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Abstract 

Disk-based deduplication storage has emerged as the new-generation storage system for enterprise data protection to 

replace tape libraries. Deduplication removes redundant data segments to compress data into a highly compact form 

and makes it economical to store backups on disk instead of tape.  A crucial requirement for enterprise data 

protection is high throughput, typically over 100 MB/sec, which enables backups to complete quickly.  A significant 

challenge is to identify and eliminate duplicate data segments at this rate on a low-cost system that cannot afford 

enough RAM to store an index of the stored segments and may be forced to access an on-disk index for every input 

segment.  

This paper describes three techniques employed in the production Data Domain deduplication file system to relieve 

the disk bottleneck. These techniques include: (1) the Summary Vector, a compact in-memory data structure for 

identifying new segments; (2) Stream-Informed Segment Layout, a data layout method to improve on-disk locality 

for sequentially accessed segments; and (3) Locality Preserved Caching, which maintains the locality of the 

fingerprints of duplicate segments to achieve high cache hit ratios.  Together, they can remove 99% of the disk 

accesses for deduplication of real world workloads.  These techniques enable a modern two-socket dual-core system 

to run at 90% CPU utilization with only one shelf of 15 disks and achieve 100 MB/sec for single-stream throughput 

and 210 MB/sec for multi-stream throughput. 

1 Introduction 

The massive storage requirements for data protection 

have presented a serious problem for data centers. 

Typically, data centers perform a weekly full backup of 

all the data on their primary storage systems to secondary 

storage devices where they keep these backups for weeks 

to months. In addition, they may perform daily 

incremental backups that copy only the data which has 

changed since the last backup. The frequency, type and 

retention of backups vary for different kinds of data, but 

it is common for the secondary storage to hold 10 to 20 

times more data than the primary storage. For disaster 

recovery, additional offsite copies may double the 

secondary storage capacity needed.  If the data is 

transferred offsite over a wide area network, the network 

bandwidth requirement can be enormous.   

Given the data protection use case, there are two main 

requirements for a secondary storage system storing 

backup data. The first is low cost so that storing backups 

and moving copies offsite does not end up costing 

significantly more than storing the primary data. The 

second is high performance so that backups can complete 

in a timely fashion. In many cases, backups must 

complete overnight so the load of performing backups 

does not interfere with normal daytime usage.  

The traditional solution has been to use tape libraries as 

secondary storage devices and to transfer physical tapes 

for disaster recovery. Tape cartridges cost a small 

fraction of disk storage systems and they have good 

sequential transfer rates in the neighborhood of 100 

MB/sec. But, managing cartridges is a manual process 

that is expensive and error prone. It is quite common for 

restores to fail because a tape cartridge cannot be located 

or has been damaged during handling. Further, random 

access performance, needed for data restores, is 

extremely poor. Disk-based storage systems and network 

replication would be much preferred if they were 

affordable. 

During the past few years, disk-based, “deduplication” 

storage systems have been introduced for data protection 

[QD02, MCM01, KDLT04, Dat05, JDT05].  Such 

systems compress data by removing duplicate data across 

files and often across all the data in a storage system.  

Some implementations achieve a 20:1 compression ratio 

(total data size divided by physical space used) for 3 

months of backup data using the daily-incremental and 

weekly-full backup policy. By substantially reducing the 

footprint of versioned data, deduplication can make the 

costs of storage on disk and tape comparable and make 

replicating data over a WAN to a remote site for disaster 

recovery practical.   
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The specific deduplication approach varies among 

system vendors.  Certainly the different approaches vary 

in how effectively they reduce data. But, the goal of this 

paper is not to investigate how to get the greatest data 

reduction, but rather how to do deduplication at high 

speed in order to meet the performance requirement for 

secondary storage used for data protection. 

The most widely used deduplication method for 

secondary storage, which we call Identical Segment 

Deduplication, breaks a data file or stream into 

contiguous segments and eliminates duplicate copies of 

identical segments. Several emerging commercial 

systems have used this approach. 

The focus of this paper is to show how to implement a 

high-throughput Identical Segment Deduplication 

storage system at low system cost. The key performance 

challenge is finding duplicate segments. Given a segment 

size of 8 KB and a performance target of 100 MB/sec, a 

deduplication system must process approximately 12,000 

segments per second.  

An in-memory index of all segment fingerprints could 

easily achieve this performance, but the size of the index 

would limit system size and increase system cost. 

Consider a segment size of 8 KB and a segment 

fingerprint size of 20 bytes. Supporting 8 TB worth of 

unique segments, would require 20 GB just to store the 

fingerprints.  

An alternative approach is to maintain an on-disk index 

of segment fingerprints and use a cache to accelerate 

segment index accesses. Unfortunately, a traditional 

cache would not be effective for this workload. Since 

fingerprint values are random, there is no spatial locality 

in the segment index accesses. Moreover, because the 

backup workload streams large data sets through the 

system, there is very little temporal locality. Most 

segments are referenced just once every week during the 

full backup of one particular system. Reference-based 

caching algorithms such as LRU do not work well for 

such workloads. The Venti system, for example, 

implemented such a cache [QD02].  Its combination of 

index and block caches only improves its write 

throughput by about 16% (from 5.6MB/sec to 

6.5MB/sec) even with 8 parallel disk index lookups.  The 

primary reason is due to its low cache hit ratios.   

With low cache hit ratios, most index lookups require 

disk operations. If each index lookup requires a disk 

access which may take 10 msec and 8 disks are used for 

index lookups in parallel, the write throughput will be 

about 6.4MB/sec, roughly corresponding to Venti’s 

throughput of less than 6.5MB/sec with 8 drives. While 

Venti’s performance may be adequate for the archival 

usage of a small workgroup, it’s a far cry from the 

throughput goal of deduplicating at 100 MB/sec to 

compete with high-end tape libraries. Achieving 100 

MB/sec, would require 125 disks doing index lookups in 

parallel! This would increase the system cost of 

deduplication storage to an unattainable level.  

Our key idea is to use a combination of three methods to 

reduce the need for on-disk index lookups during the 

deduplication process. We present in detail each of the 

three techniques used in the production Data Domain 

deduplication file system.   The first is to use a Bloom 

filter, which we call a Summary Vector, as the summary 

data structure to test if a data segment is new to the 

system. It avoids wasted lookups for segments that do 

not exist in the index. The second is to store data 

segments and their fingerprints in the same order that 

they occur in a data file or stream. Such Stream-Informed 

Segment Layout (SISL) creates spatial locality for 

segment and fingerprint accesses. The third, called 

Locality Preserved Caching, takes advantage of the 

segment layout to fetch and cache groups of segment 

fingerprints that are likely to be accessed together. A 

single disk access can result in many cache hits and thus 

avoid many on-disk index lookups.  

Our evaluation shows that these techniques are effective 

in removing the disk bottleneck in an Identical Segment 

Deduplication storage system.  For a system running on a 

server with two dual-core CPUs with one shelf of 15 

drives, these techniques can eliminate about 99% of 

index lookups for variable-length segments with an 

average size of about 8 KB. We show that the system 

indeed delivers high throughput: achieving over 100 

MB/sec for single-stream write and read performance, 

and over 210 MB/sec for multi-stream write 

performance.  This is an order-of-magnitude throughput 

improvement over the parallel indexing techniques 

presented in the Venti system. 

The rest of the paper is organized as follows.  Section 2 

presents challenges and observations in designing a 

deduplication storage system for data protection. Section 

3 describes the software architecture of the production 

Data Domain deduplication file system.  Section 4 

presents our methods for avoiding the disk bottleneck.  

Section 5 shows our experimental results.  Section 6 

gives an overview of the related work, and Section 7 

draws conclusions. 

2 Challenges and Observations 

2.1 Variable vs. Fixed Length Segments 

An Identical Segment Deduplication system could 

choose to use either fixed length segments or variable 

length segments created in a content dependent manner. 

Fixed length segments are the same as the fixed-size 

blocks of many non-deduplication file systems. For the 

purposes of this discussion, extents that are multiples of 
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some underlying fixed size unit such as a disk sector are 

the same as fixed-size blocks. 

Variable-length segments can be any number of bytes in 

length within some range. They are the result of 

partitioning a file or data stream in a content dependent 

manner [Man93, BDH94]. 

The main advantage of a fixed segment size is simplicity. 

A conventional file system can create fixed-size blocks 

in the usual way and a deduplication process can then be 

applied to deduplicate those fixed-size blocks or 

segments. The approach is effective at deduplicating 

whole files that are identical because every block of 

identical files will of course be identical. 

In backup applications, single files are backup images 

that are made up of large numbers of component files. 

These files are rarely entirely identical even when they 

are successive backups of the same file system. A single 

addition, deletion, or change of any component file can 

easily shift the remaining image content. Even if no other 

file has changed, the shift would cause each fixed sized 

segment to be different than it was last time, containing 

some bytes from one neighbor and giving up some bytes 

to its other neighbor. The approach of partitioning the 

data into variable length segments based on content 

allows a segment to grow or shrink as needed so the 

remaining segments can be identical to previously stored 

segments. 

Even for storing individual files, variable length 

segments have an advantage. Many files are very similar 

to, but not identical to other versions of the same file. 

Variable length segments can accommodate these 

differences and maximize the number of identical 

segments. 

Because variable length segments are essential for 

deduplication of the shifted content of backup images, 

we have chosen them over fixed-length segments. 

2.2 Segment Size 

Whether fixed or variable sized, the choice of average 

segment size is difficult because of its impact on 

compression and performance.  The smaller the 

segments, the more duplicate segments there will be.  Put 

another way, if there is a small modification to a file, the 

smaller the segment, the smaller the new data that must 

be stored and the more of the file’s bytes will be in 

duplicate segments. Within limits, smaller segments will 

result in a better compression ratio. 

On the other hand, with smaller segments, there are more 

segments to process which reduces performance. At a 

minimum, more segments mean more times through the 

deduplication loop, but it is also likely to mean more on-

disk index lookups.  

With smaller segments, there are more segments to 

manage. Since each segment requires the same metadata 

size, smaller segments will require more storage 

footprint for their metadata, and the segment fingerprints 

for fewer total user bytes can be cached in a given 

amount of memory. The segment index is larger. There 

are more updates to the index. To the extent that any data 

structures scale with the number of segments, they will 

limit the overall capacity of the system. Since 

commodity servers typically have a hard limit on the 

amount of physical memory in a system, the decision on 

the segment size can greatly affect the cost of the system. 

A well-designed duplication storage system should have 

the smallest segment size possible given the throughput 

and capacity requirements for the product. After several 

iterative design processes, we have chosen to use 8 KB 

as the average segment size for the variable sized data 

segments in our deduplication storage system. 

2.3 Performance-Capacity Balance 

A secondary storage system used for data protection 

must support a reasonable balance between capacity and 

performance. Since backups must complete within a 

fixed backup window time, a system with a given 

performance can only backup so much data within the 

backup window. Further, given a fixed retention period 

for the data being backed up, the storage system needs 

only so much capacity to retain the backups that can 

complete within the backup window. Conversely, given a 

particular storage capacity, backup policy, and 

deduplication efficiency, it is possible to compute the 

throughput that the system must sustain to justify the 

capacity. This balance between performance and 

capacity motivates the need to achieve good system 

performance with only a small number of disk drives. 

Assuming a backup policy of weekly fulls and daily 

incrementals with a retention period of 15 weeks and a 

system that achieves a 20x compression ratio storing 

backups for such a policy, as a rough rule of thumb, it 

requires approximately as much capacity as the primary 

data to store all the backup images. That is, for 1 TB of 

primary data, the deduplication secondary storage would 

consume approximately 1 TB of physical capacity to 

store the 15 weeks of backups. 

Weekly full backups are commonly done over the 

weekend with a backup window of 16 hours. The 

balance of the weekend is reserved for restarting failed 

backups or making additional copies. Using the rule of 

thumb above, 1 TB of capacity can protect 

approximately 1 TB of primary data. All of that must be 

backed up within the 16-hour backup window which 

implies a throughput of about 18 MB/sec per terabyte of 

capacity. 
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Following this logic, a system with a shelf of 15 SATA 

drives each with a capacity of 500 GB and a total usable 

capacity after RAID, spares, and other overhead of 6 TB 

could protect 6 TB of primary storage and must therefore 

be able to sustain over 100 MB/sec of deduplication 

throughput. 

2.4 Fingerprint vs. Byte Comparisons 

An Identical Segment Deduplication storage system 

needs a method to determine that two segments are 

identical. This could be done with a byte by byte 

comparison of the newly written segment with the 

previously stored segment. However, such a comparison 

is only possible by first reading the previously stored 

segment from disk. This would be much more onerous 

than looking up a segment in an index and would make it 

extremely difficult if not impossible to maintain the 

needed throughput.  

To avoid this overhead, we rely on comparisons of 

segment fingerprints to determine the identity of a 

segment. The fingerprint is a collision-resistant hash 

value computed over the content of each segment. SHA-

1 is such a collision-resistant function [NIST95]. At a 

160-bit output value, the probability of fingerprint 

collision by a pair of different segments is extremely 

small, many orders of magnitude smaller than hardware 

error rates [QD02]. When data corruption occurs, it will 

almost certainly be the result of undetected errors in 

RAM, IO busses, network transfers, disk storage devices, 

other hardware components or software errors and not 

from a collision. 

3 Deduplication Storage System 

Architecture 

To provide the context for presenting our methods for 

avoiding the disk bottleneck, this section describes the 

architecture of the production Data Domain File System, 

DDFS, for which Identical Segment Deduplication is an 

integral feature. Note that the methods presented in the 

next section are general and can apply to other Identical 

Segment Deduplication storage systems. 

At the highest level, DDFS breaks a file into variable-

length segments in a content dependent manner [Man93, 

BDH94] and computes a fingerprint for each segment. 

DDFS uses the fingerprints both to identify duplicate 

segments and as part of a segment descriptor used to 

reference a segment. It represents files as sequences of 

segment fingerprints. During writes, DDFS identifies 

duplicate segments and does its best to store only one 

copy of any particular segment. Before storing a new 

segment, DDFS uses a variation of the Ziv-Lempel 

algorithm to compress the segment [ZL77].  

Figure 1 is a block diagram of DDFS, which is made up 

of a stack of software components. At the top of the 

stack, DDFS supports multiple access protocols which 

are layered on a common File Services interface. 

Supported protocols include NFS, CIFS, and a virtual 

tape library interface (VTL). 

When a data stream enters the system, it goes through 

one of the standard interfaces to the generic File Services 

layer, which manages the name space and file metadata.  

The File Services layer forwards write requests to 

Content Store which manages the data content within a 

file. Content Store breaks a data stream into segments, 

uses Segment Store to perform deduplication, and keeps 

track of the references for a file.  Segment Store does the 

actual work of deduplication. It packs deduplicated 

(unique) segments into relatively large units, compresses 

such units using a variation of Ziv-Lempel algorithm to 

further compress the data, and then writes the 

compressed results into containers supported by 

Container Manager.  

To read a data stream from the system, a client drives the 

read operation through one of the standard interfaces and 

the File Services Layer.  Content Store uses the 

references to deduplicated segments to deliver the 

desired data stream to the client.  Segment Store 

prefetches, decompresses, reads and caches data 

segments from Container Manager. 

The following describes the Content Store, Segment 

Store and the Container Manager in detail and discusses 

our design decisions.   

3.1 Content Store 

Content Store implements byte-range writes and reads 

for deduplicated data objects, where an object is a linear 

  

Figure 1: Data Domain File System architecture. 
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sequence of client data bytes and has intrinsic and client-

settable attributes or metadata. An object may be a 

conventional file, a backup image of an entire volume or 

a tape cartridge.  

To write a range of bytes into an object, Content Store 

performs several operations. 

• Anchoring partitions the byte range into variable-

length segments in a content dependent manner 

[Man93, BDH94].   

• Segment fingerprinting computes the SHA-1 hash 

and generates the segment descriptor based on it. 

Each segment descriptor contains per segment 

information of at least fingerprint and size 

• Segment mapping builds the tree of segments that 

records the mapping between object byte ranges and 

segment descriptors. The goal is to represent a data 

object using references to deduplicated segments.   

To read a range of bytes in an object, Content Store 

traverses the tree of segments created by the segment 

mapping operation above to obtain the segment 

descriptors for the relevant segments. It fetches the 

segments from Segment Store and returns the requested 

byte range to the client. 

3.2 Segment Store 

Segment Store is essentially a database of segments 

keyed by their segment descriptors. To support writes, it 

accepts segments with their segment descriptors and 

stores them. To support reads, it fetches segments 

designated by their segment descriptors.  

To write a data segment, Segment Store performs several 

operations. 

• Segment filtering determines if a segment is a 

duplicate.  This is the key operation to deduplicate 

segments and may trigger disk I/Os, thus its 

overhead can significantly impact throughput 

performance. 

• Container packing adds segments to be stored to a 

container which is the unit of storage in the system. 

The packing operation also compresses segment data 

using a variation of the Ziv-Lempel algorithm. A 

container, when fully packed, is appended to the 

Container Manager. 

• Segment Indexing updates the segment index that 

maps segment descriptors to the container holding 

the segment, after the container has been appended 

to the Container Manager. 

To read a data segment, Segment Store performs the 

following operations. 

• Segment lookup finds the container storing the 

requested segment.  This operation may trigger disk 

I/Os to look in the on-disk index, thus it is 

throughput sensitive.   

• Container retrieval reads the relevant portion of the 

indicated container by invoking the Container 

Manager.  

• Container unpacking decompresses the retrieved 

portion of the container and returns the requested 

data segment. 

3.3 Container Manager 

The Container Manager provides a storage container log 

abstraction, not a block abstraction, to Segment Store. 

Containers, shown in Figure 2, are self-describing in that 

a metadata section includes the segment descriptors for 

the stored segments. They are immutable in that new 

containers can be appended and old containers deleted, 

but containers cannot be modified once written. When 

Segment Store appends a container, the Container 

Manager returns a container ID which is unique over the 

life of the system. 

The Container Manager is responsible for allocating, 

deallocating, reading, writing and reliably storing 

containers. It supports reads of the metadata section or a 

portion of the data section, but it only supports appends 

of whole containers. If a container is not full but needs to 

be written to disk, it is padded out to its full size. 

Container Manager is built on top of standard block 

storage. Advanced techniques such as Software RAID-6, 

continuous data scrubbing, container verification, and 

end to end data checks are applied to ensure a high level 

of data integrity and reliability. 

The container abstraction offers several benefits.  

 

Figure 2: Containers are self-describing, immutable, 

units of storage several megabytes in size. All segments 

are stored in containers. 
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• The fixed container size makes container allocation 

and deallocation easy. 

• The large granularity of a container write achieves 

high disk throughput utilization.  

• A properly sized container size allows efficient full-

stripe RAID writes, which enables an efficient 

software RAID implementation at the storage layer. 

4 Acceleration Methods  

This section presents three methods to accelerate the 

deduplication process in our deduplication storage 

system: summary vector, stream-informed data layout, 

and locality preserved caching.  The combination of 

these methods allows our system to avoid about 99% of 

the disk I/Os required by a system relying on index 

lookups alone. The following describes each of the three 

techniques in detail. 

4.1 Summary Vector 

The purpose of the Summary Vector is to reduce the 

number of times that the system goes to disk to look for a 

duplicate segment only to find that none exists. One can 

think of the Summary Vector as an in-memory, 

conservative summary of the segment index. If the 

Summary Vector indicates a segment is not in the index, 

then there is no point in looking further for the segment; 

the segment is new and should be stored. On the other 

hand, being only an approximation of the index, if the 

Summary Vector indicates the segment is in the index, 

there is a high probability that the segment is actually in 

the segment index, but there is no guarantee. 

The Summary Vector implements the following 

operations: 

• Init() 

• Insert(fingerprint) 

• Lookup(fingerprint) 

We use a Bloom filter to implement the Summary Vector 

in our current design [Blo70]. A Bloom filter uses a 

vector of m bits to summarize the existence information 

about n fingerprints in the segment index. In Init(), 

all bits are set to 0. Insert(a) uses k independent 

hashing functions, h 1 , …, hk, each mapping a fingerprint 

a to [0, m -1] and sets the bits at position h1(a), …, hk (a) 

to 1. For any fingerprint x, Lookup(x) will check all 

bits at position h 1(x) , …, h k(x) to see if they are all set 

to 1. If any of the bits is 0, then we know x is definitely 

not in the segment index. Otherwise, with high 

probability, x will be in the segment index, assuming 

reasonable choices of m, n, and k. Figure 3 illustrates the 

operations of Summary Vector. 

As indicated in [FCAB98], the probability of false 

positive for an element not in the set, or the false positive 

rate, can be calculated in a straightforward fashion, 

given our assumption that hash functions are perfectly 

random. After all n elements hashed and inserted into the 

Bloom filter, the probability that a specific bit is still 0 is 
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Using this formula, one can derive a particular parameter 

to achieve a given false positive rate.  For example, to 

achieve 2% false positive rate, the smallest size of the 

Summary Vector is 8 � n bits (m/n = 8) and the number 

of hash functions can be 4 (k = 4).   

To have a fairly small probability of false positive such 

as a fraction of a percent, we choose m such that m/n is 

about 8 for a target goal of n and k around 4 or 5. For 

example, supporting one billion base segments requires 

about 1 GB of memory for the Summary Vector. 

At system shutdown the system writes the Summary 

Vector to disk. At startup, it reads in the saved copy. To 

handle power failures and other kinds of unclean 

shutdowns, the system periodically checkpoints the 

 

Figure 3: Summary Vector operations. The Summary 

Vector can identify most new segments without looking 

up the segment index. Initially all bits in the array are 0. 

On insertion, shown in (a), bits specified by several 

hashes, h1, h2, and h3 of the fingerprint of the segment 

are set to 1. On lookup, shown in (b), the bits specified by 

the same hashes are checked. If any are 0, as shown in 

this case, the segment cannot be in the system. 
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Summary Vector to disk. To recover, the system loads 

the most recent checkpoint of the Summary Vector and 

then processes the containers appended to the container 

log since the checkpoint, adding the contained segments 

to the Summary Vector. 

Although several variations of Bloom filters have been 

proposed during the past few years [BM05], we have 

chosen the basic Bloom Filter for simplicity and efficient 

implementation. 

4.2 Stream-Informed Segment Layout 

We use Stream-Informed Segment Layout (SISL) to 

create spatial locality for both segment data and segment 

descriptors and to enable Locality Preserved Caching as 

described in the next section. A stream here is just the 

sequence of bytes that make up a backup image stored in 

a Content Store object. 

Our main observation is that in backup applications, 

segments tend to reappear in the same of very similar 

sequences with other segments. Consider a 1 MB file 

with a hundred or more segments. Every time that file is 

backed up, the same sequence of a hundred segments 

will appear. If the file is modified slightly, there will be 

some new segments, but the rest will appear in the same 

order. When new data contains a duplicate segment x, 

there is a high probability that other segments in its 

locale are duplicates of the neighbors of x. We call this 

property segment duplicate locality.  SISL is designed to 

preserve this locality. 

Content Store and Segment Store support a stream 

abstraction that segregates the segments created for 

different objects, preserves the logical ordering of 

segments within the Content Store object, and dedicates 

containers to hold segments for a single stream in their 

logical order. The metadata sections of these containers 

store segment descriptors in their logical order. Multiple 

streams can be written to Segment Store in parallel, but 

the stream abstraction prevents the segments for the 

different streams from being jumbled together in a 

container. 

The design decision to make the deduplication storage 

system stream aware is a significant distinction from 

other systems such as Venti. 

When an object is opened for writing, Content Store 

opens a corresponding stream with Segment Store which 

in turn assigns a container to the stream. Content Store 

writes ordered batches of segments for the object to the 

stream. Segment Store packs the new segments into the 

data section of the dedicated container, performs a 

variation of Ziv-Lempel compression on the data section, 

and writes segment descriptors into the metadata section 

of the container. When the container fills up, it appends 

it with Container Manager and starts a new container for 

the stream. Because multiple streams can write to 

Segment Store in parallel, there may be multiple open 

containers, one for each active stream.  

The end result is Stream-Informed Segment Layout or 

SISL, because for a data stream, new data segments are 

stored together in the data sections, and their segment 

descriptors are stored together in the metadata section.  

SISL offers many benefits.  

• When multiple segments of the same data stream are 

written to a container together, many fewer disk I/Os 

are needed to reconstruct the stream which helps the 

system achieve high read throughput. 

• Descriptors and compressed data of adjacent new 

segments in the same stream are packed linearly in 

the metadata and data sections respectively in the 

same container. This packing captures duplicate 

locality for future streams resembling this stream, 

and enables Locality Preserved Caching to work 

effectively. 

• The metadata section is stored separately from the 

data section, and is generally much smaller than the 

data section. For example, a container size of 4 MB, 

an average segment size of 8 KB, and a Ziv-Lempel 

compression ratio of 2, yield about 1K segments in a 

container, and require a metadata section size of just 

about 64 KB, at a segment descriptor size of 64 

bytes. The small granularity on container metadata 

section reads allows Locality Preserved Caching in a 

highly efficient manner: 1K segments can be cached 

using a single small disk I/O. This contrasts to the 

old way of one on-disk index lookup per segment. 

These advantages make SISL an effective mechanism for 

deduplicating multiple-stream fine-grained data 

segments. Packing containers in a stream aware fashion 

distinguishes our system from Venti and many other 

systems. 

4.3 Locality Preserved Caching 

We use Locality Preserved Caching (LPC) to accelerate 

the process of identifying duplicate segments.  

A traditional cache does not work well for caching 

fingerprints, hashes, or descriptors for duplicate 

detection because fingerprints are essentially random.  

Since it is difficult to predict the index location for next 

segment without going through the actual index access 

again, the miss ratio of a traditional cache will be 

extremely high. 

We apply LPC to take advantage of segment duplicate 

locality so that if a segment is a duplicate, the base 

segment is highly likely cached already. LPC is achieved 
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by combining the container abstraction with a segment 

cache as discussed next. 

For segments that cannot be resolved by the Summary 

Vector and LPC, we resort to looking up the segment in 

the segment index. We have two goals on this retrieval:  

• Making this retrieval a relatively rare occurrence. 

• Whenever the retrieval is made, it benefits segment 

filtering of future segments in the locale. 

LPC implements a segment cache to cache likely base 

segment descriptors for future duplicate segments.  The 

segment cache maps a segment fingerprint to its 

corresponding container ID.  Our main idea is to 

maintain the segment cache by groups of fingerprints.  

On a miss, LPC will fetch the entire metadata section in 

a container, insert all fingerprints in the metadata section 

into the cache, and remove all fingerprints of an old 

metadata section from the cache together.  This method 

will preserve the locality of fingerprints of a container in 

the cache. 

The operations for the segment cache are:  

• Init(): Initialize the segment cache. 

• Insert(container): Iterate through all 

segment descriptors in container metadata section, 

and insert each descriptor and container ID into the 

segment cache. 

• Remove(container): Iterate through all 

segment descriptors in container metadata section, 

and remove each descriptor and container ID from 

the segment cache. 

• Lookup(fingerprint): Find the corresponding 

container ID for the fingerprint specified. 

Descriptors of all segments in a container are added or 

removed from the segment cache at once. Segment 

caching is typically triggered by a duplicate segment that 

misses in the segment cache, and requires a lookup in the 

segment index. As a side effect of finding the 

corresponding container ID in the segment index, we 

prefetch all segment descriptors in this container to the 

segment cache. We call this Locality Preserved Caching. 

The intuition is that base segments in this container are 

likely to be checked against for future duplicate 

segments, based on segment duplicate locality. Our 

results on real world data have validated this intuition 

overwhelmingly. 

We have implemented the segment cache using a hash 

table. When the segment cache is full, containers that are 

ineffective in accelerating segment filtering are leading 

candidates for replacement from the segment cache. A 

reasonable cache replacement policy is Least-Recently-

Used (LRU) on cached containers. 

4.4 Accelerated Segment Filtering 

We have combined all three techniques above in the 

segment filtering phase of our implementation.  

For an incoming segment for write, the algorithm does 

the following: 

• Checks to see if it is in the segment cache.  If it is in 

the cache, the incoming segment is a duplicate.  

• If it is not in the segment cache, check the Summary 

Vector.  If it is not in the Summary Vector, the 

segment is new.  Write the new segment into the 

current container. 

• If it is in the Summary Vector, lookup the segment 

index for its container Id.  If it is in the index, the 

incoming segment is a duplicate; insert the metadata 

section of the container into the segment cache.  If 

the segment cache is full, remove the metadata 

section of the least recently used container first. 

• If it is not in the segment index, the segment is new. 

Write the new segment into the current container. 

We aim to keep the segment index lookup to a minimum 

in segment filtering. 

5 Experimental Results 

We would like to answer the following questions: 

• How well does the deduplication storage system 

work with real world datasets? 

• How effective are the three techniques in terms of 

reducing disk I/O operations? 

• What throughput can a deduplication storage system 

using these techniques achieve? 

For the first question, we will report our results with real 

world data from two customer data centers.  For the next 

two questions, we conducted experiments with several 

internal datasets. Our experiments use a Data Domain 

DD580 deduplication storage system as an NFS v3 

server [PJSS*94]. This deduplication system features 

two-socket duel-core CPU’s running at 3 Ghz, a total of 

8 GB system memory, 2 gigabit NIC cards, and a 15-

drive disk subsystem running software RAID6 with one 

spare drive. We use 1 and 4 backup client computers 

running NFS v3 client for sending data. 

5.1 Results with Real World Data 

The system described in this paper has been used at over 

1,000 data centers.  The following paragraphs report the 

deduplication results from two data centers, generated 

from the auto-support mechanism of the system. 
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Data center A backs up structured database data over the 

course of 31 days during the initial deployment of a 

deduplication system. The backup policy is to do daily 

full backups, where each full backup produces over 600 

GB at steady state. There are two exceptions: 

• During the initial seeding phase (until 6
th

 day in this 

example), different data or different types of data are 

rolled into the backup set, as backup administrators 

figure out how they want to use the deduplication 

system. A low rate of duplicate segment 

identification and elimination is typically associated 

with the seeding phase. 

• There are certain days (18
th

 day in this example) 

when no backup is generated.  

Figure 4 shows the logical capacity (the amount of data 

from user or backup application perspective) and the 

physical capacity (the amount of data stored in disk 

media) of the system over time at data center A. 

At the end of 31
st
 day, the data center has backed up 

about 16.9 TB, and the corresponding physical capacity 

is less than 440 GB, reaching a total compression ratio of 

38.54 to 1. 

Figure 5 shows daily global compression ratio (the daily 

rate of data reduction due to duplicate segment 

elimination), daily local compression ratio (the daily rate 

of data reduction due to Ziv-Lempel style compression 

on new segments), cumulative global compression ratio 

(the cumulative ratio of data reduction due to duplicate 

segment elimination), and cumulative total compression 

ratio (the cumulative ratio of data reduction due to 

duplicate segment elimination and Ziv-Lempel style 

compression on new segments) over time. 

At the end of 31
st
 day, cumulative global compression 

ratio reaches 22.53 to 1, and cumulative total 

compression ratio reaches 38.54 to 1.   

The daily global compression ratios change quite a bit 

over time, whereas the daily local compression ratios are 

quite stable. Table 1 summarizes the minimum, 

maximum, average, and standard deviation of both daily 

global and daily local compression ratios, excluding 

seeding (the first 6) days and no backup (18
th

) day. 

Data center B backs up a mixture of structured database 

and unstructured file system data over the course of 48 

days during the initial deployment of a deduplication 

system using both full and incremental backups. Similar 

to that in data center A, seeding lasts until the 6
th

 day, 

and there are a few days without backups (8
th

, 12-14
th

,

35
th

 days). Outside these days, the maximum daily 

logical backup size is about 2.1 TB, and the smallest size 

is about 50 GB.  

Figure 6 shows the logical capacity and the physical 

capacity of the system over time at data center B. 

At the end of 48
th 

day, the logical capacity reaches about 

41.4 TB, and the corresponding physical capacity is 

about 3.0 TB.  The total compression ratio is 13.71 to 1. 

Figure 7 shows daily global compression ratio, daily 

local compression ratio, cumulative global compression 

ratio, and cumulative total compression ratio over time. 

At the end of 48
th

 day, cumulative global compression 

reaches 6.85, while cumulative total compression reaches 

13.71. 

Figure 4: Logical/Physical Capacities at Data Center A

Min Max Average
Standard 
deviation

Daily global 
compression

10.05 74.31 40.63 13.73

Daily local 
compression

1.58 1.97 1.78 0.09

Table 1: Statistics on Daily Global and Daily Local 

Compression Ratios at Data Center A

Figure 5: Compression Ratios at Data Center AgoL:4erugiF
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Table 2 summarizes the minimum, maximum, average, 

and standard deviation of both daily global and daily 

local compression ratios, excluding seeding and days 

without backup.  

The two sets of results show that the deduplication 

storage system works well with the real world datasets.  

As expected, both cumulative global and cumulative 

total compression ratios increase as the system holds 

more backup data.  

During seeding, duplicate segment elimination tends to 

be ineffective, because most segments are new. After 

seeding, despite the large variation in the actual number, 

duplicate segment elimination becomes extremely 

effective. Independent of seeding, Ziv-Lempel style 

compression is relatively stable, giving a reduction of 

about 2 over time. The real world observations on the 

applicability of duplicate segment elimination during 

seeding and after seeding are particularly relevant in 

evaluating our techniques to reduce disk accesses below. 

5.2 I/O Savings with Summary Vector and 

Locality Preserved Caching 

To determine the effectiveness of the Summary Vector 

and Locality Preserved Caching, we examine the savings 

for disk reads to find duplicate segments using a 

Summary Vector and Locality Preserved Caching. 

We use two internal datasets for our experiment. One is a 

daily full backup of a company-wide Exchange 

information store over a 135-day period.  The other is the 

weekly full and daily incremental backup of an 

Engineering department over a 100-day period. Table 3 

summarizes key attributes of these two datasets. 

These internal datasets are generated from production 

usage (albeit internal). We also observe that various 

compression ratios produced by the internal datasets are 

relatively similar to those of real world examples 

examined in section 5.1. We believe these internal 

datasets are reasonable proxies of real world 

deployments.  

Each of the backup datasets is sent to the deduplicating 

storage system with a single backup stream. With respect 

to the deduplication storage system, we measure the 

number of disk reads for segment index lookups and 

locality prefetches needed to find duplicates during write 

for four cases:  

(1) with neither Summary Vector nor Locality 

Preserved Caching;  

(2) with Summary Vector only;  

(3) with Locality Preserved Caching only; and 

Figure 6: Logical/Physical Capacities at Data Center B.
Figure 7: Compression Ratios at Data Center B.

Min Max Average
Standard 
deviation

Daily global 
compression

5.09 45.16 13.92 9.08

Daily local 
compression

1.40 4.13 2.33 0.57

Table 2: Statistics on Daily Global and Daily Local 

Compression Ratios at Data Center B

Exchange 
data

Engineering 
data

Logical capacity (TB) 2.76 2.54

Physical capacity after 
deduplicating segments 
(TB)

0.49 0.50

Global compression 5.69 5.04

Physical capacity after 
local compression (TB)

0.22 0.261

Local compression 2.17 1.93

Total compression 12.36 9.75

Table 3: Capacities and Compression Ratios on 

Exchange and Engineering Datasets
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(4) with both Summary Vector and Locality 

Preserved Caching.  

The results are shown in Table 4. 

Clearly, the Summary Vector and Locality Preserved 

Caching combined have produced an astounding 

reduction in disk reads. Summary Vector alone reduces 

about 16.5% and 18.6% of the index lookup disk I/Os for 

exchange and engineering data respectively.  The 

Locality Preserved Caching alone reduces about 82.4% 

and 81% of the index lookup disk I/Os for exchange and 

engineering data respectively.  Together they are able to 

reduce the index lookup disk I/Os by 98.94% and 99.6% 

respectively. 

In general, the Summary Vector is very effective for new 

data, and Locality Preserved Caching is highly effective 

for little or moderately changed data.   For backup data, 

the first full backup (seeding equivalent) does not have 

as many duplicate data segments as subsequent full 

backups.  As a result, the Summary Vector is effective to 

avoid disk I/Os for the index lookups during the first full 

backup, whereas Locality Preserved Caching is highly 

beneficial for subsequent full backups. This result also 

suggests that these two datasets exhibit good duplicate 

locality. 

5.3 Throughput 

To determine the throughput of the deduplication storage 

system, we used a synthetic dataset driven by client 

computers. The synthetic dataset was developed to 

model backup data from multiple backup cycles from 

multiple backup streams, where each backup stream can 

be generated on the same or a different client computer. 

The dataset is made up of synthetic data generated on the 

fly from one or more backup streams. Each backup 

stream is made up of an ordered series of synthetic data 

versions where each successive version (“generation”) is 

a somewhat modified copy of the preceding generation 

in the series. The generation-to-generation modifications 

include: data reordering, deletion of existing data, and 

addition of new data. Single-client backup over time is 

simulated when synthetic data generations from a backup 

stream are written to the deduplication storage system in 

generation order, where significant amounts of data are 

unchanged day-to-day or week-to-week, but where small 

changes continually accumulate. Multi-client backup 

over time is simulated when synthetic data generations 

from multiple streams are written to the deduplication 

system in parallel, each stream in the generation order. 

There are two main advantages of using the synthetic 

dataset.  The first is that various compression ratios can 

be built into the synthetic model, and usages 

approximating various real world deployments can be 

tested easily in house. 

The second is that one can use relatively inexpensive 

client computers to generate an arbitrarily large amount 

of synthetic data in memory without disk I/Os and write 

in one stream to the deduplication system at more than 

100 MB/s. Multiple cheap client computers can combine 

in multiple streams to saturate the intake of the 

deduplication system in a switched network 

environment. We find it both much more costly and 

technically challenging using traditional backup 

software, high-end client computers attached to primary 

storage arrays as backup clients, and high–end servers as 

media/backup servers to accomplish the same feat. 

In our experiments, we choose an average generation 

(daily equivalent) global compression ratio of 30, and an 

average generation (daily equivalent) local compression 

ratio of 2 to 1 for each backup stream. These 

compression numbers seem possible given the real world 

examples in section 5.1. We measure throughput for one 

Exchange data Engineering data

# disk I/Os % of total # disk I/Os % of total

no Summary Vector and
no Locality Preserved Caching 

328,613,503 100.00% 318,236,712 100.00%

Summary Vector only 274,364,788 83.49% 259,135,171 81.43%

Locality Preserved Caching only 57,725,844 17.57% 60,358,875 18.97%

Summary Vector and

Locality Preserved Caching
3,477,129 1.06% 1,257,316 0.40%

Table 4: Index and locality reads. This table shows the number disk reads to perform index lookups or fetches from the 

container metadata for the four combinations: with and without the Summary Vector and with and without Locality 

Preserved Caching. Without either the Summary Vector or Locality Preserved Caching, there is an index read for every 

segment. The Summary Vector avoids these reads for most new segments. Locality Preserved Caching avoids index 

lookups for duplicate segments at the cost an extra read to fetch a group of segment fingerprints from the container 

metadata for every cache miss for which the segment is found in the index.
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backup stream using one client computer and 4 backup 

streams using two client computers for write and read for 

10 generations of the backup datasets.  The results are 

shown in Figures 8 and 9.  

The deduplication system delivers high write throughput 

results for both cases. In the single stream case, the 

system achieves write throughput of 110 MB/sec for 

generation 0 and over 113 MB/sec for generation 1 

through 9.  In the 4 stream case, the system achieves 

write throughput of 139 MB/sec for generation 0 and a 

sustained 217 MB/sec for generation 1 through 9. 

Write throughput for generation 0 is lower because all 

segments are new and require Ziv-Lempel style 

compression by the CPU of the deduplication system. 

The system delivers high read throughput results for the 

single stream case.  Throughout all generations, the 

system achieves over 100 MB/sec read throughput. 

For the 4 stream case, the read throughput is 211 MB/sec 

for generation 0, 192 MB/sec for generation 1, 165 

MB/sec for generation 2, and stay at around 140 MB/sec 

for future generations.  The main reason for the decrease 

of read throughput in the later generations is that future 

generations have more duplicate data segments than the 

first few.  However, the read throughput stays at about 

140 MB/sec for later generations because of Stream-

Informed Segment Layout and Locality Preserved 

Caching. 

Note that write throughput has historically been valued 

more than read throughput for the backup use case since 

backup has to complete within a specified backup 

window time period and it is much more frequent event 

than restore. Read throughput is still very important, 

especially in the case of whole system restores. 

5.4 Discussion 

The techniques presented in this paper are general 

methods to improve throughput performance of 

deduplication storage systems.  Although our system 

divides a data stream into content-based segments, these 

methods can also apply to system using fixed aligned 

segments such as Venti. 

As a side note, we have compared the compression ratios 

of a system segmenting data streams by contents (about 

8Kbytes on average) with another system using fixed 

aligned 8Kbytes segments on the engineering and 

exchange backup datasets.  We found that the fixed 

alignment approach gets basically no global compression 

(global compression: 1.01) for the engineering data, 

whereas the system with content-based segmentation 

gets a lot of global compression (6.39:1). The main 

reason of the difference is that the backup software 

creates the backup dataset without realigning data at file 

boundaries.  For the exchange backup dataset where the 

backup software aligns data at individual mailboxes, the 

global compression difference is less (6.61:1 vs. 

10.28:1), though there is a significant gap.   

Fragmentation will become more severe for long term 

retention, and can reduce the effectiveness of Locality 

Preserved Caching. We have investigated mechanisms to 

reduce fragmentation and sustain high write and read 

throughput. But, these mechanisms are beyond the scope 

of this paper. 

6 Related Work 

Much work on deduplication focused on basic methods 

and compression ratios, not on high throughput. 

Early deduplication storage systems use file-level 

hashing to detect duplicate files and reclaim their storage 

space [ABCC*02, TKSK*03, KDLT04].  Since such 

Figure 8: Write Throughput of Single Backup Client and 

4 Backup Clients.

Figure 9: Read Throughput of Single Backup Client and 

4 Backup Clients
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systems also use file hashes to address files.  Some call 

such systems content addressed storage or CAS.  Since 

their deduplication is at file level, such systems can 

achieve only limited global compression. 

Venti removes duplicate fixed-size data blocks by 

comparing their secure hashes [QD02].  It uses a large 

on-disk index with a straightforward index cache to 

lookup fingerprints.  Since fingerprints have no locality, 

their index cache is not effective.  When using 8 disks to 

lookup fingerprints in parallel, its throughput is still 

limited to less than 7 MB/sec.  Venti used a container 

abstraction to layout data on disks, but was stream 

agnostic, and did not apply Stream-Informed Segment 

Layout. 

To tolerate shifted contents, modern deduplication 

systems remove redundancies at variable-size data 

blocks divided based on their contents. Manber described 

a method to determine anchor points of a large file when 

certain bits of rolling fingerprints are zeros [Man93] and 

showed that Rabin fingerprints [Rab81, Bro93] can be 

computed efficiently. Brin et al. [BDH94] described 

several ways to divide a file into content-based data 

segments and use such segments to detect duplicates in 

digital documents.  Removing duplications at content-

based data segment level has been applied to network 

protocols and applications [SW00, SCPC*02, RLB03, 

MCK04] and has reduced network traffic for distributed 

file systems [MCM01, JDT05]. Kulkarni et al. evaluated 

the compression efficiency between an identity-based 

(fingerprint comparison of variable-length segments) 

approach and a delta-compression approach [KDLT04]. 

These studies have not addressed deduplication 

throughput issues.  

The idea of using Bloom filter [Blo70] to implement the 

Summary Vector is inspired by the summary data 

structure for the proxy cache in [FCAB98].  Their work 

also provided analysis for false positive rate. In addition, 

Broder and Mitzenmacher wrote an excellent survey on 

network applications of Bloom filters [AM02].  TAPER 

system used a Bloom filter to detect duplicates instead of 

detecting if a segment is new [JDT05].  It did not 

investigate throughput issues. 

7 Conclusions 

This paper presents a set of techniques to substantially 

reduce disk I/Os in high-throughput deduplication 

storage systems. 

Our experiments show that the combination of these 

techniques can achieve over 210 MB/sec for 4 multiple 

write data streams and over 140 MB/sec for 4 read data 

streams on storage server with two dual-core processors 

and one shelf of 15 drives. 

We have shown that Summary Vector can reduce disk 

index lookups by about 17% and Locality Preserved 

Caching can reduce disk index lookups by over 80%, but 

the combined caching techniques can reduce disk index 

lookups by about 99%.   

Stream-Informed Segment Layout is an effective 

abstraction to preserve spatial locality and enable 

Locality Preserved Caching.  

These techniques are general methods to improve 

throughput performance of deduplication storage 

systems. Our techniques for minimizing disk I/Os to 

achieve good deduplication performance match well 

against the industry trend of building many-core 

processors. With quad-core CPU’s already available, and 

eight-core CPU’s just around the corner, it will be a 

relatively short time before a large-scale deduplication 

storage system shows up with 400 ~ 800 MB/sec 

throughput with a modest amount of physical memory. 
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