

Avoiding Store Misses to Fully Modified Cache Blocks

Shiwen Hu Lizy John

Networking and Computing Systems Group
Freescale Semiconductor, Inc.

7700 W. Parmer Lane, Austin, TX 78729
shiwen.hu@freescale.com

Laboratory for Computer Architecture
The University of Texas at Austin

1 University Station C0803, Austin, TX 78712
ljohn@ece.utexas.edu

Abstract

Memory bandwidth limitation is one of the major im-
pediments to high-performance microprocessors. This
paper investigates a class of store misses that can be
eliminated to reduce data traffic. Those store misses
fetch cache blocks whose original data is never used.
If fully overwritten by subsequent stores, those blocks
can be installed directly in the cache without access-
ing lower levels of the memory hierarchy, eliminating
the corresponding data traffic. Our results indicate
that for a 1MB data cache, 28% of cache misses are
avoidable across SPEC CPU INT 2000 benchmarks.
We propose a simple hardware mechanism, the Store
Fill Buffer (SFB), which directly installs blocks for
store misses, and substantially reduces the data traffic.
A 16-entry SFB eliminates 16% of overall misses to a
64KB data cache, resulting in 6% speedup. This
mechanism enables other bandwidth-hungry tech-
niques to further improve system performance.

1. Introduction

As the speed gap between microprocessor and
main memory grows, main memory accesses become a
significant bottleneck to processor performance. Mem-
ory systems face the problems of long memory access
latencies and limited memory bandwidth. Numerous
techniques, such as value prediction and speculative
execution [7,12], prefetching [2] and multithreading
[14], have been proposed to reduce or tolerate long
memory access latencies. In return, many of those
latency-hiding techniques demand high memory
bandwidth, which is already a bottleneck in several
systems [3,6,13]. Hence, memory bandwidth limitation
becomes one of the major impediments to high-
performance microprocessors.

In modern processors, write-allocate caches are
usually preferred over non-write-allocate caches [9].
Write-allocate caches fetch and allocate cache blocks
upon store misses, while non-write-allocate caches
send the data to lower levels of the memory hierarchy

without allocating the corresponding blocks. Compar-
ing with non-write-allocate caches, write-allocate
caches lead to better performance by exploiting the
temporal locality of recently written data [9].

This paper investigates the reduction of memory
bandwidth requirement of write-allocate caches by
avoiding fetches of fully modified blocks. A store-miss
allocated cache block is fully modified if 1) the block’s
original data is never used, and 2) the block is com-
pletely overwritten by subsequent stores. Those two
properties ensure that the fetches of the original data of
fully modified blocks from the lower level of the
memory hierarchy can be avoided without affecting
program correctness. Accordingly, in this paper, the
store misses allocating fully modified blocks are called
avoidable misses, and the corresponding data traffic is
avoidable data traffic.

Figure 1. States and transitions of store-miss allocated
blocks.

Not all store-miss allocated blocks are fully modi-
fied. Those non-fully modified blocks can be further
categorized into two types. If a block’s original data is
read by a load instruction, the block is called load
unmodified. A non-load-unmodified, non-fully-
modified block is partially modified since it is evicted
from the cache with unmodified portions. Although not
used by the processor, the original data of partially
modified blocks is still needed to ensure that whole
cache blocks, instead of modified block segmentations,
are written back to lower levels of the memory hierar-
chy. Hence, data traffic fetching non-fully-modified
blocks cannot be avoided. The states and transitions of

Load: access modified portion
Store: partially modify the block

Partially modified Load unmodified

Fully modified

Load: access unmodified potion

Store: fully modify the block
 (Initial state)

store-miss allocated blocks are illustrated in Figure 1.
Initially, a newly allocated block is partially modified.

To reduce the avoidable data traffic, we propose a
simple hardware mechanism, the Store Fill Buffer
(SFB), which is a small buffer accessed in parallel with
the L1 data cache. Data traffic is reduced by directly
installing store-miss allocated blocks in the SFB, with-
out accessing lower levels of the memory hierarchy.
Compared with previous schemes [8,9,15], this
mechanism has advantages such as requiring no com-
pile-time support and incurring minimal hardware
overhead. Moreover, by allowing load-miss allocated
blocks staying longer in the L1 data cache, a SFB
reduces both load and store misses, improving the
performance considerably.

This work makes three contributions. 1) We dem-
onstrate that programs usually have abundant avoid-
able cache misses, regardless of varying cache con-
figurations. For a 1MB data cache, 28% misses that
access memory are avoidable. 2) We analyze the vari-
ous characteristics of store-miss allocated blocks. The
results indicate that it is feasible to effectively reduce
avoidable misses and data traffic via a low-cost hard-
ware approach. 3) Based on those findings, a hardware
mechanism, the Store Fill Buffer, is proposed to re-
duce data traffic that loads fully modified blocks. With
much smaller hardware costs, a SFB reduces more
load misses than a write-validate cache, and performs
better than a victim cache on overall miss reduction. A
16-entry SFB eliminates 16% of overall misses to a
64KB data cache, resulting in 6% speedup across
SPEC CPU INT 2000 benchmarks.

The rest of the paper is organized as follows: Sec-
tion 2 discusses previous efforts in the area, and Sec-
tion 3 describes the simulation environment and
evaluation methodology. The characteristics of avoid-
able data traffic are presented in Section 4. Section 5
proposes the Store Fill Buffer and evaluates its per-
formance impact. Finally, we conclude in Section 6.

2. Related work

There have been many studies on reducing data
traffic. One of such schemes is the write-validate cache
[9], in which no data is fetched upon a store miss.
Instead, the data is written directly into the cache, and
extra valid bits indicate the valid (i.e., modified) por-
tions of the blocks. One of write-validate’s deficiencies
is the significant implementation overhead, especially
when per-byte valid bits are required in architectures
such as Alpha [5]. More importantly, a write-validate
cache reduces store misses at the expense of increased
load misses arising from reading invalid portions of
directly installed blocks, negating write-validate’s

traffic advantage. As a comparison, a SFB reduces
both load and store misses, and incurs less hardware
overhead to yield better cache performance to a write-
validate cache (Section 5.2.2).

Cache installation instructions, such as dcbz in
PowerPC [8], are proposed to allocate and initialize
cache blocks directly [15]. Unfortunately, several
limitations prevent broader application of the approach.
First, to use the instruction, the compiler must assume
a cache block size and ensure that the whole block will
be modified. Consequently, executing the program on
a machine with wider cache blocks may cause errors.
Furthermore, the use of the instruction is limited by the
compiler’s limited scope since it cannot identify all
memory initialization operations.

A hardware mechanism [11] is proposed to iden-
tify stores that initialize heap objects, and trigger cache
installation instructions to reduce data traffic dynami-
cally. The mechanism’s dependence on the system
routine malloc() limits its application to programs
that use the routine exclusively, and can hardly work
on other programs, e.g., Java programs. Furthermore,
the mechanism cannot identify fully modified blocks
arising from program activities other than heap object
initialization. In contrast, SFB identifies almost all
fully modified blocks with no software assistance, and
is effective for programs written in any languages.

Another related scheme is the write cache/buffer
[9], which assists write-through caches to coalesce
missed stores before written to lower levels of the
memory hierarchy. Write-allocate caches, usually
employing the write-back policy, rarely use write
caches since a write-back cache inherently possesses
the capability of write coalescing. Furthermore, a write
cache can only reduce the downward data traffic, i.e.,
traffic to lower levels of the memory hierarchy. Since
in a write-allocate cache, the data traffic incurred by
store misses is upward, a write cache is unable to
minimize the avoidable data traffic as a SFB.

3. Methodology

This work uses a modified version of the Simples-
calar/Alpha version 3.0 toolset [4] to characterize
store-miss allocated blocks and evaluate the perform-
ance impact of the Store Fill Buffer. Simplesca-
lar/Alpha includes a suite of simulation tools for the
Alpha ISA [5], and its timing simulator incorporates a
detailed execution-driven out-of-order processor that
accurately executes user-level instructions. The base-
line machine is configured as an aggressive 8-way out-
of-order processor with two levels of caches, as given
in Table 1.

To perform our evaluation, we collect results from
SPEC CPU INT 2000 benchmarks [16]. The bench-
marks are compiled with SPEC peak settings, which
perform many aggressive optimizations. For each
benchmark, the execution of its first billion instruc-
tions is fast-forwarded to warm up the simulator, and
statistics are collected during the execution of the
second billion instructions. Each benchmark’s input set,
level-one data cache miss rate, and proportion of store
misses are summarized in Table 2. On average, 23% of
overall misses are store misses for a 64KB L1 data
cache. SPEC CPU 2000 floating-point benchmarks are
not evaluated in this paper since we could not obtain
the Alpha binaries of those benchmarks.

4. Characterizing avoidable misses

In a write-allocate cache, a cache block is allo-
cated due to either a load or a store miss. As discussed
in Section 1, a store-miss allocated cache block can be
either fully modified, load unmodified, or partially
modified. And the store misses allocating fully modi-
fied blocks are avoidable since the corresponding data
traffic is never used by the program, and can thus be
eliminated without affecting program correctness.

In this section, we demonstrate that large amount
of store misses are avoidable, regardless of varying
cache configurations. We also obtain the various char-
acteristics of store-miss allocated blocks. The results
indicate that it is feasible to effectively reduce avoid-
able misses and data traffic using a low-cost hardware
approach.

4.1 Avoidable misses
Figure 2 breaks down store-miss allocated blocks

for write-allocate caches ranging from 64KB to 4MB.
Load miss rates represent the differences between the
top of the accumulated bars and 100% of overall
misses. Modern high-performance microprocessors
usually have two or more levels of caches, with at least
one of them being write-allocate. In this figure, the two
smaller sizes (64K and 256K) correspond to L1 data
caches, while the two larger sizes (1M and 4M) repre-
sent the total capacities of on-chip caches. Hence, the
results in Figure 2 indicate the avoidable data traffic
between the write-allocate L1 cache and the L2 cache,
as well as between the write-allocate L2 cache and the
memory.

The store misses allocating fully modified blocks
are avoidable. The amount of fully modified blocks is
affected by both program characteristics and cache
configurations. Since blocks stay longer in a larger
cache, many otherwise partially modified blocks be-
come fully modified in a larger cache. Consequently,
the proportions of avoidable misses increase as cache
size increases. On average, fully modified blocks con-
sist of 14% and 28% of all blocks allocated in a 64K
cache and a 1M cache respectively.

Load unmodified blocks represent the extra load
misses of a non-write-allocate/write-validate cache
over a write-allocate cache. In a write-allocate cache, a
store-miss allocated block is load unmodified if a sub-
sequent load accesses its original data. For a non-
write-allocate/write-validate cache, such a block is
never fetched from the lower level of the memory
hierarchy, so the load reference is always missed.
Hence, the percentage of load-unmodified blocks of a
program implies how well a write-allocate cache out-

Table 1. Configuration of the baseline system.
CPU Memory Hierarchy

Instruction window 128-IFQ, 128-RUU, 64-LSQ L1 D-cache 64KB, 64B blocks, 4-way, LRU, 1 cycle hit latency,
Issue/commit width 8 instructions per cycle L1 I-cache 64KB, 64B blocks, 2-way, LRU, 1 cycle hit latency

Functional units 8 intALU, 4 IntMult/Div,
6 FPALU, 2 FPMult/Div

Branch predictor 2K-entry combined predictor

L2 unified
cache

1MB, 128B blocks, 4-way, LRU, 12 cycles hit la-
tency, 80 cycles miss latency

Table 2. Characteristics of SPEC CPU INT 2000 benchmarks. (64KB caches, 4-way, 64B blocks)

Benchmark Input set L1 d-cache
miss rate

Store miss
percentage Benchmark Input set L1 d-cache

miss rate
Store miss
percentage

gzip log 1.38% 26.57% eon cook 2.02% 31.52%
vpr route 2.70% 15.76% perlbmk diffmail 0.78% 16.36%
gcc 166 6.61% 52.74% gap ref 4.43% 25.01%
mcf ref 18.61% 23.02% vortex two 1.22% 14.70%

crafty ref 1.31% 12.55% bzip2 program 2.00% 27.81%
parser ref 2.07% 10.38% twolf ref 5.48% 17.70%

performs a non-write-allocate/write-validate cache on
the program. Figure 2 shows that many programs have
ignorable load unmodified blocks. One distinct pro-
gram is gap, 11% of whose cache blocks are load
unmodified. Hence, a non-write-allocate/write-validate
cache will perform badly on the benchmark.

0%

10%

20%

30%

40%

50%

60%

32
B

64
B

12
8B

25
6B 32
B

64
B

12
8B

25
6B 32
B

64
B

12
8B

25
6B 32
B

64
B

12
8B

25
6B

64K 256K 1M 4M

%
 o

f o
ve

ra
ll

m
is

se
s partially modified

load unmodified
fully modified

Figure 3. Sensitivity of avoidable store misses to cache
sizes and block widths.

4.2 Sensitivity to cache configurations
Figure 3 illustrates the compositions of types of

store misses under various cache sizes and block sizes.
The results are averaged over all workloads. As the
cache block size increases, the proportions of store
misses drop, indicating that stores have better spatial
locality than loads. Wider cache blocks contain more
data, and are intuitively more likely to be partially
modified or load unmodified. Consequently, the frac-
tion of fully modified blocks decreases with wider
cache blocks. However, even with wide cache blocks,
plenty store misses are avoidable. On average 16% of

the data traffic is avoidable for a 1MB cache with
256B blocks.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
gz

ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex
2

bz
ip

2

tw
ol

f

av
g

%
 o

f
L

1
d

at
a

ac
ce

ss
es

store hit in SAB
load hit in SAB
store hit in LAB
load hit in LAB

Figure 4. Breakdown of L1 data references. (LAB/SAB –
load-miss/store-miss allocated blocks. 64KB cache, 4-way
64B blocks)

4.3 Decomposition of data references
In a write-allocate cache, cache blocks are allo-

cated due to either load or store misses. Loads and
stores may access either type of blocks. Figure 4
breaks down the data references by their reference
types and the types of blocks accessed by those data
references. Hence, each bar consists of four portions,
representing the percentages of overall L1D accesses
that are loads/stores hitting load-miss/store-miss allo-
cated blocks. Data cache miss rates represent the dif-
ferences between the top of the accumulated bars and
100% of data references. As shown in Figure 4, ac-
cesses to load-miss allocated blocks dominate most

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 tw olf avg

%
 o

f m
em

or
y

tr
af

fic
partially modif ied
load unmodif ied
fully modif ied

Figure 2. Breakdown of store misses. (Cache parameters: 64KB-4M caches, 4-way, 64B blocks)

benchmarks. On average, 66% and 30% of data refer-
ences hit load-miss and store-miss allocated blocks
respectively, and the other 4% are cache misses to the
data cache.

4.4 Fill intervals of fully modified blocks
Figure 5 further categorizes fully modify blocks

by the lengths of their fill intervals. A block’s fill in-
terval is the number of data references/stores executed
before the block is completely overwritten. In Figure 5,
each benchmark has two bars, representing the break-
down of fill intervals in terms of data references (refs)
and stores (stores) respectively. Since data references
contain both loads and stores, a fully modified block’s
data-reference-based fill interval should be equal to or
longer than its store-based fill interval.

The lengths of fill intervals represent the stability
of fully modified blocks across different cache con-
figurations. For instance, if a block’s lifetime in the
cache is equal to or longer than its fill interval, then the
block is fully modified. Otherwise, it is partially modi-
fied. In this respect, a block with a long fill interval is
more likely to be partially modified in case that its
lifetime is short. For benchmarks such as gzip, gcc
and parser, most of the 64-byte blocks are filled
within 16 4-byte stores references, indicating that those
blocks are filled up by sequences of successive stores.
Heap object initialization is one source of the stores
with such good spatial locality [11]. On average, 45%
of fully modified blocks are filled with 16 successive
stores. Hence, it is feasible to effectively reduce avoid-
able misses and data traffic using a hardware approach.

5. Eliminating avoidable data traffic

Results in the previous section demonstrate that
avoidable data traffic is abundant, and eliminating
avoidable data traffic can improve performance by
reducing the pressure on store queues and cache hier-
archies. In addition, eliminating avoidable data traffic
improves memory bandwidth utilization, allowing
memory bandwidth hungry techniques, such as pre-
fetching and multithreading, to further boost system
performance.

In this section, we propose a simple hardware
mechanism, the Store Fill Buffer, to identify fully
modified blocks and reduce corresponding data traffic.
The Store Fill Buffer assists the L1 data cache to re-
duce traffic between the L1 and L2 caches. Although
not studied in this work, the approach can be applied
on the L2 cache to further eliminate data traffic.

5.1 Store Fill Buffer
The Store Fill Buffer (SFB) is a small, fully set

associative buffer that is accessed in parallel with the
L1 data cache. Having the same block size as the L1
data cache, it uses per-byte valid bits to identify fully
modified blocks. The valid overhead can be reduced if
the minimum store unit is larger than one byte and all
stores are aligned. Considering its small size, the SFB
hardly affects the L1 data cache’s access latency.

When a store miss occurs, the corresponding
block is not fetched from lower levels of memory.
Instead, the block is directly installed in a SFB entry.
The entry’s valid bits are set to indicate the
valid/invalid portions. Subsequent stores to the block’s

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

re
fs

st
or

es

re
fs

st
or

es

re
fs

st
or

es

re
fs

st
or

es

re
fs

st
or

es

re
fs

st
or

es

re
fs

st
or

es

re
fs

st
or

es

re
fs

st
or

es

re
fs

st
or

es

re
fs

st
or

es

re
fs

st
or

es

re
fs

st
or

es

gzip vpr gcc mcf craf pars eon perl gap vort bzip tw ol avg

%
 o

f
av

o
id

ab
le

 m
is

se
s

<=16 <=128 <=1K <=8K >8K

Figure 5. Breakdown of fully modified blocks by their fill intervals. (A block’s fill interval is the number of data refer-
ences/stores executed before the block is completely overwritten. Cache parameters: 64KB cache, 4-way, 64B blocks)

invalid portions update the valid bits. In three cases, a
SFB block is evicted to the L1 data cache. 1) The
block is fully modified with all valid bits set to one. 2)
The block becomes load unmodified when a load ref-
erence accesses the block’s invalid portion. 3) A new
entry is allocated when the SFB is full, and the par-
tially modified block in the LRU SFB entry is evicted
to the L1 data cache, leaving the SFB entry to the new
block. For fast SFB allocation, a one-entry buffer can
temporally hold the evicted partially modified entry
until its original data is fetched and allocated in the L1
data cache.

By employing the SFB, data traffic between L1
and L2 caches is reduced since moving fully modified
blocks from the SFB to the L1 cache incurs no L2
cache fetches. For load unmodified and partially modi-
fied blocks, fetches of their original data are still
needed.

SFB affects the system performance in two folds.
First, similar to a non-write-allocate/write-validate
cache, the load misses to load unmodified blocks incur
performance penalty, although Figure 2 indicates that
for most programs, such penalty is negligible. On the
other hand, with a SFB, load-miss allocated blocks
stay longer in the L1 data cache. Since most load ref-
erences tends to access load-miss allocated blocks
frequently (Section 4.3), the longer lifetime of those
blocks may improve the L1 data cache locality, and
thus system performance, considerably.

The data transfers from the SFB to the L1 data
cache are transparent to lower levels of the memory
hierarchy, and the L1 data cache still maintains the
write-allocate policy. Since both SFB and L1 cache are
on chip, such transfers are at full speed. By using a
one-entry buffer to temporarily hold the evicted SFB
block, the performance penalty of a full SFB can also
be minimized.

For multiprocessors, the SFB can be supported by
a weak ordering model to maintain cache coherence
[1]. Before a block is allocated in the SFB, its update
permission should be obtained.

5.2 Evaluation Results
We incorporate the SFB in our simulation envi-

ronment to evaluate its performance, and compare it
with a write-validate cache and a victim cache. As
noted in Section 2, a write cache/buffer is rarely used
with a write-allocate cache, and cannot reduce the
upward avoidable data traffic as the SFB. Hence we
will not compare the SFB against a write cache.

5.2.1 Cache miss/traffic reduction

For a write-allocate cache, the percentage of cache
misses eliminated represents the percentage of L1-L2
data traffic reduced. Figure 6 shows the overall data
misses reduced by using the SFBs with 16, 32 or 64
entries (the first three columns), a 32-entry victim
cache (the fourth columns) and a 64KB write-validate
cache (the fifth columns), respectively. The two bars of
each column represent the percentages of load and
store misses eliminated respectively, and a negative
bar indicates an increase in load misses. Besides the
additional 8KB per-byte valid bits, the write-validate
cache has the same configuration as the baseline write-
allocate cache.

Figure 6 demonstrates that a small SFB is effec-
tive on eliminating store misses. For most programs,
nearly all fully modified blocks of a 64KB cache (Fig-
ure 2) can be recognized by a 16-entry SFB because of
the blocks’ short fill intervals (Figure 5). However,
due to the long fill intervals of crafty and bzip2,
the SFB cannot identify all fully modified blocks of
these two programs.

As discussion in Section 5.1, using a SFB may in-
cur extra load misses to unmodified portions of the
SFB entries. On the other hand, with a SFB, load-miss
allocated blocks stay relatively longer in the L1 data
cache, and many conflict misses between load and
store-miss allocated blocks are avoided. Both factors
being in consideration, Figure 6 shows that most pro-
grams’ load miss rates are in fact reduced by the SFBs.

On average, a 16-entry SFB improves the cache
performance by 16%; 2% of which is the load miss
reduction. Larger SFBs are more effective on reducing
load misses than store misses.

5.2.2 Comparison with other schemes

Although the SFB is similar to a write-validate
cache, write-allocate with the SFB is superior to write-
validate for two reasons. First, a SFB incur less hard-
ware overhead (1206B for a 16-entry SFB versus 8KB
for a 64KB write-validate cache) and uses on-chip
transistors more efficiently than write-validate. Fur-
thermore, a SFB reduces both load and store misses,
while a write-validate cache reduces store misses at the
expense of increased load misses arising from access-
ing invalid portions of directly allocated blocks. Since
system performance is more sensitive to load misses
than to store misses, the increased load misses may
negate the traffic advantage of write-validate over
write-allocate.

As illustrated in Figure 6, on average, the write-
validate cache incurs 16% of overall L1 data cache
miss reduction but 2% load miss increase. A 16-entry

SFB, with far less hardware cost, achieves similar
overall miss reduction and much better load miss re-
duction.

To justify the increased cache capacity by the
SFBs, we compare the SFBs with a 32-entry victim
cache [9]. One of the most popular cache assists, a
victim cache is a small, fully set associative buffer
holding discarded cache blocks. It is checked on cache
misses to see if it contains the desired data before
going down to the next level of the memory hierarchy.
Hence, it is effective in eliminating conflict misses.
Figure 6 shows that the 32-entry victim cache reduces
the overall miss rates by 11%, less than the 16%
achieved by the 16-entry SFB, even though the latter is
only half of its size.

5.2.3 Performance impact

Figure 7 compares the performance results, in
terms of IPC, of the baseline system (Table 1) and a
system combining the baseline configuration with a
16-entry SFB. Differing from what occurs in a conven-
tional write-allocate cache, a store missed in both the
data cache and the SFB triggers a direct block alloca-
tion in the SFB, which has the same latency as a cache
hit unless the SFB is full. In the latter case, the block
in the LRU entry of the SFB must be evicted before
the new block is installed in the entry. In practice, a
one-entry buffer can temporarily store the evicted
block to reduce the allocation penalty in a full SFB. A
load miss to the invalid portion of a SFB entry incurs
the same amount penalty as a L1 load miss.

On average, 6% speedup is achieved by using the
SFB. The SFB is especially effective on gcc (13%
speedup) and mcf (27% speedup), which is due to
their runtime characteristics such as high miss rates

and the abundance of avoidable misses. On the other
hand, the SFB has negligible impact on the perform-
ance of perl, gap, and twolf.

0

0.5

1

1.5

2

2.5

3

3.5

gzip vpr gcc mcf craf pars eon perl gap vort bzip twol avg

in
st

ru
ct

io
n

s
p

er
 c

yc
le

baseline store fill buffer

Figure 7. Performance speedup by the Store Fill Buffer.
(Baseline configurations with a 16-entry store fill buffer)

6. Conclusions

Memory bandwidth limitation is one of the major
impediments to high-performance microprocessors.
Hence, reducing memory traffic can improve perform-
ance by reducing pressure on store queues and cache
hierarchies. It also enables other bandwidth-hungry
techniques to further improve performance.

This work investigates the reduction of memory
bandwidth requirements of write-allocate caches by
avoiding fetches of fully modified blocks. A cache
block is fully modified if its original data has not been
used until it is fully overwritten by subsequent stores.
Hence, without affecting program correctness, those
blocks can be directly installed in the cache to reduce

-10%

0%

10%

20%

30%

40%

50%

60%

16 32 64 VC W
V

16 32 64 VC W
V

16 32 64 VC W
V

16 32 64 VC W
V

16 32 64 VC W
V

16 32 64 VC W
V

16 32 64 VC W
V

16 32 64 VC W
V

16 32 64 VC W
V

16 32 64 VC W
V

16 32 64 VC W
V

16 32 64 VC W
V

16 32 64 VC W
V

gzip vpr gcc mcf craf pars eon perl gap vort bzip tw ol avg

%
 o

f L
1

da
ta

 m
is

se
s

re
du

ce
d % load misses reduced

% store misses reduced

Figure 6. L1 data misses reduced by SFBs, victim cache and write-validate cache. (Each benchmark has five columns:
16/32/64-entry SFBs with 64KB write-allocate caches, a 32-entry victim cache with a 64KB write-allocate cache, and a
64KB write-validate cache)

data traffic. The amount of fully modified blocks is
affected by both program characteristics and cache
configurations. For the SPEC CPU INT 2000 pro-
grams, 28% of overall data misses are avoidable for a
1M cache.

We also propose a hardware mechanism, the Store
Fill Buffer, to identify fully modified blocks and re-
duce the data traffic. By delaying fetches for missed
stores, the Store Fill Buffer identifies the majority of
fully modified blocks even with a size as small as 16
entries. Moreover, the Store Fill Buffer reduces both
load and store misses. With significant less hardware
cost, the Store Fill Buffer provides comparable cache
performance to a write-validate cache. The Store Fill
Buffer is also superior to the victim cache in cache
performance on overall cache miss reduction. For a
64KB data cache with a 16-entry Store Fill Buffer, on
average 16% data misses are eliminated, which results
in 6% performance speedup across SPEC CPU INT
2000 benchmarks.

Acknowledgements

The authors would like to thank the anonymous
reviewers and Ajay Joshi for their valuable comments.
This research was supported in part by NSF grant
0429806, and by IBM, Intel and AMD Corporations.

References

[1]. S. Adve and M. Hill, “Weak Ordering - A New
Definition”, in Proc. ISCA’17, 1990, pp. 2-14.

[2]. A. Badawy, A. Aggarwal, D. Yeung, and C.
Tseng, “Evaluating the Impact of Memory Sys-
tem Performance on Software Prefetching and
Locality Optimizations”, in Proc. ICS’ 15, 2001,
pp. 486-500.

[3]. D. Burger, J. Goodman, and A. Kagi, “Memory
Bandwidth Limitations of Future Microproces-
sors”, in Proc. ISCA’23, 1996, pp. 78-89.

[4]. D. Burger and T. M. Austin, “The SimpleScalar
Tool Set, Version 2.0”, Technical Report CS-
1342, University of Wisconsin-Madison, 1997.

[5]. Digital Equipment Corporation, “Alpha 21164
Microprocessor Hardware Reference Manual”,
Maynard Mass., Apr. 1995.

[6]. C. Ding and K. Kennedy, “Memory Bandwidth
Bottleneck and its Amelioration by a Compiler”,
in Proc. IPDPS, 2000, pp. 181-190.

[7]. F. Gabbay and A. Mendelson, “Speculative Exe-
cution Based on Value Prediction”, Technical
Report, Technion, 1996.

[8]. IBM Microelectronics and Motorola Corpora-
tion, “PowerPC Microprocessor Family: The
Programming Environments”, Motorola Inc.,
1994.

[9]. N. Jouppi, “Cache Write Policies and Perform-
ance”, in ACM SIGARCH Computer Architecture
News, V.21, No.2, May 1993, pp. 191-201.

[10]. N. Jouppi, “Improving Direct-Mapped Cache
Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers, in Proc.
ISCA’90, 1990, pp 364-373.

[11]. J. Lewis, B. Black, and M. Lipasti, “Avoiding
Initialization Misses to the Heap”, in Proc.
ISCA’29, 2002, pp. 183-194.

[12]. M. Lipasti and J. Shen, “Exceeding the Dataflow
Limit via Value Prediction”, in Proc. MICRO’29,
1996, pp. 226-237.

[13]. S. Perl and R. Sites, “Studies of Windows NT
Performance Using Dynamic Execution Traces”,
in ACM SIGOPS Operating System Reviews,
V.30, No.10, Oct. 1996, pp 169-183.

[14]. D. Tullsen, S. Eggers, and H. Levy, “Simultane-
ous Multithreading: Maximizing On-Chip Paral-
lelism”, in Proc. ISCA’ 22, 1995, pp. 392–403.

[15]. W. Wulf and S. McKee, “Hitting the Memory
Wall: Implications of the Obvious”, in ACM
Computer Architecture News, V.23, No.1, 1995,
pp. 20-24.

[16]. SPEC System Performance Evaluation Commit-
tee, http://www.spec.org.

