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Abstract

The exponential growth of computer networking demands massive upgrades in the
capacity of existing networks. Traditional capacity design methodologies, developed
with the single-class networking paradigm in mind, overlook the non-cooperative
structure of modern networks. Consequently, such design approaches entail the danger
of degraded performance when resources are added to a network, a phenomenon known
as the Braess paradox.
The present paper proposes methods for adding resources efficiently to a non-cooperative
network of general topology. It is shown that the paradox is avoided when resources are
added across the network, rather than on a local scale, and when upgrades are focused on
direct connections between the sources and destinations. The relevance of these results
for modern networks is demonstrated.
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1. Introduction

The exponential growth of computer networking, in terms of number of users and com-
ponents, traffic volume and diversity of services, demands massive upgrades in capacity for
existing networks. Traditionally, capacity design methodologies have been developed with
the single-class networking paradigm in mind. This approach overlooks the non-cooperative
structure of modern networks and entails, as will be explained in the following, the danger of
degraded performance when resources are added to a network. The term non-cooperative is
used to characterize networks operated according to a decentralized control paradigm, where
control decisions are made by each user independently, according to its own individual per-
formance objectives. The term ‘user’ may refer to a network user itself or, if the user’s traffic
consists of multiple connections, to individual connections that are controlled independently.
The most common example of a non-cooperative network is the Internet. In the current TCP
flow control mechanism, each user adjusts its transmission window—the maximum number
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of unacknowledged packets that the user can have circulating in the network—independently,
based on some feedback information about the level of congestion in the network (detected
as packet loss). Moreover, the Internet Protocol provides the option of source routeing, that
enables the user to determine the path(s) its flow follows from source to destination.

Game theory [16] provides the systematic framework to study and understand the behavior
of non-cooperative networks; see [1, 13, 14, 18, 19] and references therein. The operating
points of a non-cooperative network are the Nash equilibria of the underlying game, that
is, the points where unilateral deviation does not help any user to improve its performance.
Non-cooperative equilibria are generically Pareto inefficient [9], as is traditionally illustrated
in the well-known prisoner’s dilemma [16]. In the context of non-cooperative networks,
this inefficiency manifests itself as the potential degradation of performance when resources
are added to the network. This non-intuitive behavior (under the single-class networking
approach) is typically referred to as the Braess paradox [5]. Like many other paradoxes,
however, the Braess paradox is a paradox in name only as will be explained in Section 3.
Throughout the paper, the term ‘paradox’ is used in a non-strict sense.

The Braess paradox indicates that traditional practices, which overlook the non-cooperative
structure of networks, can tentatively lead to degraded performance. Design methodologies
for a class of non-cooperative networks have been studied in [14], using routeing as a control
paradigm. They focus on networks consisting of non-interfering paths, establishing that the
paradox cannot occur in such topologies, and obtaining the optimal solution for the capacity
allocation problem. The problem of efficiently adding resources to general topology networks,
however, is still open.

The present paper proposes methods for adding resources to a general network that guar-
antee an improvement in performance, thus establishing a methodology for efficiently coping
with the Braess paradox in non-cooperative networks. Although our study was originally
motivated by design problems in the field of computer networking, the results may be applied
to other types of networks in which the paradox has also been observed, e.g. transportation
networks [8]. Some of the results presented in this paper were briefly outlined, without proof,
in a survey of our research on non-cooperative networks [12].

The paper is structured as follows. In Section 2 we present the non-cooperative network
model and formulate the problem. The Braess paradox, in the context of non-cooperative
routeing, is presented in Section 3. The proposed methods for capacity addition are studied in
Section 4. Finally, concluding remarks are presented in Section 5.

2. Model and preliminaries

We consider a network (V,L), where V is a finite set of nodes and L ⊆ V × V is a set of
directed links. For simplicity of notation and without loss of generality, we assume that at most
one link exists between each pair of nodes (in each direction). For any link l = (u, v) ∈ L,
define S(l) = u and D(l) = v. Considering a node v ∈ V, let In(v) = {l : D(l) = v} denote
the set of its in-going links, and Out(v) = {l : S(l) = v} the set of its out-going links. Let cl be
the capacity of link l, where c = (cl)l∈L is called the capacity configuration of the network.

A set I = {1, 2, . . . , I } of users share the network (V,L). We shall assume that all
users ship flow from a common source s to a common destination d. Each user i has a
throughput demand that is some process with average rate ri . User i splits its demand ri

among the paths connecting the source to the destination, so as to optimize some individual
performance objective. Let f il denote the expected flow that user i sends on link l. The user
flow configuration f i = (f il )l∈L is called a routeing strategy of user i. The set of strategies
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for user i that satisfy the user’s demand and preserve its flow at all nodes is called the strategy
space of user i and denoted F i , that is

F i = {f i ∈ R
|L| : 0 ≤ f il ≤ cl, l ∈ L;

∑
l∈Out(v)

f il =
∑
l∈In(v)

f il + riv, v ∈ V},

where ris = ri , rid = −ri and riv = 0 for v �= s, d. The system flow configuration f =
(f 1, . . . ,f I ) is called a routeing strategy profile and takes values in the product strategy space
F = ⊗i∈IF

i .
The grade of service that the flow of user i receives is quantified by means of a cost function

J i : F → R. J i(f ) is the cost of user i under strategy profile f ; where a higher J i(f ) means
that a lower grade of service is provided to the flow of the user. We consider cost functions
that are the sum of link cost functions

J i(f ) =
∑
l∈L

f il Tl(fl), (2.1)

where fl = (f 1
l , . . . , f

I
l ), and Tl(fl) is the average delay on link l, and depends only on the

total flow fl = ∑
i∈I f

i
l on that link. The average delay should be interpreted as a general

congestion cost per unit of flow, that encapsulates the dependence of the quality of service
provided by a finite capacity resource on the total load fl offered to it. In the present paper, we
concentrate on congestion costs of the form

Tl(fl) =
{
(cl − fl)−1, fl < cl,

∞, fl ≥ cl, (2.2)

that are typical of various practical routeing algorithms [4]. Note that Equation (2.2) describes
theM/M/1 delay function. Therefore, if we assume that the delay characteristics of each link
can be approximated by an M/M/1 queue, then J i(f )/ri is the average time-delay that the
flow of user i experiences under strategy profile f .

User i aims to find a strategy f i ∈ F i that minimizes its cost. This optimization prob-
lem depends on the routeing decisions of the other users, described by the strategy profile
f −i = (f 1, . . . ,f i−1,f i+1, . . . ,f I ), since J i is a function of the system flow configuration
f . A Nash equilibrium of the routeing game is a strategy profile from which no user finds it
beneficial to unilaterally deviate. Hence, f ∈ F is a Nash equilibrium if

f i ∈ arg min
gi∈F i

J i(gi ,f −i ), i ∈ I. (2.3)

For the cost function J i(f ) given by (2.1) and (2.2), the existence of a Nash equilibrium
has been established in [18]. For the routeing problem to be meaningful, we assume that the
network can accommodate the total offered load, i.e. there is a routeing strategy profile f ∈ F
that is stable, in the sense that fl < cl holds at all links l ∈ L. The existence of such a
stable strategy may be verified by solving a standard multi-commodity flow problem through
linear programming techniques. Equations (2.3) and (2.2) then guarantee that, at any Nash
equilibrium, we have fl < cl for all l ∈ L, and the costs of all users are finite.

Given a strategy profile f −i for the other users, the cost of user i, as defined by (2.1)
and (2.2), is a convex function of its strategy f i . Hence, the minimization problem in (2.3)
has a unique solution. The Kuhn-Tucker optimality conditions [15], then, imply that f i is the
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optimal response of user i to f −i if and only if there exist (Lagrange multipliers) (λiu)u∈V ,
such that

λiu = f iuvT
′
uv + Tuv + λiv, if f iuv > 0, (u, v) ∈ L, (2.4)

λiu ≤ f iuvT ′
uv + Tuv + λiv, if f iuv = 0, (u, v) ∈ L, (2.5)

λid = 0. (2.6)

(The conditions (2.4)–(2.6) are presented in a form that is standard in the networking literature;
for completeness, their derivation is presented in the Appendix.) Therefore, a strategy profile
f ∈ F is a Nash equilibrium if and only if there exist λiu, such that the optimality conditions
(2.4)–(2.6) are satisfied for all i ∈ I. Note that λis is, in fact, the marginal cost of user i at the
optimality point. In accordance with the economics terminology, λis will be referred to as the
price of user i [17].

We consider the following design problem. Given a network with some initial capacity
configuration, the network designer can distribute some additional capacity allowance among
the network links. The aim of the designer is to come up with a new capacity configuration that
improves performance at the corresponding Nash equilibrium according to certain criteria. The
problem is well-defined if the Nash equilibrium, under any capacity configuration, is unique.
Whether this property holds in general topologies is an open question. (In [18], an example of
a general topology with multiple Nash equilibria is presented, however, the cost functions are
not of the form specified in (2.1) and (2.2).) Thus, we shall concentrate on some special cases
of interest (presented in the following) for which uniqueness has been established.

The designer may have different measures for characterizing the efficiency of a capacity
configuration. We shall concentrate on measures that are expressed by means of either the user
prices or costs. Although the user’s cost is a direct measure of its level of satisfaction, the
prices may be a more important measure from the system’s point of view, since they account
for the level of congestion as seen by users and are the direct indication of how each user could
accommodate fluctuations in the system’s state. The designer can consider various ways of
combining either the prices or the costs of the users. We shall concentrate on user optimization,
i.e. trying to reduce the price or cost of each and every user:

Definition 2.1. Consider two capacity configurations c and ĉ and let J i and Ĵ i (and corres-
pondingly, λis and λ̂is) be the cost (or price) of user i at the respective equilibrium. Configura-
tion ĉ is said to be user cost (price) efficient relative to configuration c, if Ĵ i ≤ J i (λ̂is ≤ λis),
for all i ∈ I.

As mentioned above, we will focus on cases for which the uniqueness of the Nash equilib-
rium point has been established. The first is that of ‘identical’ users, defined in the following.

Definition 2.2. Users are said to be identical if all their demands are equal, that is, ri = rj for
all i, j ∈ I.

The following result has been established [18]:

Lemma 2.3. The routeing game in a general topology network with identical users has a
unique Nash equilibrium. This equilibrium is symmetrical, i.e. f il = f

j
l = fl/I for all

i, j ∈ I and l ∈ L.

Another case of special interest is that of ‘simple users’, defined as follows.
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Definition 2.4. A user is said to be simple if all of its flows are routed through paths of minimal
delay.

Users often route their flows according to the ‘simple’ scheme due to practical consid-
erations. Many typical routeing algorithms send flows through the shortest paths, without
accounting for derivatives or bifurcating flows. The corresponding necessary and sufficient
conditions require the existence of some (λu)u∈V , such that

λu = Tuv + λv, if f iuv > 0, (u, v) ∈ L, (2.7)

λu ≤ Tuv + λv, if f iuv = 0, (u, v) ∈ L, (2.8)

λd = 0. (2.9)

We note that when (2.7)–(2.9) are satisfied, λs is the sum of delays on the links of any
minimum-delay path. Since simple users send their flow exclusively over such paths, the
equilibrium cost of user i is given by

J i = riλs. (2.10)

We shall refer to the value of λs as the price of the simple users. From (2.7)–(2.9), it is easy
to see that users routeing according to the optimality conditions (2.4)–(2.6) become simple
users as their population grows to infinity and their individual demands become infinitesimally
small, while their total demand remains R. This is the typical scenario in a transportation
network. The following result follows from [18].

Lemma 2.5. In a general topology with simple users there exists a Nash equilibrium, which
is unique with respect to the total link flows.

3. The Braess paradox

The Braess paradox, originally introduced for traffic flows, describes the existence of non-
intuitive equilibrium points in networks of various kinds ranging from transportation networks
[8], to electrical circuits, to mechanical networks of springs and strings, to hydraulic systems
(see [6] and references therein), to queueing networks [5, 7], to loss networks [2], and to
distributed computational systems [10].

In this section we present an example that adapts the Braess paradox to the routeing game.
The example demonstrates that an addition of capacity may, in general, increase both the price
and the cost of each and every user. We also explain that, despite its non-intuitive behavior,
there is nothing paradoxical about the ‘paradox,’ which is, in fact, an instance of the Pareto
inefficiency of non-cooperative equilibria.

Consider the network depicted in Figure 1. Links (1, 2) and (3, 4) each have capacity c1.
Link (1, 3) represents a path of n tandem links, each with capacity c2. Similarly, links (2, 4)
and (2, 3) are paths of n consecutive links each with capacities c2 and c3 respectively. There
are I identical users, each with an average throughput demand r , sending flow from node 1
to node 4. For c2 � Ir , each of the paths (1, 3) and (2, 4) approximates a link with non-
negligible delay that has low sensitivity to flow changes. Such constructions are required in
order to reproduce the classical Braess paradox in a queueing setting [5].

As explained in Section 2, this system has a unique and symmetrical Nash equilibrium, that
is, the flows (and thus, the costs and prices) of the users at equilibrium are equal. Figures 2
and 3 show, correspondingly, the user price and cost as functions of c3, for c1 = 2.7, c2 = 27,
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Figure 1: Network paradox.
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Figure 2: User price as a function of link capacity c3.

n = 54, I = 10 and r = 0.2. The figures indicate that, for any c3 > 0, both the price
and the cost of each user are higher than for c3 = 0, i.e., eliminating the path (2, 3) leads to
an improvement in performance for all users. More surprisingly, it can be verified that this
behavior persists even if c3 = ∞, that is, if nodes 2 and 3 are merged into a single node.

Like most paradoxes, the Braess paradox is a paradox only in name. Adding capacity to
link (2, 3)—or adding the link itself—augments the strategy space F i of each user i ∈ I and
thus the product strategy space F . Let F̂ i and F̂ , respectively, denote the resulting strategy
spaces. If there were a single user, the routeing game would be an optimization problem, and
thus performance could not deteriorate (since we would be optimizing over the augmented
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Figure 3: User cost as a function of link capacity c3.

strategy space F̂ ). In the presence of multiple users, however, the network is not operating
at optimum but at equilibrium and there are no guarantees that augmenting the strategy space
will lead to improved performance. In the prisoner’s dilemma [16], for example, eliminating
link (2, 3) corresponds to not giving the suspects the option to confess, thus resulting in the
universally optimal outcome.

The Braess paradox is, in fact, a projection of the prisoner’s dilemma onto the networking
domain. In other words, if the equilibrium of the routeing game were Pareto efficient, then the
paradox would not occur. To see this, let f ∈ F be the equilibrium before the addition of link
(2,3) and f̂ ∈ F̂ be the equilibrium after the link is added. If f̂ were Pareto efficient in F̂ , then
there would exist no point f̃ ∈ F̂ such that J i(f̃ ) ≤ J i(f̂ ) for all i ∈ I and J j (f̃ ) < J j (f̂ )
for some user j , thus the paradox would not occur. In [11], it is shown that Braess’ and a
number of other ‘paradoxes’ are, in fact, structurally equivalent to the prisoner’s dilemma.

4. Avoiding the paradox

The example presented in Section 3 demonstrates that adding capacity to a network, even in
infinite amounts, may result in an increase of both the price and the cost of each and every user.
This indicates that an upgrade of a general network, in terms of capacity and link addition,
should be carried out in a cautious way. In this section we devise methods for upgrading a
general network, so that the Braess paradox does not occur.

Consider an upgrade that is achieved by multiplying the capacity of each link by some
constant factor α > 1. That is, from a capacity configuration c = (cl)l∈L we obtain an
augmented capacity configuration ĉ = (ĉl)l∈L, such that ĉl = αcl for all l ∈ L. We say that ĉ

is an α-product of c. We then have the following.

Proposition 4.1. If ĉ is an α-product of c then:

1. for identical users, ĉ is user price efficient relative to c,

2. for simple users, ĉ is user price and cost efficient relative to c.

Proof. Consider first the case of identical users. Let f and f̂ be the Nash equilibria under
capacity configurations c and ĉ, respectively. Consider now the same network, but with the
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initial capacity configuration c and a set of I users with demands r̃ i = ri/α, i ∈ I. It is easy
to verify that, for such a capacity configuration and users, the optimality conditions (2.4)–(2.6)
are satisfied by the system flow configuration f̃ , where f̃ il = f̂ il /α, for all users i and links
l, and the corresponding Lagrange multipliers are λ̃iu = αλ̂iu, for all users i and nodes u.
Therefore, f̃ is the unique Nash equilibrium of the new network.

We construct a directed network (V ′,L′), whose set of nodes is identical to that of (V,L)
(i.e. V ′ = V) and the set of links L′ is constructed as follows:

• for each link l = (u, v) ∈ L, such that f il ≥ f̃ il , we have a link l′ = (u, v) ∈ L′; to
such a link l′ we assign a (flow) value xl′ = f il − f̃ il = (fl − f̃l)/I .

• for each link l = (u, v) ∈ L, such that f il < f̃
i
l , we have a link l′ = (v, u) ∈ L′; to

such a link l′ we assign a (flow) value xl′ = f̃ il − f il = (f̃l − fl)/I .
In other words, we redirect links according to the relation between f il and f̃ il . It is easy to
verify that the values xl′ constitute a nonnegative, directed flow in the network. Since ri > r̃i ,
xl′ must carry some flow (an amount ri − r̃ i) from the source s to the destination d. Thus,
there is some (simple) path p in (V ′,L′), such that xl′ > 0 for all l′ ∈ p.

Consider now a link l′ = (u, v) ∈ p. Since xl′ > 0, either f iuv > f̃
i
uv or else f̃ ivu > f

i
vu. In

the case where f iuv > f̃
i
uv ≥ 0, we have

λiu − λiv = f iuvT
′
uv + Tuv > f̃ iuvT̃ ′

uv + T̃uv ≥ λ̃iu − λ̃iv, (4.1)

where the first transition follows from the optimality conditions, since f iuv > 0; the second is
due to f iuv > f̃

i
uv , which implies fuv > f̃uv (since the users are identical) and, thus, Tuv > T̃uv

and T ′
uv > T̃

′
uv (since cuv = c̃uv); the third transition is again due to the optimality conditions.

In the case where f̃ ivu > f
i
vu ≥ 0, we have, by symmetry, that

λ̃iv − λ̃iu > λiv − λiu. (4.2)

Note that the results of equations (4.1) and (4.2) are, in fact, identical.
Denote�λu = λiu−λ̃iu, for all u ∈ V. From (4.1) and (4.2) we conclude that, for l′ = (u, v),

xl′ > 0 implies that�λu > �λv . This means that along the path p described above we have a
monotonically decreasing sequence of �λ’s (starting from the source s). Since λd = λ̃d = 0,
we conclude that λ̃is < λ

i
s . Hence: λ̂is = λ̃is/α < λ̃

i
s < λ

i
s , thus proving the first part of the

lemma.
Consider now the case of simple users. Let (fl)l∈L and (f̂l)l∈L be the total flow vectors at

the Nash equilibria corresponding to c and ĉ. Consider the same network, but with the initial
capacity configuration c and a set of simple users with demands r̃ i = ri/α, for all users i. For
this network, the optimality conditions (2.7)–(2.9) are satisfied by (f̃l)l∈L, with f̃l = f̂l/α,
l ∈ L, and Lagrange multipliers λ̃u = αλ̂u, u ∈ V. Proceeding as in the first part of the proof,
we obtain λ̃s < λs , thus: λ̂s = λ̃s/α < λ̃s < λs, and the claim on the prices follows. The
claim on the costs is immediate from equation (2.10).

The following proposition gives a sufficient condition on the product parameter α for ob-
taining cost efficiency in the case of identical users.

Proposition 4.2. In a general topology network with identical users, a capacity configuration
ĉ that is an α-product of a capacity configuration c is user cost efficient relative to c, for α > I .
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Proof. It can be shown [18] that for a given capacity configuration c, the vector of total link
flows at the Nash equilibrium corresponds to the unique minimum of the function

H((fl)l∈L) =
∑
l∈L

fl

cl − fl − (I − 1)
∑
l∈L

ln(cl − fl).

Denote by (fl)l∈L and (f̂l)l∈L the vectors of the total link flows at the Nash equilibria corres-
ponding to c and ĉ. Since (f̂l)l∈L minimizes the H -function that corresponds to configuration
ĉ = αc, we have

∑
l∈L

f̂l

αcl − f̂l
− (I − 1)

∑
l∈L

ln(αcl − f̂l) ≤
∑
l∈L

fl

αcl − fl − (I − 1)
∑
l∈L

ln(αcl − fl),

and thus

∑
l∈L

f̂l

αcl − f̂l
≤

∑
l∈L

fl

αcl − fl − (I − 1)
∑
l∈L

ln

(
αcl − fl
αcl − f̂l

)

≤
∑
l∈L

fl

αcl − fl − (I − 1)
∑
l∈L

ln

(
1 − fl

αcl

)
. (4.3)

Hence, in order to prove that
∑
l∈L f̂l/(αcl − f̂l) <

∑
l∈L fl/(cl − fl), it is enough to show

that

Q(fl) = fl

cl − fl − fl

αcl − fl + (I − 1) ln

(
1 − fl

αcl

)
> 0,

or, sinceQ(0) = 0:

dQ

dfl
= cl

(cl − fl)2 − αcl

(αcl − fl)2 − I − 1

αcl − fl > 0.

In view of α > I and after some algebraic manipulation one can see that it suffices to show

(2α + 1)(I − 1)c2
l + (I − 1)f 2

l > flcl(Iα + 2I − 3),

or (αI−2α+I−1)cl > fl(2I−3), which trivially holds. Since f il = fl/I (and f il h = flh/I ),

Ĵ i = 1

I

∑
l∈L

flh

αcl − flh <
1

I

∑
l∈L

fl

cl − fl = J i,

and this concludes the proof.

Propositions 4.1 and 4.2 indicate that capacity should be added across the network, rather
than on a local scale. The next result suggests that yet another good design practice is to focus
the upgrades on direct connections between sources and destinations.

Consider an upgrade that is achieved by adding a link between the source s and the des-
tination d . Denote by c and ĉ, respectively, the capacity configurations before and after this
addition. We say that ĉ is a direct augmentation of c. We then have the following.
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Proposition 4.3. In a general topology network, consider two capacity configurations ĉ and
c, such that ĉ is a direct augmentation of c.

1. If the users are identical, then ĉ is user price efficient relative to c.

2. If the users are simple, then ĉ is user price and cost efficient relative to c.

Proof. Consider first the case of identical users. Let f and f̂ be the Nash equilibria under
configurations c and ĉ, respectively. Denote by l̂ the link added between s and d. Then
L̂ = L ∪ {l̂}. If f̂

l̂
= 0, then f̂l = fl for all other links l ∈ L̂, and the prices of each user are

equal under both configurations.
Assume, then, that f̂

l̂
> 0. Consider now the same network, but with the initial capacity

configuration c and a set of I identical users, with demands r̃ i = ri − f̂
l̂
/I , for all users i. For

this network it is easy to verify that the optimality conditions (2.4)–(2.6) are satisfied by the
system flow configuration f̃ , with f̃ il = f̂ il , for all users i and links l ∈ L, and the Lagrange

multipliers λ̃iu = λ̂iu, i ∈ I and u ∈ V. Thus, f̃ is the unique Nash equilibrium corresponding
to such a network. Since this network has the initial capacity configuration, but the demand of
each user is now less (r̃ i < ri), following the proof of Proposition 4.1, one can show that:

λ̂is = λ̃is < λ
i
s, i ∈ I,

and this completes the proof for the case of identical users. The proof for simple users follows
similar lines and the details are omitted.

Remark. The last proposition holds also for the case of adding capacity to an already existing
direct link l̂ = (s, d) between source and destination. The proof is omitted.

5. Conclusions

We have investigated the problem of efficiently adding resources to general topology net-
works where users non-cooperatively implement their optimal routeing strategies. We have
derived a set of methodologies for upgrading the network so that the Braess paradox does not
occur. One indication from our results is that capacity should be added across the network,
rather than on a local (e.g. single link) scale. This fits well with common engineering practice,
where common folklore suggests that local improvement may only result in transferring the
problem somewhere else in the system. Another indication is that upgrades should be aimed at
direct connections between the source and the destination. This provides additional evidence
of the potential benefit of modern networking practices, which tend to decouple complex
structures by pre-allocating resources to various non-interfering routeing paths.

The practical application of our findings should be facilitated by exploiting additional
structure of real-world scenaria. This is the case, for example, with the global Internet, which
has a characteristic hierarchical topology. Indeed, due to this structure it should be sufficient to
uniformly upgrade just the ‘backbone’ links, and still avoid the Paradox; conversely, it should
be sufficient to uniformly upgrade the links of a ‘stub’ network, without requiring any changes
in other Internet links. Similarly, a ‘direct’ connection should be interpreted in the hierarchical
sense: it may refer, for example, to a backbone link between the regional networks with which
the source and destination routers are associated, rather than to a link between the routers
themselves.
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Appendix

A. Derivation of the Kuhn-Tucker conditions

Proposition A.1. Assume that there is a routeing strategy profile f ∈ F that is stable, in the
sense that fl < cl holds at all links l ∈ L. If the cost function of a user i ∈ I is defined
by (2.1) and (2.2), then f i is the optimal response of user i to f −i if and only if there exist
(Lagrange multipliers) (λiu)u∈V , such that (2.4)–(2.6) are satisfied.

Proof. F i is convex, and, as observed, given a strategy profile f −i of the other users, the cost
of user i, as defined by (2.1) and (2.2), is a convex function of its strategy f i . Consequently,
any local minimum of J i is also a global minimum. Also, since J i increases to infinity as f il
increases to cl , the stability constraint f il ≤ cl can be treated as absent.

The stability assumption, namely that there is a routeing strategy profile f ∈ F that is
stable, implies that Slater’s ‘interiority’ condition [3] is satisfied. The Kuhn-Tucker saddle
point theorem then guarantees the existence of the respective (finite) Lagrange multipliers.
Therefore, if we form the Lagrangian

Gi
f −i (f

i , λi, ηi) =
∑
u∈V

∑
v∈Out(u)

f iuvTuv +
∑
u∈V

λiu

( ∑
v∈In(u)

f ivu −
∑

v∈Out(u)

f iuv + riu
)

+
∑
u∈V

∑
v∈Out(u)

ηiuvf
i
uv

where, for all u ∈ V and v ∈ Out(u),

ηiuv ≤ 0 (A.1)

and

ηiuvf
i
uv = 0, (A.2)

a flow f i minimizes J i(·,f −i ) if and only if it is stationary with respect toGi
f −i [15]. Taking

derivatives and equating to zero one obtains

0 =
∂Gi

f −i

∂f iuv
= f iuvT

′
uv + Tuv + λiv − λiu + ηiuv. (A.3)

Finally, (A.1)–(A.2) imply that (A.3) is equivalent to (2.4)–(2.6), hence establishing the result.

Acknowledgements

This work was carried out in part while Yannis A. Korilis was with the Center for Telecom-
munications Research at Columbia University.

Ariel Orda was supported by the Lowengart Research Fund and by the fund for the pro-
motion of research at the Technion. This work was carried out in part while Ariel Orda was
visiting with the Center for Telecommunications Research at Columbia University.



222 Y. A. KORILIS, A. A. LAZAR AND A. ORDA

References

[1] Altman, E. (1994). Flow control using the theory of Zero-Sum Markov games. IEEE Trans. Automatic Control
39, 814–818.

[2] Bean, N. G., Kelly, F. P. and Taylor, P. G. (1997). Braess’ paradox in a loss network. J. Appl. Prob. 34,
155–159.

[3] Ben-Israel, A., Ben-Tal, A. and Zlobec, S. (1981). Optimality in Nonlinear Programming: a Feasible
Directions Approach. Wiley, New York.

[4] Bertsekas, D. and Gallager, R. (1992). Data Networks, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ.
[5] Cohen, J. E. and Kelly, F. P. (1990). A paradox of congestion in a queuing network. J. Appl. Prob. 27,

730–734.
[6] Cohen, J. E. and Horwitz, P. (1991). Paradoxical behaviour of mechanical and electrical networks. Nature

352, 699–701.
[7] Cohen, J. E. and Jeffries, C. (1997). Congestion resulting from increased capacity in single-server queueing

networks. IEEE/ACM Trans. Networking 5, 305–310.
[8] Dafermos, S. and Nagurney, A. (1984). On some traffic equilibrium theory paradoxes. Transportation

Research B 18, 101–110.
[9] Dubey, P. (1986). Inefficiency of Nash equilibria. Math. Operat. Res. 11, 1–8.

[10] Glance, N. S. and Hogg, T. (1995). Dilemmas in computational societies. In Proc. 1st International
Conference on Multiagent Systems, San Francisco, CA, June 1995, pp. 117–124.

[11] Irvine, A. D. (1993). How Braess’ paradox solves Newcomb’s problem. Internat. Stud. Philos. Sci. 7, 141–160.
[12] Korilis, Y. A., Lazar, A. A. and Orda, A. (1995). Architecting non-cooperative networks. IEEE J. Sel.

Areas Commun. 13, 1241–1251.
[13] Korilis, Y. A., Lazar, A. A. and Orda, A. (1997). Achieving network optima using Stackelberg routing

strategies. IEEE/ACM Trans. Networking 5, 161–173.
[14] Korilis, Y. A., Lazar, A. A. and Orda, A. (1997). Capacity allocation under non-cooperative routing.

IEEE Trans. Automatic Control 42, 309–325.
[15] Luenberger, D. G. (1984). Linear and Nonlinear Programming, 2nd edn. Addison Wesley, Reading, MA.
[16] Myerson, R. B. (1991). Game Theory: Analysis of Conflict. Harvard University Press, Cambridge, MA.
[17] Nicholson, W. (1994). Intermediate Microeconomics and its Applications, 6th edn. Dryden Press, Fort Worth,

TX.
[18] Orda, A., Rom, R. and Shimkin, N. (1993). Competitive routing in multiuser communication networks.

IEEE/ACM Trans. Networking 1, 510–521.
[19] Zhang, Z. and Douligeris, C. (1992). Convergence of synchronous and asynchronous greedy algorithms

in a multiclass telecommunications environment. IEEE Trans. Commun. 40, 1277–1281.


