high-performance microprocessors 
usually have two or more levels of caches, with at least 
one of them being write-allocate. In this figure, the two 
smaller sizes (64K and 256K) correspond to L1 data 
caches, while the two larger sizes (1M and 4M) repre-
sent the total capacities of on-chip caches. Hence, the 
results in Figure 2 indicate the avoidable data traffic 
between the write-allocate L1 cache and the L2 cache, 
as well as between the write-allocate L2 cache and the 
memory. 

The store misses allocating fully modified blocks 
are avoidable. The amount of fully modified blocks is 
affected by both program characteristics and cache 
configurations. Since blocks stay longer in a larger 
cache, many otherwise partially modified blocks be-
come fully modified in a larger cache. Consequently, 
the proportions of avoidable misses increase as cache 
size increases. On average, fully modified blocks con-
sist of 14% and 28% of all blocks allocated in a 64K 
cache and a 1M cache respectively. 

Load unmodified blocks represent the extra load 
misses of a non-write-allocate/write-validate cache 
over a write-allocate cache. In a write-allocate cache, a 
store-miss allocated block is load unmodified if a sub-
sequent load accesses its original data. For a non-
write-allocate/write-validate cache, such a block is 
never fetched from the lower level of the memory 
hierarchy, so the load reference is always missed. 
Hence, the percentage of load-unmodified blocks of a 
program implies how well a write-allocate cache out-

Table 1. Configuration of the baseline system. 
CPU Memory Hierarchy 

Instruction window 128-IFQ, 128-RUU, 64-LSQ L1 D-cache 64KB, 64B blocks, 4-way, LRU, 1 cycle hit latency, 
Issue/commit width 8 instructions per cycle L1 I-cache 64KB, 64B blocks, 2-way, LRU, 1 cycle hit latency 

Functional units 8 intALU, 4 IntMult/Div,  
6 FPALU, 2 FPMult/Div 

Branch predictor 2K-entry combined predictor 

L2 unified 
cache 

1MB, 128B blocks, 4-way, LRU, 12 cycles hit la-
tency, 80 cycles miss latency 

 
Table 2. Characteristics of SPEC CPU INT 2000 benchmarks. (64KB caches, 4-way, 64B blocks) 

Benchmark Input set L1 d-cache 
miss rate 

Store miss 
percentage Benchmark Input set L1 d-cache 

miss rate 
Store miss 
percentage 

gzip log 1.38% 26.57% eon cook 2.02% 31.52% 
vpr route 2.70% 15.76% perlbmk diffmail 0.78% 16.36% 
gcc 166 6.61% 52.74% gap ref 4.43% 25.01% 
mcf ref 18.61% 23.02% vortex two 1.22% 14.70% 

crafty ref 1.31% 12.55% bzip2 program 2.00% 27.81% 
parser ref 2.07% 10.38% twolf ref 5.48% 17.70% 

 



 
 
 
 
 

performs a non-write-allocate/write-validate cache on 
the program. Figure 2 shows that many programs have 
ignorable load unmodified blocks. One distinct pro-
gram is gap, 11% of whose cache blocks are load 
unmodified. Hence, a non-write-allocate/write-validate 
cache will perform badly on the benchmark. 
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Figure 3. Sensitivity of avoidable store misses to cache 
sizes and block widths. 

4.2   Sensitivity to cache configurations 
Figure 3 illustrates the compositions of types of 

store misses under various cache sizes and block sizes. 
The results are averaged over all workloads. As the 
cache block size increases, the proportions of store 
misses drop, indicating that stores have better spatial 
locality than loads. Wider cache blocks contain more 
data, and are intuitively more likely to be partially 
modified or load unmodified. Consequently, the frac-
tion of fully modified blocks decreases with wider 
cache blocks. However, even with wide cache blocks, 
plenty store misses are avoidable. On average 16% of 

the data traffic is avoidable for a 1MB cache with 
256B blocks. 
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Figure 4. Breakdown of L1 data references. (LAB/SAB – 
load-miss/store-miss allocated blocks. 64KB cache, 4-way 
64B blocks) 

4.3   Decomposition of data references 
In a write-allocate cache, cache blocks are allo-

cated due to either load or store misses. Loads and 
stores may access either type of blocks. Figure 4 
breaks down the data references by their reference 
types and the types of blocks accessed by those data 
references. Hence, each bar consists of four portions, 
representing the percentages of overall L1D accesses 
that are loads/stores hitting load-miss/store-miss allo-
cated blocks. Data cache miss rates represent the dif-
ferences between the top of the accumulated bars and 
100% of data references. As shown in Figure 4, ac-
cesses to load-miss allocated blocks dominate most 
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Figure 2. Breakdown of store misses. (Cache parameters: 64KB-4M caches, 4-way, 64B blocks) 
 



 
 
 
 
 

benchmarks. On average, 66% and 30% of data refer-
ences hit load-miss and store-miss allocated blocks 
respectively, and the other 4% are cache misses to the 
data cache. 

4.4   Fill intervals of fully modified blocks 
Figure 5 further categorizes fully modify blocks 

by the lengths of their fill intervals. A block’s fill in-
terval is the number of data references/stores executed 
before the block is completely overwritten. In Figure 5, 
each benchmark has two bars, representing the break-
down of fill intervals in terms of data references (refs) 
and stores (stores) respectively. Since data references 
contain both loads and stores, a fully modified block’s 
data-reference-based fill interval should be equal to or 
longer than its store-based fill interval. 

The lengths of fill intervals represent the stability 
of fully modified blocks across different cache con-
figurations. For instance, if a block’s lifetime in the 
cache is equal to or longer than its fill interval, then the 
block is fully modified. Otherwise, it is partially modi-
fied. In this respect, a block with a long fill interval is 
more likely to be partially modified in case that its 
lifetime is short. For benchmarks such as gzip, gcc 
and parser, most of the 64-byte blocks are filled 
within 16 4-byte stores references, indicating that those 
blocks are filled up by sequences of successive stores. 
Heap object initialization is one source of the stores 
with such good spatial locality [11]. On average, 45% 
of fully modified blocks are filled with 16 successive 
stores. Hence, it is feasible to effectively reduce avoid-
able misses and data traffic using a hardware  approach. 

 
 

5.   Eliminating avoidable data traffic 

Results in the previous section demonstrate that 
avoidable data traffic is abundant, and eliminating 
avoidable data traffic can improve performance by 
reducing the pressure on store queues and cache hier-
archies. In addition, eliminating avoidable data traffic 
improves memory bandwidth utilization, allowing 
memory bandwidth hungry techniques, such as pre-
fetching and multithreading, to further boost system 
performance. 

In this section, we propose a simple hardware 
mechanism, the Store Fill Buffer, to identify fully 
modified blocks and reduce corresponding data traffic. 
The Store Fill Buffer assists the L1 data cache to re-
duce traffic between the L1 and L2 caches. Although 
not studied in this work, the approach can be applied 
on the L2 cache to further eliminate data traffic. 

5.1   Store Fill Buffer 
The Store Fill Buffer (SFB) is a small, fully set 

associative buffer that is accessed in parallel with the 
L1 data cache. Having the same block size as the L1 
data cache, it uses per-byte valid bits to identify fully 
modified blocks. The valid overhead can be reduced if 
the minimum store unit is larger than one byte and all 
stores are aligned. Considering its small size, the SFB 
hardly affects the L1 data cache’s access latency. 

When a store miss occurs, the corresponding 
block is not fetched from lower levels of memory. 
Instead, the block is directly installed in a SFB entry. 
The entry’s valid bits are set to indicate the 
valid/invalid portions. Subsequent stores to the block’s 
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Figure 5. Breakdown of fully modified blocks by their fill intervals. (A block’s fill interval is the number of data refer-
ences/stores executed before the block is completely overwritten. Cache parameters: 64KB cache, 4-way, 64B  blocks) 



 
 
 
 
 

invalid portions update the valid bits. In three cases, a 
SFB block is evicted to the L1 data cache. 1) The 
block is fully modified with all valid bits set to one. 2) 
The block becomes load unmodified when a load ref-
erence accesses the block’s invalid portion. 3) A new 
entry is allocated when the SFB is full, and the par-
tially modified block in the LRU SFB entry is evicted 
to the L1 data cache, leaving the SFB entry to the new 
block. For fast SFB allocation, a one-entry buffer can 
temporally hold the evicted partially modified entry 
until its original data is fetched and allocated in the L1 
data cache. 

By employing the SFB, data traffic between L1 
and L2 caches is reduced since moving fully modified 
blocks from the SFB to the L1 cache incurs no L2 
cache fetches. For load unmodified and partially modi-
fied blocks, fetches of their original data are still 
needed. 

SFB affects the system performance in two folds. 
First, similar to a non-write-allocate/write-validate 
cache, the load misses to load unmodified blocks incur 
performance penalty, although Figure 2 indicates that 
for most programs, such penalty is negligible. On the 
other hand, with a SFB, load-miss allocated blocks 
stay longer in the L1 data cache. Since most load ref-
erences tends to access load-miss allocated blocks 
frequently (Section 4.3), the longer lifetime of those 
blocks may improve the L1 data cache locality, and 
thus system performance, considerably. 

The data transfers from the SFB to the L1 data 
cache are transparent to lower levels of the memory 
hierarchy, and the L1 data cache still maintains the 
write-allocate policy. Since both SFB and L1 cache are 
on chip, such transfers are at full speed. By using a 
one-entry buffer to temporarily hold the evicted SFB 
block, the performance penalty of a full SFB can also 
be minimized. 

For multiprocessors, the SFB can be supported by 
a weak ordering model to maintain cache coherence 
[1]. Before a block is allocated in the SFB, its update 
permission should be obtained. 

5.2   Evaluation Results 
We incorporate the SFB in our simulation envi-

ronment to evaluate its performance, and compare it 
with a write-validate cache and a victim cache. As 
noted in Section 2, a write cache/buffer is rarely used 
with a write-allocate cache, and cannot reduce the 
upward avoidable data traffic as the SFB. Hence we 
will not compare the SFB against a write cache. 

5.2.1   Cache miss/traffic reduction 

For a write-allocate cache, the percentage of cache 
misses eliminated represents the percentage of L1-L2 
data traffic reduced. Figure 6 shows the overall data 
misses reduced by using the SFBs with 16, 32 or 64 
entries (the first three columns), a 32-entry victim 
cache (the fourth columns) and a 64KB write-validate 
cache (the fifth columns), respectively. The two bars of 
each column represent the percentages of load and 
store misses eliminated respectively, and a negative 
bar indicates an increase in load misses. Besides the 
additional 8KB per-byte valid bits, the write-validate 
cache has the same configuration as the baseline write-
allocate cache. 

Figure 6 demonstrates that a small SFB is effec-
tive on eliminating store misses. For most programs, 
nearly all fully modified blocks of a 64KB cache (Fig-
ure 2) can be recognized by a 16-entry SFB because of 
the blocks’ short fill intervals (Figure 5). However, 
due to the long fill intervals of crafty and bzip2, 
the SFB cannot identify all fully modified blocks of 
these two programs. 

As discussion in Section 5.1, using a SFB may in-
cur extra load misses to unmodified portions of the 
SFB entries. On the other hand, with a SFB, load-miss 
allocated blocks stay relatively longer in the L1 data 
cache, and many conflict misses between load and 
store-miss allocated blocks are avoided. Both factors 
being in consideration, Figure 6 shows that most pro-
grams’ load miss rates are in fact reduced by the SFBs. 

On average, a 16-entry SFB improves the cache 
performance by 16%; 2% of which is the load miss 
reduction. Larger SFBs are more effective on reducing 
load misses than store misses. 

5.2.2   Comparison with other schemes 

Although the SFB is similar to a write-validate 
cache, write-allocate with the SFB is superior to write-
validate for two reasons. First, a SFB incur less hard-
ware overhead (1206B for a 16-entry SFB versus 8KB 
for a 64KB write-validate cache) and uses on-chip 
transistors more efficiently than write-validate. Fur-
thermore, a SFB reduces both load and store misses, 
while a write-validate cache reduces store misses at the 
expense of increased load misses arising from access-
ing invalid portions of directly allocated blocks. Since 
system performance is more sensitive to load misses 
than to store misses, the increased load misses may 
negate the traffic advantage of write-validate over 
write-allocate.  

As illustrated in Figure 6, on average, the write-
validate cache incurs 16% of overall L1 data cache 
miss reduction but 2% load miss increase. A 16-entry 



 
 
 
 
 

SFB, with far less hardware cost, achieves similar 
overall miss reduction and much better load miss re-
duction. 

To justify the increased cache capacity by the 
SFBs, we compare the SFBs with a 32-entry victim 
cache [9]. One of the most popular cache assists, a 
victim cache is a small, fully set associative buffer 
holding discarded cache blocks. It is checked on cache 
misses to see if it contains the desired data before 
going down to the next level of the memory hierarchy. 
Hence, it is effective in eliminating conflict misses. 
Figure 6 shows that the 32-entry victim cache reduces 
the overall miss rates by 11%, less than the 16% 
achieved by the 16-entry SFB, even though the latter is 
only half of its size. 

5.2.3   Performance impact 

Figure 7 compares the performance results, in 
terms of IPC, of the baseline system (Table 1) and a 
system combining the baseline configuration with a 
16-entry SFB. Differing from what occurs in a conven-
tional write-allocate cache, a store missed in both the 
data cache and the SFB triggers a direct block alloca-
tion in the SFB, which has the same latency as a cache 
hit unless the SFB is full. In the latter case, the block 
in the LRU entry of the SFB must be evicted before 
the new block is installed in the entry. In practice, a 
one-entry buffer can temporarily store the evicted 
block to reduce the allocation penalty in a full SFB. A 
load miss to the invalid portion of a SFB entry incurs 
the same amount penalty as a L1 load miss. 

On average, 6% speedup is achieved by using the 
SFB. The SFB is especially effective on gcc (13% 
speedup) and mcf (27% speedup), which is due to 
their runtime characteristics such as high miss rates 

and the abundance of avoidable misses. On the other 
hand, the SFB has negligible impact on the perform-
ance of perl, gap, and twolf. 
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Figure 7. Performance speedup by the Store Fill Buffer. 
(Baseline configurations with a 16-entry store fill buffer) 

 
6.   Conclusions 

Memory bandwidth limitation is one of the major 
impediments to high-performance microprocessors. 
Hence, reducing memory traffic can improve perform-
ance by reducing pressure on store queues and cache 
hierarchies. It also enables other bandwidth-hungry 
techniques to further improve performance. 

This work investigates the reduction of memory 
bandwidth requirements of write-allocate caches by 
avoiding fetches of fully modified blocks. A cache 
block is fully modified if its original data has not been 
used until it is fully overwritten by subsequent stores. 
Hence, without affecting program correctness, those 
blocks can be directly installed in the cache to reduce 
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Figure 6. L1 data misses reduced by SFBs, victim cache and write-validate cache. (Each benchmark has five columns: 
16/32/64-entry SFBs with 64KB write-allocate caches, a 32-entry victim cache with a 64KB write-allocate cache, and a 
64KB write-validate cache) 
 



 
 
 
 
 

data traffic. The amount of fully modified blocks is 
affected by both program characteristics and cache 
configurations. For the SPEC CPU INT 2000 pro-
grams, 28% of overall data misses are avoidable for a 
1M cache.  

We also propose a hardware mechanism, the Store 
Fill Buffer, to identify fully modified blocks and re-
duce the data traffic. By delaying fetches for missed 
stores, the Store Fill Buffer identifies the majority of 
fully modified blocks even with a size as small as 16 
entries. Moreover, the Store Fill Buffer reduces both 
load and store misses. With significant less hardware 
cost, the Store Fill Buffer provides comparable cache 
performance to a write-validate cache. The Store Fill 
Buffer is also superior to the victim cache in cache 
performance on overall cache miss reduction. For a 
64KB data cache with a 16-entry Store Fill Buffer, on 
average 16% data misses are eliminated, which results 
in 6% performance speedup across SPEC CPU INT 
2000 benchmarks. 
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