
Avoiding the Disk Bottleneck in the Data Domain Deduplication File System

Benjamin Zhu

Data Domain, Inc.

Kai Li

Data Domain, Inc. and Princeton University

Hugo Patterson

Data Domain, Inc.

Abstract

Disk-based deduplication storage has emerged as the new-generation storage system for enterprise data protection to

replace tape libraries. Deduplication removes redundant data segments to compress data into a highly compact form

and makes it economical to store backups on disk instead of tape. A crucial requirement for enterprise data

protection is high throughput, typically over 100 MB/sec, which enables backups to complete quickly. A significant

challenge is to identify and eliminate duplicate data segments at this rate on a low-cost system that cannot afford

enough RAM to store an index of the stored segments and may be forced to access an on-disk index for every input

segment.

This paper describes three techniques employed in the production Data Domain deduplication file system to relieve

the disk bottleneck. These techniques include: (1) the Summary Vector, a compact in-memory data structure for

identifying new segments; (2) Stream-Informed Segment Layout, a data layout method to improve on-disk locality

for sequentially accessed segments; and (3) Locality Preserved Caching, which maintains the locality of the

fingerprints of duplicate segments to achieve high cache hit ratios. Together, they can remove 99% of the disk

accesses for deduplication of real world workloads. These techniques enable a modern two-socket dual-core system

to run at 90% CPU utilization with only one shelf of 15 disks and achieve 100 MB/sec for single-stream throughput

and 210 MB/sec for multi-stream throughput.

1 Introduction

The massive storage requirements for data protection

have presented a serious problem for data centers.

Typically, data centers perform a weekly full backup of

all the data on their primary storage systems to secondary

storage devices where they keep these backups for weeks

to months. In addition, they may perform daily

incremental backups that copy only the data which has

changed since the last backup. The frequency, type and

retention of backups vary for different kinds of data, but

it is common for the secondary storage to hold 10 to 20

times more data than the primary storage. For disaster

recovery, additional offsite copies may double the

secondary storage capacity needed. If the data is

transferred offsite over a wide area network, the network

bandwidth requirement can be enormous.

Given the data protection use case, there are two main

requirements for a secondary storage system storing

backup data. The first is low cost so that storing backups

and moving copies offsite does not end up costing

significantly more than storing the primary data. The

second is high performance so that backups can complete

in a timely fashion. In many cases, backups must

complete overnight so the load of performing backups

does not interfere with normal daytime usage.

The traditional solution has been to use tape libraries as

secondary storage devices and to transfer physical tapes

for disaster recovery. Tape cartridges cost a small

fraction of disk storage systems and they have good

sequential transfer rates in the neighborhood of 100

MB/sec. But, managing cartridges is a manual process

that is expensive and error prone. It is quite common for

restores to fail because a tape cartridge cannot be located

or has been damaged during handling. Further, random

access performance, needed for data restores, is

extremely poor. Disk-based storage systems and network

replication would be much preferred if they were

affordable.

During the past few years, disk-based, “deduplication”

storage systems have been introduced for data protection

[QD02, MCM01, KDLT04, Dat05, JDT05]. Such

systems compress data by removing duplicate data across

files and often across all the data in a storage system.

Some implementations achieve a 20:1 compression ratio

(total data size divided by physical space used) for 3

months of backup data using the daily-incremental and

weekly-full backup policy. By substantially reducing the

footprint of versioned data, deduplication can make the

costs of storage on disk and tape comparable and make

replicating data over a WAN to a remote site for disaster

recovery practical.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 269

The specific deduplication approach varies among

system vendors. Certainly the different approaches vary

in how effectively they reduce data. But, the goal of this

paper is not to investigate how to get the greatest data

reduction, but rather how to do deduplication at high

speed in order to meet the performance requirement for

secondary storage used for data protection.

The most widely used deduplication method for

secondary storage, which we call Identical Segment

Deduplication, breaks a data file or stream into

contiguous segments and eliminates duplicate copies of

identical segments. Several emerging commercial

systems have used this approach.

The focus of this paper is to show how to implement a

high-throughput Identical Segment Deduplication

storage system at low system cost. The key performance

challenge is finding duplicate segments. Given a segment

size of 8 KB and a performance target of 100 MB/sec, a

deduplication system must process approximately 12,000

segments per second.

An in-memory index of all segment fingerprints could

easily achieve this performance, but the size of the index

would limit system size and increase system cost.

Consider a segment size of 8 KB and a segment

fingerprint size of 20 bytes. Supporting 8 TB worth of

unique segments, would require 20 GB just to store the

fingerprints.

An alternative approach is to maintain an on-disk index

of segment fingerprints and use a cache to accelerate

segment index accesses. Unfortunately, a traditional

cache would not be effective for this workload. Since

fingerprint values are random, there is no spatial locality

in the segment index accesses. Moreover, because the

backup workload streams large data sets through the

system, there is very little temporal locality. Most

segments are referenced just once every week during the

full backup of one particular system. Reference-based

caching algorithms such as LRU do not work well for

such workloads. The Venti system, for example,

implemented such a cache [QD02]. Its combination of

index and block caches only improves its write

throughput by about 16% (from 5.6MB/sec to

6.5MB/sec) even with 8 parallel disk index lookups. The

primary reason is due to its low cache hit ratios.

With low cache hit ratios, most index lookups require

disk operations. If each index lookup requires a disk

access which may take 10 msec and 8 disks are used for

index lookups in parallel, the write throughput will be

about 6.4MB/sec, roughly corresponding to Venti’s

throughput of less than 6.5MB/sec with 8 drives. While

Venti’s performance may be adequate for the archival

usage of a small workgroup, it’s a far cry from the

throughput goal of deduplicating at 100 MB/sec to

compete with high-end tape libraries. Achieving 100

MB/sec, would require 125 disks doing index lookups in

parallel! This would increase the system cost of

deduplication storage to an unattainable level.

Our key idea is to use a combination of three methods to

reduce the need for on-disk index lookups during the

deduplication process. We present in detail each of the

three techniques used in the production Data Domain

deduplication file system. The first is to use a Bloom

filter, which we call a Summary Vector, as the summary

data structure to test if a data segment is new to the

system. It avoids wasted lookups for segments that do

not exist in the index. The second is to store data

segments and their fingerprints in the same order that

they occur in a data file or stream. Such Stream-Informed

Segment Layout (SISL) creates spatial locality for

segment and fingerprint accesses. The third, called

Locality Preserved Caching, takes advantage of the

segment layout to fetch and cache groups of segment

fingerprints that are likely to be accessed together. A

single disk access can result in many cache hits and thus

avoid many on-disk index lookups.

Our evaluation shows that these techniques are effective

in removing the disk bottleneck in an Identical Segment

Deduplication storage system. For a system running on a

server with two dual-core CPUs with one shelf of 15

drives, these techniques can eliminate about 99% of

index lookups for variable-length segments with an

average size of about 8 KB. We show that the system

indeed delivers high throughput: achieving over 100

MB/sec for single-stream write and read performance,

and over 210 MB/sec for multi-stream write

performance. This is an order-of-magnitude throughput

improvement over the parallel indexing techniques

presented in the Venti system.

The rest of the paper is organized as follows. Section 2

presents challenges and observations in designing a

deduplication storage system for data protection. Section

3 describes the software architecture of the production

Data Domain deduplication file system. Section 4

presents our methods for avoiding the disk bottleneck.

Section 5 shows our experimental results. Section 6

gives an overview of the related work, and Section 7

draws conclusions.

2 Challenges and Observations

2.1 Variable vs. Fixed Length Segments

An Identical Segment Deduplication system could

choose to use either fixed length segments or variable

length segments created in a content dependent manner.

Fixed length segments are the same as the fixed-size

blocks of many non-deduplication file systems. For the

purposes of this discussion, extents that are multiples of

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association270

some underlying fixed size unit such as a disk sector are

the same as fixed-size blocks.

Variable-length segments can be any number of bytes in

length within some range. They are the result of

partitioning a file or data stream in a content dependent

manner [Man93, BDH94].

The main advantage of a fixed segment size is simplicity.

A conventional file system can create fixed-size blocks

in the usual way and a deduplication process can then be

applied to deduplicate those fixed-size blocks or

segments. The approach is effective at deduplicating

whole files that are identical because every block of

identical files will of course be identical.

In backup applications, single files are backup images

that are made up of large numbers of component files.

These files are rarely entirely identical even when they

are successive backups of the same file system. A single

addition, deletion, or change of any component file can

easily shift the remaining image content. Even if no other

file has changed, the shift would cause each fixed sized

segment to be different than it was last time, containing

some bytes from one neighbor and giving up some bytes

to its other neighbor. The approach of partitioning the

data into variable length segments based on content

allows a segment to grow or shrink as needed so the

remaining segments can be identical to previously stored

segments.

Even for storing individual files, variable length

segments have an advantage. Many files are very similar

to, but not identical to other versions of the same file.

Variable length segments can accommodate these

differences and maximize the number of identical

segments.

Because variable length segments are essential for

deduplication of the shifted content of backup images,

we have chosen them over fixed-length segments.

2.2 Segment Size

Whether fixed or variable sized, the choice of average

segment size is difficult because of its impact on

compression and performance. The smaller the

segments, the more duplicate segments there will be. Put

another way, if there is a small modification to a file, the

smaller the segment, the smaller the new data that must

be stored and the more of the file’s bytes will be in

duplicate segments. Within limits, smaller segments will

result in a better compression ratio.

On the other hand, with smaller segments, there are more

segments to process which reduces performance. At a

minimum, more segments mean more times through the

deduplication loop, but it is also likely to mean more on-

disk index lookups.

With smaller segments, there are more segments to

manage. Since each segment requires the same metadata

size, smaller segments will require more storage

footprint for their metadata, and the segment fingerprints

for fewer total user bytes can be cached in a given

amount of memory. The segment index is larger. There

are more updates to the index. To the extent that any data

structures scale with the number of segments, they will

limit the overall capacity of the system. Since

commodity servers typically have a hard limit on the

amount of physical memory in a system, the decision on

the segment size can greatly affect the cost of the system.

A well-designed duplication storage system should have

the smallest segment size possible given the throughput

and capacity requirements for the product. After several

iterative design processes, we have chosen to use 8 KB

as the average segment size for the variable sized data

segments in our deduplication storage system.

2.3 Performance-Capacity Balance

A secondary storage system used for data protection

must support a reasonable balance between capacity and

performance. Since backups must complete within a

fixed backup window time, a system with a given

performance can only backup so much data within the

backup window. Further, given a fixed retention period

for the data being backed up, the storage system needs

only so much capacity to retain the backups that can

complete within the backup window. Conversely, given a

particular storage capacity, backup policy, and

deduplication efficiency, it is possible to compute the

throughput that the system must sustain to justify the

capacity. This balance between performance and

capacity motivates the need to achieve good system

performance with only a small number of disk drives.

Assuming a backup policy of weekly fulls and daily

incrementals with a retention period of 15 weeks and a

system that achieves a 20x compression ratio storing

backups for such a policy, as a rough rule of thumb, it

requires approximately as much capacity as the primary

data to store all the backup images. That is, for 1 TB of

primary data, the deduplication secondary storage would

consume approximately 1 TB of physical capacity to

store the 15 weeks of backups.

Weekly full backups are commonly done over the

weekend with a backup window of 16 hours. The

balance of the weekend is reserved for restarting failed

backups or making additional copies. Using the rule of

thumb above, 1 TB of capacity can protect

approximately 1 TB of primary data. All of that must be

backed up within the 16-hour backup window which

implies a throughput of about 18 MB/sec per terabyte of

capacity.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 271

Following this logic, a system with a shelf of 15 SATA

drives each with a capacity of 500 GB and a total usable

capacity after RAID, spares, and other overhead of 6 TB

could protect 6 TB of primary storage and must therefore

be able to sustain over 100 MB/sec of deduplication

throughput.

2.4 Fingerprint vs. Byte Comparisons

An Identical Segment Deduplication storage system

needs a method to determine that two segments are

identical. This could be done with a byte by byte

comparison of the newly written segment with the

previously stored segment. However, such a comparison

is only possible by first reading the previously stored

segment from disk. This would be much more onerous

than looking up a segment in an index and would make it

extremely difficult if not impossible to maintain the

needed throughput.

To avoid this overhead, we rely on comparisons of

segment fingerprints to determine the identity of a

segment. The fingerprint is a collision-resistant hash

value computed over the content of each segment. SHA-

1 is such a collision-resistant function [NIST95]. At a

160-bit output value, the probability of fingerprint

collision by a pair of different segments is extremely

small, many orders of magnitude smaller than hardware

error rates [QD02]. When data corruption occurs, it will

almost certainly be the result of undetected errors in

RAM, IO busses, network transfers, disk storage devices,

other hardware components or software errors and not

from a collision.

3 Deduplication Storage System

Architecture

To provide the context for presenting our methods for

avoiding the disk bottleneck, this section describes the

architecture of the production Data Domain File System,

DDFS, for which Identical Segment Deduplication is an

integral feature. Note that the methods presented in the

next section are general and can apply to other Identical

Segment Deduplication storage systems.

At the highest level, DDFS breaks a file into variable-

length segments in a content dependent manner [Man93,

BDH94] and computes a fingerprint for each segment.

DDFS uses the fingerprints both to identify duplicate

segments and as part of a segment descriptor used to

reference a segment. It represents files as sequences of

segment fingerprints. During writes, DDFS identifies

duplicate segments and does its best to store only one

copy of any particular segment. Before storing a new

segment, DDFS uses a variation of the Ziv-Lempel

algorithm to compress the segment [ZL77].

Figure 1 is a block diagram of DDFS, which is made up

of a stack of software components. At the top of the

stack, DDFS supports multiple access protocols which

are layered on a common File Services interface.

Supported protocols include NFS, CIFS, and a virtual

tape library interface (VTL).

When a data stream enters the system, it goes through

one of the standard interfaces to the generic File Services

layer, which manages the name space and file metadata.

The File Services layer forwards write requests to

Content Store which manages the data content within a

file. Content Store breaks a data stream into segments,

uses Segment Store to perform deduplication, and keeps

track of the references for a file. Segment Store does the

actual work of deduplication. It packs deduplicated

(unique) segments into relatively large units, compresses

such units using a variation of Ziv-Lempel algorithm to

further compress the data, and then writes the

compressed results into containers supported by

Container Manager.

To read a data stream from the system, a client drives the

read operation through one of the standard interfaces and

the File Services Layer. Content Store uses the

references to deduplicated segments to deliver the

desired data stream to the client. Segment Store

prefetches, decompresses, reads and caches data

segments from Container Manager.

The following describes the Content Store, Segment

Store and the Container Manager in detail and discusses

our design decisions.

3.1 Content Store

Content Store implements byte-range writes and reads

for deduplicated data objects, where an object is a linear

Figure 1: Data Domain File System architecture.

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association272

sequence of client data bytes and has intrinsic and client-

settable attributes or metadata. An object may be a

conventional file, a backup image of an entire volume or

a tape cartridge.

To write a range of bytes into an object, Content Store

performs several operations.

• Anchoring partitions the byte range into variable-

length segments in a content dependent manner

[Man93, BDH94].

• Segment fingerprinting computes the SHA-1 hash

and generates the segment descriptor based on it.

Each segment descriptor contains per segment

information of at least fingerprint and size

• Segment mapping builds the tree of segments that

records the mapping between object byte ranges and

segment descriptors. The goal is to represent a data

object using references to deduplicated segments.

To read a range of bytes in an object, Content Store

traverses the tree of segments created by the segment

mapping operation above to obtain the segment

descriptors for the relevant segments. It fetches the

segments from Segment Store and returns the requested

byte range to the client.

3.2 Segment Store

Segment Store is essentially a database of segments

keyed by their segment descriptors. To support writes, it

accepts segments with their segment descriptors and

stores them. To support reads, it fetches segments

designated by their segment descriptors.

To write a data segment, Segment Store performs several

operations.

• Segment filtering determines if a segment is a

duplicate. This is the key operation to deduplicate

segments and may trigger disk I/Os, thus its

overhead can significantly impact throughput

performance.

• Container packing adds segments to be stored to a

container which is the unit of storage in the system.

The packing operation also compresses segment data

using a variation of the Ziv-Lempel algorithm. A

container, when fully packed, is appended to the

Container Manager.

• Segment Indexing updates the segment index that

maps segment descriptors to the container holding

the segment, after the container has been appended

to the Container Manager.

To read a data segment, Segment Store performs the

following operations.

• Segment lookup finds the container storing the

requested segment. This operation may trigger disk

I/Os to look in the on-disk index, thus it is

throughput sensitive.

• Container retrieval reads the relevant portion of the

indicated container by invoking the Container

Manager.

• Container unpacking decompresses the retrieved

portion of the container and returns the requested

data segment.

3.3 Container Manager

The Container Manager provides a storage container log

abstraction, not a block abstraction, to Segment Store.

Containers, shown in Figure 2, are self-describing in that

a metadata section includes the segment descriptors for

the stored segments. They are immutable in that new

containers can be appended and old containers deleted,

but containers cannot be modified once written. When

Segment Store appends a container, the Container

Manager returns a container ID which is unique over the

life of the system.

The Container Manager is responsible for allocating,

deallocating, reading, writing and reliably storing

containers. It supports reads of the metadata section or a

portion of the data section, but it only supports appends

of whole containers. If a container is not full but needs to

be written to disk, it is padded out to its full size.

Container Manager is built on top of standard block

storage. Advanced techniques such as Software RAID-6,

continuous data scrubbing, container verification, and

end to end data checks are applied to ensure a high level

of data integrity and reliability.

The container abstraction offers several benefits.

Figure 2: Containers are self-describing, immutable,

units of storage several megabytes in size. All segments

are stored in containers.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 273

• The fixed container size makes container allocation

and deallocation easy.

• The large granularity of a container write achieves

high disk throughput utilization.

• A properly sized container size allows efficient full-

stripe RAID writes, which enables an efficient

software RAID implementation at the storage layer.

4 Acceleration Methods

This section presents three methods to accelerate the

deduplication process in our deduplication storage

system: summary vector, stream-informed data layout,

and locality preserved caching. The combination of

these methods allows our system to avoid about 99% of

the disk I/Os required by a system relying on index

lookups alone. The following describes each of the three

techniques in detail.

4.1 Summary Vector

The purpose of the Summary Vector is to reduce the

number of times that the system goes to disk to look for a

duplicate segment only to find that none exists. One can

think of the Summary Vector as an in-memory,

conservative summary of the segment index. If the

Summary Vector indicates a segment is not in the index,

then there is no point in looking further for the segment;

the segment is new and should be stored. On the other

hand, being only an approximation of the index, if the

Summary Vector indicates the segment is in the index,

there is a high probability that the segment is actually in

the segment index, but there is no guarantee.

The Summary Vector implements the following

operations:

• Init()

• Insert(fingerprint)

• Lookup(fingerprint)

We use a Bloom filter to implement the Summary Vector

in our current design [Blo70]. A Bloom filter uses a

vector of m bits to summarize the existence information

about n fingerprints in the segment index. In Init(),

all bits are set to 0. Insert(a) uses k independent

hashing functions, h 1 , …, hk, each mapping a fingerprint

a to [0, m -1] and sets the bits at position h1(a), …, hk (a)

to 1. For any fingerprint x, Lookup(x) will check all

bits at position h 1(x) , …, h k(x) to see if they are all set

to 1. If any of the bits is 0, then we know x is definitely

not in the segment index. Otherwise, with high

probability, x will be in the segment index, assuming

reasonable choices of m, n, and k. Figure 3 illustrates the

operations of Summary Vector.

As indicated in [FCAB98], the probability of false

positive for an element not in the set, or the false positive

rate, can be calculated in a straightforward fashion,

given our assumption that hash functions are perfectly

random. After all n elements hashed and inserted into the

Bloom filter, the probability that a specific bit is still 0 is

.
1

1
/mkn

kn

e
m

�
=�

�

�
�
�

�
�

The probability of false positive is then:

k

m
kn

k
kn

e
m

�
�
��

�
� �	

�
�

�

�

�
�

�

�
�
�

�
�
�

�
��

�
1

1
11 .

Using this formula, one can derive a particular parameter

to achieve a given false positive rate. For example, to

achieve 2% false positive rate, the smallest size of the

Summary Vector is 8 � n bits (m/n = 8) and the number

of hash functions can be 4 (k = 4).

To have a fairly small probability of false positive such

as a fraction of a percent, we choose m such that m/n is

about 8 for a target goal of n and k around 4 or 5. For

example, supporting one billion base segments requires

about 1 GB of memory for the Summary Vector.

At system shutdown the system writes the Summary

Vector to disk. At startup, it reads in the saved copy. To

handle power failures and other kinds of unclean

shutdowns, the system periodically checkpoints the

Figure 3: Summary Vector operations. The Summary

Vector can identify most new segments without looking

up the segment index. Initially all bits in the array are 0.

On insertion, shown in (a), bits specified by several

hashes, h1, h2, and h3 of the fingerprint of the segment

are set to 1. On lookup, shown in (b), the bits specified by

the same hashes are checked. If any are 0, as shown in

this case, the segment cannot be in the system.

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association274

Summary Vector to disk. To recover, the system loads

the most recent checkpoint of the Summary Vector and

then processes the containers appended to the container

log since the checkpoint, adding the contained segments

to the Summary Vector.

Although several variations of Bloom filters have been

proposed during the past few years [BM05], we have

chosen the basic Bloom Filter for simplicity and efficient

implementation.

4.2 Stream-Informed Segment Layout

We use Stream-Informed Segment Layout (SISL) to

create spatial locality for both segment data and segment

descriptors and to enable Locality Preserved Caching as

described in the next section. A stream here is just the

sequence of bytes that make up a backup image stored in

a Content Store object.

Our main observation is that in backup applications,

segments tend to reappear in the same of very similar

sequences with other segments. Consider a 1 MB file

with a hundred or more segments. Every time that file is

backed up, the same sequence of a hundred segments

will appear. If the file is modified slightly, there will be

some new segments, but the rest will appear in the same

order. When new data contains a duplicate segment x,

there is a high probability that other segments in its

locale are duplicates of the neighbors of x. We call this

property segment duplicate locality. SISL is designed to

preserve this locality.

Content Store and Segment Store support a stream

abstraction that segregates the segments created for

different objects, preserves the logical ordering of

segments within the Content Store object, and dedicates

containers to hold segments for a single stream in their

logical order. The metadata sections of these containers

store segment descriptors in their logical order. Multiple

streams can be written to Segment Store in parallel, but

the stream abstraction prevents the segments for the

different streams from being jumbled together in a

container.

The design decision to make the deduplication storage

system stream aware is a significant distinction from

other systems such as Venti.

When an object is opened for writing, Content Store

opens a corresponding stream with Segment Store which

in turn assigns a container to the stream. Content Store

writes ordered batches of segments for the object to the

stream. Segment Store packs the new segments into the

data section of the dedicated container, performs a

variation of Ziv-Lempel compression on the data section,

and writes segment descriptors into the metadata section

of the container. When the container fills up, it appends

it with Container Manager and starts a new container for

the stream. Because multiple streams can write to

Segment Store in parallel, there may be multiple open

containers, one for each active stream.

The end result is Stream-Informed Segment Layout or

SISL, because for a data stream, new data segments are

stored together in the data sections, and their segment

descriptors are stored together in the metadata section.

SISL offers many benefits.

• When multiple segments of the same data stream are

written to a container together, many fewer disk I/Os

are needed to reconstruct the stream which helps the

system achieve high read throughput.

• Descriptors and compressed data of adjacent new

segments in the same stream are packed linearly in

the metadata and data sections respectively in the

same container. This packing captures duplicate

locality for future streams resembling this stream,

and enables Locality Preserved Caching to work

effectively.

• The metadata section is stored separately from the

data section, and is generally much smaller than the

data section. For example, a container size of 4 MB,

an average segment size of 8 KB, and a Ziv-Lempel

compression ratio of 2, yield about 1K segments in a

container, and require a metadata section size of just

about 64 KB, at a segment descriptor size of 64

bytes. The small granularity on container metadata

section reads allows Locality Preserved Caching in a

highly efficient manner: 1K segments can be cached

using a single small disk I/O. This contrasts to the

old way of one on-disk index lookup per segment.

These advantages make SISL an effective mechanism for

deduplicating multiple-stream fine-grained data

segments. Packing containers in a stream aware fashion

distinguishes our system from Venti and many other

systems.

4.3 Locality Preserved Caching

We use Locality Preserved Caching (LPC) to accelerate

the process of identifying duplicate segments.

A traditional cache does not work well for caching

fingerprints, hashes, or descriptors for duplicate

detection because fingerprints are essentially random.

Since it is difficult to predict the index location for next

segment without going through the actual index access

again, the miss ratio of a traditional cache will be

extremely high.

We apply LPC to take advantage of segment duplicate

locality so that if a segment is a duplicate, the base

segment is highly likely cached already. LPC is achieved

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 275

by combining the container abstraction with a segment

cache as discussed next.

For segments that cannot be resolved by the Summary

Vector and LPC, we resort to looking up the segment in

the segment index. We have two goals on this retrieval:

• Making this retrieval a relatively rare occurrence.

• Whenever the retrieval is made, it benefits segment

filtering of future segments in the locale.

LPC implements a segment cache to cache likely base

segment descriptors for future duplicate segments. The

segment cache maps a segment fingerprint to its

corresponding container ID. Our main idea is to

maintain the segment cache by groups of fingerprints.

On a miss, LPC will fetch the entire metadata section in

a container, insert all fingerprints in the metadata section

into the cache, and remove all fingerprints of an old

metadata section from the cache together. This method

will preserve the locality of fingerprints of a container in

the cache.

The operations for the segment cache are:

• Init(): Initialize the segment cache.

• Insert(container): Iterate through all

segment descriptors in container metadata section,

and insert each descriptor and container ID into the

segment cache.

• Remove(container): Iterate through all

segment descriptors in container metadata section,

and remove each descriptor and container ID from

the segment cache.

• Lookup(fingerprint): Find the corresponding

container ID for the fingerprint specified.

Descriptors of all segments in a container are added or

removed from the segment cache at once. Segment

caching is typically triggered by a duplicate segment that

misses in the segment cache, and requires a lookup in the

segment index. As a side effect of finding the

corresponding container ID in the segment index, we

prefetch all segment descriptors in this container to the

segment cache. We call this Locality Preserved Caching.

The intuition is that base segments in this container are

likely to be checked against for future duplicate

segments, based on segment duplicate locality. Our

results on real world data have validated this intuition

overwhelmingly.

We have implemented the segment cache using a hash

table. When the segment cache is full, containers that are

ineffective in accelerating segment filtering are leading

candidates for replacement from the segment cache. A

reasonable cache replacement policy is Least-Recently-

Used (LRU) on cached containers.

4.4 Accelerated Segment Filtering

We have combined all three techniques above in the

segment filtering phase of our implementation.

For an incoming segment for write, the algorithm does

the following:

• Checks to see if it is in the segment cache. If it is in

the cache, the incoming segment is a duplicate.

• If it is not in the segment cache, check the Summary

Vector. If it is not in the Summary Vector, the

segment is new. Write the new segment into the

current container.

• If it is in the Summary Vector, lookup the segment

index for its container Id. If it is in the index, the

incoming segment is a duplicate; insert the metadata

section of the container into the segment cache. If

the segment cache is full, remove the metadata

section of the least recently used container first.

• If it is not in the segment index, the segment is new.

Write the new segment into the current container.

We aim to keep the segment index lookup to a minimum

in segment filtering.

5 Experimental Results

We would like to answer the following questions:

• How well does the deduplication storage system

work with real world datasets?

• How effective are the three techniques in terms of

reducing disk I/O operations?

• What throughput can a deduplication storage system

using these techniques achieve?

For the first question, we will report our results with real

world data from two customer data centers. For the next

two questions, we conducted experiments with several

internal datasets. Our experiments use a Data Domain

DD580 deduplication storage system as an NFS v3

server [PJSS*94]. This deduplication system features

two-socket duel-core CPU’s running at 3 Ghz, a total of

8 GB system memory, 2 gigabit NIC cards, and a 15-

drive disk subsystem running software RAID6 with one

spare drive. We use 1 and 4 backup client computers

running NFS v3 client for sending data.

5.1 Results with Real World Data

The system described in this paper has been used at over

1,000 data centers. The following paragraphs report the

deduplication results from two data centers, generated

from the auto-support mechanism of the system.

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association276

Data center A backs up structured database data over the

course of 31 days during the initial deployment of a

deduplication system. The backup policy is to do daily

full backups, where each full backup produces over 600

GB at steady state. There are two exceptions:

• During the initial seeding phase (until 6
th

 day in this

example), different data or different types of data are

rolled into the backup set, as backup administrators

figure out how they want to use the deduplication

system. A low rate of duplicate segment

identification and elimination is typically associated

with the seeding phase.

• There are certain days (18
th

 day in this example)

when no backup is generated.

Figure 4 shows the logical capacity (the amount of data

from user or backup application perspective) and the

physical capacity (the amount of data stored in disk

media) of the system over time at data center A.

At the end of 31
st
 day, the data center has backed up

about 16.9 TB, and the corresponding physical capacity

is less than 440 GB, reaching a total compression ratio of

38.54 to 1.

Figure 5 shows daily global compression ratio (the daily

rate of data reduction due to duplicate segment

elimination), daily local compression ratio (the daily rate

of data reduction due to Ziv-Lempel style compression

on new segments), cumulative global compression ratio

(the cumulative ratio of data reduction due to duplicate

segment elimination), and cumulative total compression

ratio (the cumulative ratio of data reduction due to

duplicate segment elimination and Ziv-Lempel style

compression on new segments) over time.

At the end of 31
st
 day, cumulative global compression

ratio reaches 22.53 to 1, and cumulative total

compression ratio reaches 38.54 to 1.

The daily global compression ratios change quite a bit

over time, whereas the daily local compression ratios are

quite stable. Table 1 summarizes the minimum,

maximum, average, and standard deviation of both daily

global and daily local compression ratios, excluding

seeding (the first 6) days and no backup (18
th

) day.

Data center B backs up a mixture of structured database

and unstructured file system data over the course of 48

days during the initial deployment of a deduplication

system using both full and incremental backups. Similar

to that in data center A, seeding lasts until the 6
th

 day,

and there are a few days without backups (8
th

, 12-14
th

,

35
th

 days). Outside these days, the maximum daily

logical backup size is about 2.1 TB, and the smallest size

is about 50 GB.

Figure 6 shows the logical capacity and the physical

capacity of the system over time at data center B.

At the end of 48
th

day, the logical capacity reaches about

41.4 TB, and the corresponding physical capacity is

about 3.0 TB. The total compression ratio is 13.71 to 1.

Figure 7 shows daily global compression ratio, daily

local compression ratio, cumulative global compression

ratio, and cumulative total compression ratio over time.

At the end of 48
th

 day, cumulative global compression

reaches 6.85, while cumulative total compression reaches

13.71.

Figure 4: Logical/Physical Capacities at Data Center A

Min Max Average
Standard
deviation

Daily global
compression

10.05 74.31 40.63 13.73

Daily local
compression

1.58 1.97 1.78 0.09

Table 1: Statistics on Daily Global and Daily Local

Compression Ratios at Data Center A

Figure 5: Compression Ratios at Data Center AgoL:4erugiF

abolgyliaD
oisserpmoc

ataDtaseiticapaClacisyhP/lacig

niM xaM egarevA

l
n

50.01 13.47 36.04

mgeswenno

italumuceht(

miletnemges

AretneC

dradnatS
noitaived

37.31

:5erugiF moC

moclabolgevitalumuc,)stnem

eudnoitcuderatadfooitarevi

latotevitalumucdna)noitanim

noisserpm AretneCataDtasoitaR

oitarnoisserp

etacilpudote

pmocl noisser

A

AretnecataD

13foesruoc

noitacilpuded

llf kb

oisserpmoc

lacolyliaD
oisserpmoc

:1elbaT itatS

noisserpmoC

desabatadderutcurtspuskcab

olpedlaitiniehtgnirudsyad

siyciloppukcabehT.metsys

dkbllfhh

n

n
85.1 79.1 87.1

labolGyliaDnoscitsi LyliaDdna

AretneCataDtasoitaR

ehtrevoatad

afotnemyo

yliadodot

006

miletnemges

uceht(oitar

esetacilpud

noisserpmoc

odneehttA

ehcaeroitar

moc noisserp

lgyliadehT

hw,emitrevo

elbatsetiuq

i

90.0

lacoL

latotevitalumucdna,)noitanim

uderatadfooitarevitalumu

viZdnanoitanimiletnemg -L

.emitrevo)stnemgeswenno

13fo
ts

labolgevitalumuc,yad

mucdna,1ot35.22se

.1ot45.83sehcaeroitar

gnahcsoitarnoisserpmoclabo

sserpmoclacolyliadehtsaereh

htsezirammus1elbaT.e

iidddd

pmocl noisser

oteudnoitcu

elytslepmeL

noisserpmocl

latotevitalum

tibaetiuqeg

erasoitarnois

,muminimeh

lidhbflluffu w,spukcab

tsydaetstaBG

• ehtgniruD

,)elpmaxe

otnidellor

tuoerugiffi

.metsys

taciffiitnedi

esehthtiw

• eraerehT

cudorppukcablluffuhcaeerehw

:snoitpecxeowteraerehT.etat

6litnu(esahpgnideeslaitinie
t

epyttnereffefffidroatadtnereffefffid

dapukcabsa,tespukcabehto

dehtesuottnawyehtwoht

tacilpudfoetarwolA

yllacipytsinoitanimilednanoit

.esahpgnidee

81(syadniatrec
ht

htniyad

006revosec

ht
sihtniyad

eraatadfose

tsinimd srotar

noitacilpude

tnemgeset

detaicossay

)elpmaxesih

va,mumixam

abolg ddnal

feht(gnidees

BretnecataD

utcurtsnudna

gnirudsyad

gnisumetsys

tadnitahtot

eraerehtdna

53
ht

.)syad

ukcablacigol

noitaiveddradnatsdna,egarev

oitarnoisserpmoclacolyliad

81(pukcabondnasyad)6tsriffi

tcurtsfoerutximapuskcabB

ehtrevoatadmetsyseliffideru

afotnemyolpedlaitinieht

lluffuhtobg cablatnemercnidna

itnustsalgnidees,Aretnecat

spukcabtuohtiwsyadwefae

ameht,syadesehtedistuO

ehtdnaBT12tuobasiezispu

yliadhtobfo

gnidulcxe,so
ht

.yad)

esabatadderu

84foesruoc

noitacilpuded

ralimiS.spukc

6ehtli
ht

,yad

8(s
th

21, - 41
ht
,

yliadmumixa

ezistsellamse
bonnehw

wohs4erugiF

roresumorffr

capaclacisyhp

sehtfo)aidem

fodneehttA

BT9.61tuoba

044nahtsselsi

.1ot45.83

.detarenegsipukcab

omaeht(yticapaclacigolehtsw

vitcepsrepnoitacilppapukcab

otsatadfotnuomaeht(ytic

retnecatadtaemitrevometsys

13f
ts

sahretnecatadeht,yad

isyhpgnidnopserrocehtdna,B

serpmoclatotagnihcaer,BG0

atadfotnuo

ehtdna)ev

ksidnidero

.A

bs pudekca

yticapaclaci

fooitarnoiss

ukcablacigol

G05tuobasi

ohs6erugiF

htfoyticapac

fodneehttA

na,BT4.14

BT0.3tuoba

ohs7erugiF

erpmoclacol

mucdnaoitar

ehtdna,BT1.2tuobasiezispu

.BG

dnayticapaclacigolehtswo

emitrevometsyseh necatadta

84f
ht

yticapaclacigoleht,yad

acisyhpgnidnopserrocehtdn

atotehT. ioitarnoisserpmocl

noisserpmoclabolgyliadswo

labolgevitalumuc,oitarnoisse

oitarnoisserpmoclatotevitalum

ezistsellamse

lacisyhpeht

.Bret

tuobasehcaer

siyticapacla

.1ot17.31s

yliad,oitarn

noisserpmocl

emitrevoo
wohs5erugiF

atadfoetar

d,)noitanimile

tcuderatadfo

tarnoisserpmoclabolgyliads

acilpudoteudnoitcuder

ad ht(oitarnoisserpmoclacolyli

viZoteudnoi - celytslepmeL

yliadeht(oi

tnemgeset

etaryliadeh

noisserpmoc

mucdna,oitar

odneehttA

er ,58.6sehca

.17.31

oitarnoisserpmoclatotevitalum

84fo
ht

labolgevitalumuc,yad

erpmoclatotevitalumucelihw

.emitrevoo

noisserpmocl

sehcaernoisse

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 277

Table 2 summarizes the minimum, maximum, average,

and standard deviation of both daily global and daily

local compression ratios, excluding seeding and days

without backup.

The two sets of results show that the deduplication

storage system works well with the real world datasets.

As expected, both cumulative global and cumulative

total compression ratios increase as the system holds

more backup data.

During seeding, duplicate segment elimination tends to

be ineffective, because most segments are new. After

seeding, despite the large variation in the actual number,

duplicate segment elimination becomes extremely

effective. Independent of seeding, Ziv-Lempel style

compression is relatively stable, giving a reduction of

about 2 over time. The real world observations on the

applicability of duplicate segment elimination during

seeding and after seeding are particularly relevant in

evaluating our techniques to reduce disk accesses below.

5.2 I/O Savings with Summary Vector and

Locality Preserved Caching

To determine the effectiveness of the Summary Vector

and Locality Preserved Caching, we examine the savings

for disk reads to find duplicate segments using a

Summary Vector and Locality Preserved Caching.

We use two internal datasets for our experiment. One is a

daily full backup of a company-wide Exchange

information store over a 135-day period. The other is the

weekly full and daily incremental backup of an

Engineering department over a 100-day period. Table 3

summarizes key attributes of these two datasets.

These internal datasets are generated from production

usage (albeit internal). We also observe that various

compression ratios produced by the internal datasets are

relatively similar to those of real world examples

examined in section 5.1. We believe these internal

datasets are reasonable proxies of real world

deployments.

Each of the backup datasets is sent to the deduplicating

storage system with a single backup stream. With respect

to the deduplication storage system, we measure the

number of disk reads for segment index lookups and

locality prefetches needed to find duplicates during write

for four cases:

(1) with neither Summary Vector nor Locality

Preserved Caching;

(2) with Summary Vector only;

(3) with Locality Preserved Caching only; and

Figure 6: Logical/Physical Capacities at Data Center B.
Figure 7: Compression Ratios at Data Center B.

Min Max Average
Standard
deviation

Daily global
compression

5.09 45.16 13.92 9.08

Daily local
compression

1.40 4.13 2.33 0.57

Table 2: Statistics on Daily Global and Daily Local

Compression Ratios at Data Center B

Exchange
data

Engineering
data

Logical capacity (TB) 2.76 2.54

Physical capacity after
deduplicating segments
(TB)

0.49 0.50

Global compression 5.69 5.04

Physical capacity after
local compression (TB)

0.22 0.261

Local compression 2.17 1.93

Total compression 12.36 9.75

Table 3: Capacities and Compression Ratios on

Exchange and Engineering Datasets

goL:6erugiF

abolgyliaD
i

ataDtaseiticapaClacisyhP/lacig

niM xaM egarevA

la
90.5 61.54 29.31

nI.evitceffefffe

noisserpmoc

revo2tuoba

ytilibacilppa

.BretneC
oC:7erugiF

dradnatS
noitaived

80.9

viZ,gnideesfotnednepedn -L

atsylevitalersi agnivig,elb

vresbodlrowlaerehT.emitr

nimiletnemgesetacilpudfo

etneCataDtasoitaRnoisserpmo

elytslepmeL

fonoitcuder

ehtnosnoitav

gnirudnoitan

.Bre

oisserpmoc

acolyliaD
oisserpmoc

:2elbaT itatS

noisserpmoC

ticapaclacigoL

paclacisyhP

no

l
no

04.1 31.4 33.2

labolGyliaDnoscitsi yliaDdna L

BretneCataDtasoitaR

egnahcxE
atad

gnE

)BT(yt 67.2

retfayticap

ytilibacilppa

dnagnidees

uognitaulave

25. SO/I

aocL

enimretedoT

ytilacoLdna

aerksidroffo

eVyrammuS

75.0

lacoL

gnireenig
atad

45.2

nimiletnemgesetacilpudfo

ylralucitraperagnideesretffta

ccaksidecuderotseuqinhcetru

naviS VyarmmuShtiwgs

gnihacCdvereserPytial

muSehtfossenevitceffefffeehte

nimaxeew,gnihcaCdevreserP

emgesetacilpuddnifotsda

aCdevreserPytilacoLdnarotce

gnirudnoitan

nitnavelery

.wolebsessec

dnaortceV

rotceVyramm

sgnivasehten

agnisustne

ihca .gn
py

gnitacilpuded
)BT(

erpmoclabolG

paclacisyhP
sserpmoclacol

serpmoclacoL

sserpmoclatoT

elbaT 3: apaC

dnaegnahcxE

yp
stnemges 94.0

noisse 96.5

icap retfayt
)BT(nois

22.0

noiss 71.2

nois 63.21

soitaRnoisserpmoCdnaseitica o

stesataDgnireenignEd

iowtesueW

lluffuyliad

snoitamroffoni

lluffuylkeew

gnireenignE

ksezirammus

nretniesehT

tiebla(egasu

noisserpmoc

misylevitaler

05.0

40.5

162.0

39.1

57.9

no

mirepxeruoroffostesatadlanretni

ynapmocafopukcab - diw

531arevoerots - hT.doirepyad

ablatnemercniyliaddna

001arevotnemtraped - epyad

atadowtesehtfosetubirttayek

morffrdetarenegerastesatadla

evresbooslaeW.)lanretnit

anretniehtybdecudorpsoitar

oesohtotralim rowlaerf

asienO.tnem

egnahcxEed

ehtsirehtoeh

nafopukca

ire elbaT.do 3

.stes

noitcudorpm

suoiravtaht

erastesatadla

selpmaxedlr

mmus2elbaT

dradnatsdna

serpmoclacol

pukcabtuohtiw

stesowtehT

metsysegarots

,detcepxesA

sserpmoclatot

dpukcaberom

idiD

umixam,muminimehtseziram

abolgyliadhtobfonoitaived

nideesgnidulcxe,soitarnoiss

.p

erfo dehttahtwohsstlus

owlaerehthtiwllewskrowm

dnalabolgevitalumuchtob

ysehtsaesaercnisoitarnois

.atad

iilttild it

,egareva,mu

yliaddnala

syaddnagn

noitacilpude

.stesataddlr

evitalumuc

sdlohmetsy

tdti

nidenimaxe

erastesatad

.stnemyolped

behtfohcaE

metsysegarots

edehtot pud

dforebmun

effeerpytilacol

sesacruofforoffo

)1(tiw

teveilebeW.1.5noitcesn

foseixorpelbanosaere

.

ehtottnessistesatadpukcab

maertspukcabelgnisahtiwm

ew,metsysegarotsnoitacilp

xednitnemgesroffosdaerksid

setacilpuddniffiotdedeensehcte

:s

rotceVyrammuSrehtienht

lanretnieseht

dlrowlaer

gnitacilpuded

tcepserhtiW.

ehterusaem

dnaspukool

etirwgniruds

ytilacoLronnideesgniruD

,evitceffefffenieb

tipsed,gnidees

gesetacilpud

nimiletnemgesetacilpud,g ita

erastnemgestsomesuaceb,

tcaehtninoitairavegralehtet

semocebnoitanimiletnemg

otsdnetnoi

retfftA.wen

,rebmunlaut

ylemertxe

)1(tiw

erP

)2(tiw

)3(tiw

rotceVyrammuSrehtienht

;gnihcaCdevrese

;ylnorotceVyrammuSht

ognihcaCdevreserPytilacoLht

ytilacoLron

dna;ylno

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association278

(4) with both Summary Vector and Locality

Preserved Caching.

The results are shown in Table 4.

Clearly, the Summary Vector and Locality Preserved

Caching combined have produced an astounding

reduction in disk reads. Summary Vector alone reduces

about 16.5% and 18.6% of the index lookup disk I/Os for

exchange and engineering data respectively. The

Locality Preserved Caching alone reduces about 82.4%

and 81% of the index lookup disk I/Os for exchange and

engineering data respectively. Together they are able to

reduce the index lookup disk I/Os by 98.94% and 99.6%

respectively.

In general, the Summary Vector is very effective for new

data, and Locality Preserved Caching is highly effective

for little or moderately changed data. For backup data,

the first full backup (seeding equivalent) does not have

as many duplicate data segments as subsequent full

backups. As a result, the Summary Vector is effective to

avoid disk I/Os for the index lookups during the first full

backup, whereas Locality Preserved Caching is highly

beneficial for subsequent full backups. This result also

suggests that these two datasets exhibit good duplicate

locality.

5.3 Throughput

To determine the throughput of the deduplication storage

system, we used a synthetic dataset driven by client

computers. The synthetic dataset was developed to

model backup data from multiple backup cycles from

multiple backup streams, where each backup stream can

be generated on the same or a different client computer.

The dataset is made up of synthetic data generated on the

fly from one or more backup streams. Each backup

stream is made up of an ordered series of synthetic data

versions where each successive version (“generation”) is

a somewhat modified copy of the preceding generation

in the series. The generation-to-generation modifications

include: data reordering, deletion of existing data, and

addition of new data. Single-client backup over time is

simulated when synthetic data generations from a backup

stream are written to the deduplication storage system in

generation order, where significant amounts of data are

unchanged day-to-day or week-to-week, but where small

changes continually accumulate. Multi-client backup

over time is simulated when synthetic data generations

from multiple streams are written to the deduplication

system in parallel, each stream in the generation order.

There are two main advantages of using the synthetic

dataset. The first is that various compression ratios can

be built into the synthetic model, and usages

approximating various real world deployments can be

tested easily in house.

The second is that one can use relatively inexpensive

client computers to generate an arbitrarily large amount

of synthetic data in memory without disk I/Os and write

in one stream to the deduplication system at more than

100 MB/s. Multiple cheap client computers can combine

in multiple streams to saturate the intake of the

deduplication system in a switched network

environment. We find it both much more costly and

technically challenging using traditional backup

software, high-end client computers attached to primary

storage arrays as backup clients, and high–end servers as

media/backup servers to accomplish the same feat.

In our experiments, we choose an average generation

(daily equivalent) global compression ratio of 30, and an

average generation (daily equivalent) local compression

ratio of 2 to 1 for each backup stream. These

compression numbers seem possible given the real world

examples in section 5.1. We measure throughput for one

Exchange data Engineering data

disk I/Os % of total # disk I/Os % of total

no Summary Vector and
no Locality Preserved Caching

328,613,503 100.00% 318,236,712 100.00%

Summary Vector only 274,364,788 83.49% 259,135,171 81.43%

Locality Preserved Caching only 57,725,844 17.57% 60,358,875 18.97%

Summary Vector and

Locality Preserved Caching
3,477,129 1.06% 1,257,316 0.40%

Table 4: Index and locality reads. This table shows the number disk reads to perform index lookups or fetches from the

container metadata for the four combinations: with and without the Summary Vector and with and without Locality

Preserved Caching. Without either the Summary Vector or Locality Preserved Caching, there is an index read for every

segment. The Summary Vector avoids these reads for most new segments. Locality Preserved Caching avoids index

lookups for duplicate segments at the cost an extra read to fetch a group of segment fingerprints from the container

metadata for every cache miss for which the segment is found in the index.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 279

backup stream using one client computer and 4 backup

streams using two client computers for write and read for

10 generations of the backup datasets. The results are

shown in Figures 8 and 9.

The deduplication system delivers high write throughput

results for both cases. In the single stream case, the

system achieves write throughput of 110 MB/sec for

generation 0 and over 113 MB/sec for generation 1

through 9. In the 4 stream case, the system achieves

write throughput of 139 MB/sec for generation 0 and a

sustained 217 MB/sec for generation 1 through 9.

Write throughput for generation 0 is lower because all

segments are new and require Ziv-Lempel style

compression by the CPU of the deduplication system.

The system delivers high read throughput results for the

single stream case. Throughout all generations, the

system achieves over 100 MB/sec read throughput.

For the 4 stream case, the read throughput is 211 MB/sec

for generation 0, 192 MB/sec for generation 1, 165

MB/sec for generation 2, and stay at around 140 MB/sec

for future generations. The main reason for the decrease

of read throughput in the later generations is that future

generations have more duplicate data segments than the

first few. However, the read throughput stays at about

140 MB/sec for later generations because of Stream-

Informed Segment Layout and Locality Preserved

Caching.

Note that write throughput has historically been valued

more than read throughput for the backup use case since

backup has to complete within a specified backup

window time period and it is much more frequent event

than restore. Read throughput is still very important,

especially in the case of whole system restores.

5.4 Discussion

The techniques presented in this paper are general

methods to improve throughput performance of

deduplication storage systems. Although our system

divides a data stream into content-based segments, these

methods can also apply to system using fixed aligned

segments such as Venti.

As a side note, we have compared the compression ratios

of a system segmenting data streams by contents (about

8Kbytes on average) with another system using fixed

aligned 8Kbytes segments on the engineering and

exchange backup datasets. We found that the fixed

alignment approach gets basically no global compression

(global compression: 1.01) for the engineering data,

whereas the system with content-based segmentation

gets a lot of global compression (6.39:1). The main

reason of the difference is that the backup software

creates the backup dataset without realigning data at file

boundaries. For the exchange backup dataset where the

backup software aligns data at individual mailboxes, the

global compression difference is less (6.61:1 vs.

10.28:1), though there is a significant gap.

Fragmentation will become more severe for long term

retention, and can reduce the effectiveness of Locality

Preserved Caching. We have investigated mechanisms to

reduce fragmentation and sustain high write and read

throughput. But, these mechanisms are beyond the scope

of this paper.

6 Related Work

Much work on deduplication focused on basic methods

and compression ratios, not on high throughput.

Early deduplication storage systems use file-level

hashing to detect duplicate files and reclaim their storage

space [ABCC*02, TKSK*03, KDLT04]. Since such

Figure 8: Write Throughput of Single Backup Client and

4 Backup Clients.

Figure 9: Read Throughput of Single Backup Client and

4 Backup Clients

maertspukcab

tgnisusmaerts

erugiF 8 iWr:

4 eilCpukcaB

enognisum tneilc retupmoc na

owt tneilc sretupmoc etirwroffo

eti T fotuphguorh S elgni pukcaB

stne .

4dn pukcab

daerdna roffo 45. ucsiD

tneilCp dna erugiF 9 eR:

4 CpukcaB

onissu

dae T fotuphguorh S elgni ukcaB

eil stn

tneilCpu dna

g

snoitareneg01

rugiFninwohs

tacilpudedehT

obroffostluser

veihcametsys

0noitareneg

nI.9hguorht

phguorhtetirw

M712deniatsus

hguorhtetirW

p

ehT.stesatadpukcabehtfos

ser 8 dna 9.

etirwhgihsreviledmetsysnoit

maertselgnisehtnI.sesacht

011fotuphguorhtetirwsev

evodna groffoces/BM311r

etsyseht,esacmaerts4ehtn

tarenegroffoces/BM931fotup

guorht1noitarenegroffoces/BM

rewolsi0noitarenegroffotup

erastlusere

tuphguorhte

eht,esacm

roffoces/BM

1noitareneg

seveihcame

adna0noit

.9hg

llaesuaceb

uqinhcetehT

otsdohtem

noitacilpuded

tadasedivid

nacsdohtem

cusstnemges

tonedisasA

smetsysafo

nosetybK8

bK8dengila

repapsihtnidetneserpseu

freptuphguorhtevorpmi

htlA.smetsysegarotsn hguo

tnetnocotnimaertsa - esdesab

gnisumetsysotylppaosla

.itneVsahc

pmocehtderapmocevahew,et

ocybsmaertsatadgnitnemges

metsysrehtonahtiw)egareva

gneehtnostnemgessetyb

larenegerar

foecnamroffo

metsysruoh

eseht,stnemg

dengiladexif

soitarnoisserp

a(stnetno tuob

dexifgnisum

dnagnireenig
hguorhtetirW

erastnemges

ybnoisserpmoc

edmetsysehT

maertselgnis

eveihcametsys

maerts4ehtroF

noitarenegroffo

negroffoces/BM

enegerutuffuroffo

rewolsi0noitarenegroffotup

n viZeriuqerdnawe - eL

noitacilpudedehtfoUPCehty

ertuphguorhtdaerhgihsrevile

negllatuohguorhT.esac e

guorhtdaerces/BM001revose

situphguorhtdaereht,esacm

tarenegroffoces/BM291,0n

dnuoratayatsdna,2noitaren

mehT.snoitare troffonosaernia

llaesuaceb

elytslepme

.metsysn

ehtroffostlus

eht,snoitare

.tuphg

ces/BM112

561,1noit

ces/BM041

esaercedeht

abegnahcxe

patnemngila

pmoclabolg(

ehtsaerehw

otolasteg

htfonosaer

abehtsetaerc

.seiradnuob

wtfftospukcab

pmoclabolg

uoht)1:8201

htdnuoffoeW.stesatadpukca

labolgonyllacisabsteghcaorp

igneehtroffo)10.1:noisserp

tnetnochtiwmetsys - desab

1:93.6(noisserpmoclabolgfo

cabehttahtsiecnereffefffideh

ningilaertuohtiwtesatadpukca

abegnahcxeehtroF atadpukc

mlaudividnitaatadsngilaeraw

sselsiecnereffffidnoisserp

pagtnaciffiingisasierehthgu

dexifehttah

noisserpmocl

ireen ,atadgn

noitatnemges

niamehT.)1

erawtfftospuk

eliftaatadgn

ehterehwtesa

eht,sexobliam

.sv1:16.6(

guorhtdaerfo

ahsnoitareneg

woH.weftsriffi

fces/BM041

emroffonI geSd

.gnihcaC

tirwtahtetoN

daernahterom

tsahpukcab

pemitwodniw

Rtht

isnoitarenegretalehtnituphg

emgesatadetacilpuderomeva

atstuphguorhtdaereht,revew

esuacebsnoitarenegretalroffo

ytilacoLdnatuoyaLtnemg

byllacirotsihsahtuphguorhtet

supukcabehtroffotuphguorhtd

ficepsanihtiwetelpmocot

erffreromhcumsitidnadoirep

llitithhtdR

erutuffutahts

ehtnahtstne

tuobatasya

maertSfo -

devreserPy

deulavneeb

ecnisesaces

pukcabdeiffi

neuqe tnevet

tti

uoht,)1:82.01

oitatnemgarF

na,noitneter

aCdevreserP

mgarffrecuder

B.tuphguorht

.repapsihtfo

6 eatleR

hcuM okrow

.pagtnaciffiingisasierehthgu

fereveseromemoceblliwno

tecudernacd senevitceffefffeeh

mdetagitsevnievaheW.gnihca

whgihniatsusdnanoitatnem

oyeberasmsinahcemeseht,tuB

kWorde

nodesucoffonoitacilpudedno b

mretgnolroffo

ytilacoLfoss

otsmsinahcem

daerdnaetir

epocsehtdno

sdohtemcisab
R.erotsernaht

htniyllaicepse

yrevllitssituphguorhtdaeR

erotsermetsyselohwfoesaceh

,tnatropmiy

.se
sserpmocdna

pudedylraE

edotgnihsah

CBA[ecaps

hguorhthgihnoton,soitarnois

usmetsysegarotsnoitacilp

mialcerdnaselifetacilpudtcete

.]40TLDK,30*KSKT,20*C

.tuph

eliffiesu - level

egarotsriehtm

hcusecniS

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association280

systems also use file hashes to address files. Some call

such systems content addressed storage or CAS. Since

their deduplication is at file level, such systems can

achieve only limited global compression.

Venti removes duplicate fixed-size data blocks by

comparing their secure hashes [QD02]. It uses a large

on-disk index with a straightforward index cache to

lookup fingerprints. Since fingerprints have no locality,

their index cache is not effective. When using 8 disks to

lookup fingerprints in parallel, its throughput is still

limited to less than 7 MB/sec. Venti used a container

abstraction to layout data on disks, but was stream

agnostic, and did not apply Stream-Informed Segment

Layout.

To tolerate shifted contents, modern deduplication

systems remove redundancies at variable-size data

blocks divided based on their contents. Manber described

a method to determine anchor points of a large file when

certain bits of rolling fingerprints are zeros [Man93] and

showed that Rabin fingerprints [Rab81, Bro93] can be

computed efficiently. Brin et al. [BDH94] described

several ways to divide a file into content-based data

segments and use such segments to detect duplicates in

digital documents. Removing duplications at content-

based data segment level has been applied to network

protocols and applications [SW00, SCPC*02, RLB03,

MCK04] and has reduced network traffic for distributed

file systems [MCM01, JDT05]. Kulkarni et al. evaluated

the compression efficiency between an identity-based

(fingerprint comparison of variable-length segments)

approach and a delta-compression approach [KDLT04].

These studies have not addressed deduplication

throughput issues.

The idea of using Bloom filter [Blo70] to implement the

Summary Vector is inspired by the summary data

structure for the proxy cache in [FCAB98]. Their work

also provided analysis for false positive rate. In addition,

Broder and Mitzenmacher wrote an excellent survey on

network applications of Bloom filters [AM02]. TAPER

system used a Bloom filter to detect duplicates instead of

detecting if a segment is new [JDT05]. It did not

investigate throughput issues.

7 Conclusions

This paper presents a set of techniques to substantially

reduce disk I/Os in high-throughput deduplication

storage systems.

Our experiments show that the combination of these

techniques can achieve over 210 MB/sec for 4 multiple

write data streams and over 140 MB/sec for 4 read data

streams on storage server with two dual-core processors

and one shelf of 15 drives.

We have shown that Summary Vector can reduce disk

index lookups by about 17% and Locality Preserved

Caching can reduce disk index lookups by over 80%, but

the combined caching techniques can reduce disk index

lookups by about 99%.

Stream-Informed Segment Layout is an effective

abstraction to preserve spatial locality and enable

Locality Preserved Caching.

These techniques are general methods to improve

throughput performance of deduplication storage

systems. Our techniques for minimizing disk I/Os to

achieve good deduplication performance match well

against the industry trend of building many-core

processors. With quad-core CPU’s already available, and

eight-core CPU’s just around the corner, it will be a

relatively short time before a large-scale deduplication

storage system shows up with 400 ~ 800 MB/sec

throughput with a modest amount of physical memory.

8 References

[ABCC*02] A. Adya, W. J. Bolosky, M. Castro, G.

Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R.

Lorch, M. Theimer, and R. P. Wattenhofer.

FARSITE: Federated, available, and reliable storage

for an incompletely trusted environment. In

Proceedings of USENIX Operating Systems Design

and Implementation (OSDI), December 2002.

[BM05] Andrie Z. Broder and Michael Mitzenmacher.

Network Applications of Bloom Filters: A Survey.

Internet Mathematics, 2005.

[BDH94] S. Brin, J. Davis, H. Carcia-Molina. Copy

Detection Mechanisms for Digital Documents

(weblink). 1994, also lso in Proceedings of ACM

SIGMOD, 1995.

[Blo70] Burton H. Bloom. Space/time Trade-offs in

Hash Coding with Allowable Errors.

Communications of the ACM, 13 (7). 422-426.

[JDT05] N. Jain, M. Dahlin, and R. Tewari. TAPER:

Tiered Approach for Eliminating Redundancy in

Replica Synchronization. In Proceedings of USENIX

File And Storage Systems (FAST), 2005.

[Dat05] Data Domain, Data Domain Appliance Series:

High-Speed Inline Deduplication Storage, 2005,

http://www.datadomain.com/products/appliances.htm

l

[FCAB98] Li Fan, Pei Cao, Jussara Almeida, and Andrie

Z. Broder. Summary Cache: A Scalable Wide-Area

Web Cache Sharing Protocol. in Proceedings of ACM

SIGCOMM'98, (Vancouver, Canada, 1998).

[KDLT04] P. Kulkarni, F. Douglis, J. D. LaVoie, J. M.

Tracey: Redundancy Elimination Within Large

Collections of Files. In Proceedings of USENIX

Annual Technical Conference, pages 59-72, 2004.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 281

[Man93] Udi Manber. Finding Similar Files in A Large

File System. Technical Report TR 93-33,

Department of Computer Science, University of

Arizona, October 1993, also in Proceedings of the

USENIX Winter 1994 Technical Conference, pages

17–21. 1994.

[MCK04] J. C. Mogul, Y.-M. Chan, and T. Kelly.

Design, implementation, and evaluation of duplicate

transfer detection in HTTP. In Proceedings of

Network Systems Design and Implementation, 2004.

[MCM01] Athicha Muthitacharoen, Benjie Chen, and

David Mazières. A Low-bandwidth Network File

System. In Proceedings of the ACM 18th Symposium

on Operating Systems Principles. Banff, Canada.

October, 2001.

[NIST95] National Institute of Standards and

Technology, FIPS 180-1. Secure Hash Standard. US

Department of Commerce, April 1995.

 [PJSS*94] B. Pawlowski, C. Juszczak, P. Staubach, C.

Smith, D. Lebel, and D. Hitz, NFS Version 3 Design

and Implementation, In Proceedings of the USENIX

Summer 1994 Technical Conference. 1994.

[QD02] S. Quinlan and S. Dorward, Venti: A New

Approach to Archival Storage. In Proceedings of the

USENIX Conference on File And Storage

Technologies (FAST), January 2002.

[RLB03] S. C. Rhea, K. Liang, and E. Brewer. Value-

based web caching. In WWW, pages 619–628, 2003.

[SCPC*02] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J.

Chow, M. S. Lam, and M. Rosenblum. Optimizing

the migration of virtual computers. In Proceedings of

USENIX Operating Systems Design and

Implementation, 2002.

[SW00] N. T. Spring and D. Wetherall. A protocol-

independent technique for eliminating redundant

network traffic. In Proceedings of ACM SIGCOMM,

pages 87--95, Aug. 2000.

[TKSK*03] N. Tolia, M. Kozuch, M. Satyanarayanan, B.

Karp, A. Perrig, and T. Bressoud. Opportunistic use

of content addressable storage for distributed file

systems. In Proceedings of the 2003 USENIX Annual

Technical Conference, pages 127–140, San Antonio,

TX, June 2003.

[YPL05] L. L. You, K. T. Pollack, and D. D. E. Long.

Deep Store: An archival storage system architecture.

In Proceedings of the IEEE International Conference

on Data Engineering (ICDE ’05), April 2005.

[ZL77] J. Ziv and A. Lempel. A universal algorithm for

sequential data compression, IEEE Trans. Inform.

Theory, vol. IT-23, pp. 337-343, May 1977.

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association282

