
Avrora: Scalable Sensor Network Simulation
with Precise Timing

Ben L. Titzer
UCLA

titzer@cs.ucla.edu

Daniel K. Lee
Cornell University
dkl25@cornell.edu

Jens Palsberg
UCLA

palsberg@ucla.edu

Abstract— Simulation can be an important step in the development of
software for wireless sensor networks and has been the subject of intense
research in the past decade. While most previous efforts in simulating
wireless sensor networks have focused on protocol-level issues utilizing
models of the software implementation, a significant challenge remains
in precisely measuring time-dependent properties such as radio channel
utilization. One promising approach, first demonstrated by ATEMU, is to
simulate the behavior of sensor network programs at the machine code
level with cycle-accuracy, but poor performance has so far limited its
scalability. In this paper we present Avrora, a cycle-accurate instruction-
level sensor network simulator which scales to networks of up to 10,000
nodes and performs as much as 20 times faster than previous simulators
with equivalent accuracy, handling as many as 25 nodes in real-time. We
show how an event queue can enable efficient instruction-level simulation
of microcontroller programs and allow the hidden parallelism in fine-
grained sensor network simulations to be extracted, once two core
synchronization problems are identified and solved. Avrora’s ability to
measure detailed time-critical phenomena can shed new light on design
issues for large-scale sensor networks.

I. I NTRODUCTION

A. Background

Sensor networks have tremendous potential to monitor, study, and
analyze phenomena in the physical world in detail never before
available, in places too far, too deep, too high, or too dangerous for
researchers to go, from monitoring oceanic microorganisms to in-
dustrial processes to volcanic activity. Simulation of sensor networks
has been studied intensively this decade [1], [2], [3], [4], [5], [6],
[7]. The primary goal of simulation is to enable rapid exploration
and validation of system designs before deployment, by providing
a controlled environment for evaluating design and configuration
alternatives, even for systems that may be impossible to physically
realize, and allowing detailed inspection of interactions that may be
too fast, too infrequent, or too complex to observe in a real system.
Distributed behavior and subtle timing interactions in sensor networks
present significant challenges for accurate, fine-grained simulation.

For single processors, efficient, cycle-accurate, instruction-level
simulation is standard. Such simulations are often used when acquir-
ing the actual hardware is difficult, infeasible, or impossible, such as
when prototyping and evaluating proposed microprocessor designs,
emulating legacy architectures, developing compiler backends, virtu-
alizing operating systems, etc. Instruction-level simulation provides
the highest behavioral and timing accuracy for software and is both
language and operating system independent. For a sensor network
with many nodes, building an accurate and scalable simulator is more
challenging.

A sensor network simulator can trade accuracy for scalability
by running modelsof the nodes rather than simulating an actual
software implementation. For example, SensorSim [1], SWAN [2],
and SENS [3] all use handcrafted models of the sensor nodes. The
modeling-based approach was sufficient to gauge network delays,
throughputs, packet collisions, and node localization errors for 10,000

nodes [2], [3], as well as power usage and the effect of several power
management schemes [1], [3].

Two recent sensor network simulators provide better accuracy by
using little or no modeling of the sensor nodes. Both TOSSIM [5]
and ATEMU [7] are simulators for sensor networks in which the
nodes are Crossbow AVR/Mica2 motes, which we will simply refer
to as “motes”. Motes have limited resources; at the core is an 8-
bit 7.3728MHz AVR microcontroller with 4KB main memory for
stack and heap, 128KB program storage for code and pre-initialized
data, 4KB non-volatile EEPROM storage, and internal devices such
as clocks and a serial port for controlling external devices. Software
for the motes is generally built with either TinyOS [8], a set of
components for building sensor networks programs written in the
nesC [9] programming language, or SOS [10], a lightweight, modular
operating system designed for dynamic flexibility.

TOSSIM [5] provides a high degree of accuracy by using models
of only a few low-level components, and otherwise running the
application source code unchanged. Specifically, TOSSIM compiles
nesC source code together with TinyOS libraries into a binary
for the development workstation, replacing the software modules
that interface hardware with emulation libraries, including timers,
communication channels, sensors, and the radio. TOSSIM’s level of
detail was sufficient to measure packet losses, packet CRC failure
rates, and the length of the send queue for up to 8,192 nodes [5].
However, TOSSIM’s compilation step loses the fine-grained timing
and interrupt properties of the code that can be important when the
application runs on the hardware and interacts with other nodes.

ATEMU [7] was the first and, until now, only instruction-level
simulator that could simulate sensor network programs with accuracy
down to the clock cycle of each individual node. ATEMU’s fine-
grained accuracy enabled a reliable count of the number of backoffs
after transmission collisions for up to 120 nodes [7]. However,
ATEMU is 30 times slower than TOSSIM.

Our goal: better scalability without sacrificing cycle accuracy.

B. The Problem

ATEMU uses a cycle-by-cycle implementation strategy where each
node and each device are advanced by one clock cycle every round to
ensure nodes, their internal devices, and the radio communication are
correctly synchronized. Synchronization is essential because much of
the microcontroller program’s execution depends on the timing and
behavior of devices. For example a timer device might increment a
timer count register every 1024 clock cycles and trigger an interrupt
when the counter reaches a maximum value. In ATEMU, the timer
does work each cycle and internally counts up to 1024; it then
increments the special register and checks whether an interrupt needs
to be fired. The cycle-by-cycle implementation strategy achieves
synchronization for free but scales poorly, as each device adds work
to be done each clock cycle.

Is it necessary to synchronize every clock cycle?

C. Our Results

We have implemented Avrora, an instruction-level sensor network
simulator which scales better than ATEMU and approaches the
performance of TOSSIM while preserving cycle accuracy. Like
ATEMU, Avrora simulates a network of motes, runs the actual
microcontroller programs (rather than models of the software), and
runs accurate simulations of the devices and the radio communication.
Avrora is implemented in Java, which helps flexibility and portability;
TOSSIM and ATEMU are implemented in C. Avrora and ATEMU
gain language and operating system independence by simulating
machine code, while TOSSIM can simulate only TinyOS programs.

Avrora = cycle-accurate simulation
+ multi-threading
+ event queue
+ efficient synchronization.

Avrora runs one thread per node; those threads synchronize only
when necessary. Synchronization is needed only to ensure that the
global timing and order of radio communications are preserved during
simulation. We show that synchronization can happen much less often
than every clock cycle, which leads to a substantial performance
gain. To enable efficient execution of programs, we use the well-
known idea of anevent queue[11]. For efficient synchronization
that preserves correctness and cycle-accuracy, we have formulated
and solved two synchronization problems, namely theSend-Receive
Problemand theSampling Problem.

In single node performance, Avrora’s core interpreter can simulate
CPU-intensive microcontroller programs at up to 25MHz on our
test machine, a 3.06ghz Xeon. This is more than 3 times real-time
speed for the 7.3728MHz ATMega128L microcontroller that drives
the motes. With the sleep optimization made possible by the event-
queue model, programs that sleep most of the time can run many
times faster.

In scalability over the number of nodes, Avrora can handle up to
1750 nodes on our dual processor server. On a large Sun Enterprise
machine, we have successfully simulated networks as large as 10,000
nodes. Avrora achieves linear scalability in terms of simulation time
across the number of nodes in our experiments, achieving greater
than real-time performance for networks less than 25 nodes. We have
found that the number of nodes that can be simulated is limited only
by the operating system’s limit on the number of threads per process.

Avrora outperforms ATEMU in terms of raw performance when
run on a state-of-the-art Java virtual machine, scales to more nodes,
and scales well over number of processors available to the simulator.
Avrora and ATEMU achieve the same level of accuracy, as both
model time down to the clock cycle. While less precise, TOSSIM
scales the best in our experiments.

Avrora shows that cycle-accurate simulation of thousands of nodes
is possible with reasonable performance and that networks of tens of
nodes can be simulated in real-time. Avrora allows sensor network
program behavior to be analyzed in precise detail on a scale that has
not been previously achieved. Recently, Landsiedel et al. [12] have
added a highly accurate energy model to Avrora, enabling power
profiling and lifetime prediction of sensor networks.

In Section II we describe how Avrora simulates a single node. In
Section III we discuss radio communication and synchronization of
multiple nodes. Finally, in Section IV we present experimental results
for single node simulations and networks up to thousands of nodes.

II. AVRORA’ S EVENT QUEUE

The event queue is key in implementing an efficient cycle-accurate
simulation of microcontrollers an external devices and provides for a
natural extension from single node simulation to simulating an entire
network of sensor nodes. One of the motivations for the event queue
is that energy-aware microcontroller programs tend to sleep a large
proportion of the time. The motes have a software-enabled sleep
mode that puts the microcontroller in a low-power mode where no
instructions are executed and much less energy is consumed. In sensor
networks, the need for conserving energy is heightened by sensing,
processing and communicating in remote areas where batteries cannot
be replaced often. Consequently, programs tend to sleep as often
as they can, waking infrequently to sense and communicate. This
interval may vary from a few times per second to a few times per hour.
For example, the program CntToRfm (from the TinyOS distribution)
increments a counter and broadcast its value 4 times per second; with
simulation we found it sleeps 96.8% of the time.

Avrora’s event queue takes advantage of the sleep-often property of
sensor programs for a significant boost in performance. We observe
that if the program puts the microcontroller into sleep mode, then
only a time-triggered event that causes an interrupt can wake the
microcontroller. Such an event may be generated on the chip or in
the environment, both of which are implemented by inserting time-
triggered events into the event queue of the node to be executed
at the appropriate time in the future. Consequently, events must be
queued in advance of when they should occur and only the event at
the head of the queue, regardless of how far in the future it might be,
can influence the simulation when the microcontroller is sleeping,
as there are no instructions being executed. Avrora therefore only
needs to process the events in the queue in order until one of them
causes a hardware interrupt, which resumes normal microcontroller
execution. Large amounts of simulated time can be passed in this
way with little simulator work. An extreme case, Blink, a TinyOS
program that toggles an LED once a second, sleeps 99.96% of the
time. Without the sleep optimization, the simulation runs at 31MHz
on Avrora. With the sleep optimization, the simulation runs more
than 500 times faster.

The pseudo-code below outlines the main simulation loop:

infinite loop {
if (sleeping)

eventqueue.advance(head.delta);
else {

execute instruction;
eventqueue.advance(cyclesconsumed);

}
}
eventqueue.advance(cycles) {

if (head) {
head.delta -= cycles;
if (head.delta == 0) {

head.fire();
head = head.next;

}
}

}

Interrupt processing, sleep mode processing, and event queue pro-
cessing are handled in the main loop. At the end of each instruction,
the interpreter advances the event queue by the number of cycles
consumed by the instruction just executed, maintaining the correct
local simulation time.

The event queue is implemented using an efficiently maintained
delta queue which keeps the earliest event to be fired at the head.
After each instruction, the main loop of the interpreter simply

subtracts the number of cycles consumed by that instruction from
the event at the head of the queue. When that delta reaches zero, the
event is fired, and the next link in the queue becomes the new head.
This imposes minimal cost on the interpreter; often there are no events
in the queue, which requires only one comparison to detect. When
there are events in the queue, one extra integer subtraction and one
test for zero are all that is required after executing each instruction.
We found insertion to be fast because most often the queue is small
or empty.

The device implementations take advantage of the event queue,
leading to significant simplifications. For example, a timer imple-
mentation no longer needs to do work each cycle to scale the main
clock, but does work by inserting an event into the queue to be fired
at the appropriate time. The simulator will execute instructions at full
speed until it reaches that event, at which time the event can update
the count of the register and trigger an interrupt if necessary. For
devices such as the UART and EEPROM, where correct timing of
reads, writes, and transmissions is important, the event queue model
makes implementation far more simple and straightforward, while
still maintaining timing accuracy down to the clock cycle. Another
important advantage is that, byte-level communication devices need
not be simulated down to individual bits; devices such as the UART
and SPI use a single delivery event for the reception of the entire
byte, rather than delivering each bit individually, while preserving
the correct timing. For devices that are present on the microcontroller
but ‘off’, no events are inserted into the queue, and thus there is no
overhead on simulation, in contrast to ATEMU.

III. E FFICIENT SYNCHRONIZATION

We show that efficient synchronization is key to extracting the
hidden parallelism in cycle-accurate simulation of sensor network
programs. In our architecture, each node in a sensor network is
1) represented as a Simulator object, 2) run in its own thread,
and 3) treated as an event-generating black box. For simplicity and
generality, we show how the problem can be solved when each
node can communicate with all other nodes over the radio. This
presents the worst case in terms of radio channel contention and
communication possibilities. Since our goal is to demonstrate the
effectiveness of our architecture for simulation and its performance,
this simple radio model suffices. In our simulator implementation,
more complex radio models can be easily substituted, as the model
is clearly separated and modularized in the software architecture, and
neither the simulator implementation, event queue, or radio device
implementation is directly dependent upon it. Next, we will describe
the details of the hardware radio, list the requirements for correct
radio simulation, and then present our formulation and solution to
the two central synchronization problems.

A. Hardware Software Interface

TinyOS software implements a simple medium access control
(MAC) protocol that allows link-layer transport of packets. These
network packets are decomposed into individual bytes or bits by
the lowest level of the software radio stack and sent to the radio
device which transmits them at a programmable frequency, power
level, and bit rate. In the case of the mica2 motes, a CC1000 AM
radio is connected to the microcontroller through a byte-oriented
interface. The software that controls the CC1000 is delicately timed
and contains micro-second level wait() loops to achieve correct syn-
chronization with the radio device. In order to test, debug, and tune
this level of the stack, the CC1000 radio and its characteristics must
be faithfully simulated. Since both the MAC and the protocol stack

are implemented in software, a simulator cannot make assumptions
about their behavior, but must emulate the low-level behavior of the
devices in order to validate and study how the software interacts with
them.

In addition to sending and receiving bytes, the radio device allows
software to measure a receive signal strength indication (RSSI) value.
An RSSI value represents the power level of the signal that the radio
is currently receiving which is essentially the sum of all transmissions
the radio is receiving at the current time. An RSSI value is often
used for collision avoidance; software samples the RSSI value and if
it is too high, the the radio is likely receiving a signal from another
source or some noise. The software will wait to try again later to
avoid interfering with the transmission in progress. An RSSI value
can also be used by sensor software for range finding and location
discovery; an accurate RSSI value is important in this case.

B. Radio Simulation Requirements

An accurate simulator should preserve the relative ordering of
communications and be faithful as to when the communications
occur, when nodes transmit, and when the data is received. In
our simulator, we treat each node as a separate thread which runs
concurrently with other nodes in other threads. Therefore, efficient
solutions to synchronizing concurrent processes are needed.

Let us introduce a bit of notation. Ifn,m are nodes, ands, t are
points in time (s > t), we use the notationwait(n, s)until(m, t) to
denote the requirement that a noden should not pass points until
nodem has passed pointt. We can now crystallize the requirements
for radio simulation into two core synchronization problems.
• The Send-Receive Problem:Suppose a noden sends a byte

over the radio at global timeT , with a latency ofL before
that packet reaches other nodes. For every nodem, (m 6=
n), we have the requirementwait(m,T + L)until(n, T). The
requirement ensures that each node that is able to receive a
packet that is sent will not proceed beyond the point in time
where that packet should have been delivered.

• The Sampling Problem: Suppose a noden requests the RSSI
value of its own radio at global timeT , with a sampling time of
S before the RSSI value is available. For every nodem, (m 6=
n), we have the requirementwait(n, T + S)until(m,T). The
requirement ensures that noden does not inspect the computed
RSSI value before all transmissions that can influence the RSSI
value have been made.

We have estimated the latencyL and sampling timeS, as follows.
The minimum latencyL for transmission of a single byte can be
calculated from parameters in the hardware specification manual for
the radio. Data is transmitted over the radio at 38.4 kBaud using
Manchester encoding, equivalent to 19.2 kbps, or 2.4 kilobytes per
second. Using the clockrate of the microcontroller, we can calculate
that 3072 cycles pass for each byte transmitted over the radio.

L =
cycles per second

radio data rate in bytes per second
× 1 byte

=
7372800 cycles per second

2400 bytes per second
× 1 byte= 3072 cycles

The sampling timeS corresponds to the latency of the analog to
digital (ADC) hardware device that converts the power level of an
analog signal to a digital value. We have from the hardware manual
that one conversion takes 13 ADC-cycles, and from experimentation
we have determined that one ADC-cycle takes 64 machine cycles,
so:

S = 13 ADC-cycles× 64 cycles per ADC-cycle= 832 cycles

The easiest way of satisfying the requirements is to use the cycle-
by-cycle implementation strategy of ATEMU, but unfortunately it
affords no parallelism. We now explain how to extract the “hidden”
parallelism by leveraging the event queue of each node in Avrora.

C. Avrora’s Two Synchronization Strategies

For a requirementwait(n, t+ d)until(m, t), we have considered
two different ways of ensuring that it be satisfied.

• Synchronization Intervals: In this approach, the nodesn,m
synchronize periodically in intervals of at mostd cycles. In other
words, each node runs to the end of the current interval and
waits until all the other nodes reach the same point in simulation
time. The longer the interval, the less often nodes synchronize,
allowing them to run concurrently for a longer time, resulting
in overall better simulation performance. It would be unsafe to
have the interval be longer thand, because it could allow a node
to run past a point in time at which the node should have been
influenced by another node’s actions.

• Wait for Neighbors: In this approach, each node periodically
notifies a global data structure how far it has progressed,
measured in number of cycles. A requirementwait(n, t +
d)until(m, t) is met by n asking the global data structure
whetherm has passedt, andn blocks until it gets the answer
Yes. Deadlock is impossible if for every wait...until requirement,
n never waits form to reach a point inn’s future.

We observe that the cycle-by-cycle implementation strategy of
ATEMU corresponds to using synchronization intervals of length
1. To solve the Sampling Problem, we observe that sinceS is
small, using aSynchronization Intervalsstrategy would be only a
small improvement over the cycle-by-cycle implementation strategy,
because we would have to choose the interval length to be no more
thanS; a node could execute at mostS cycles before it was forced
to wait for all other nodes. We instead chose to solve the Sampling
Problem with aWait for Neighborsapproach since a node typically
samples the RSSI value much less frequently than it sends packets.
Therefore nodes block only infrequently when they attempt to sample
the RSSI.

For the Send-Receive problem, we find that each TinyOS packet
consists of 40 bytes of data, so sending of bytes can occur much more
frequently. Moreover, given that the latencyL is large, each node
can execute for a longer period before it must synchronize with the
others. Therefore, Avrora solves the solves the Send-Receive problem
using the Synchronization Interval approach with an interval ofL,
the maximal safe choice.

The class GlobalClock implements the Synchronization Intervals
solution by inserting events into each Simulator’s event queue peri-
odically. GlobalClock inserts an event ei at the beginning of each
interval, where ei is to be fired afterL cycles. All threads are then
started, and each simulates its program, executing its instructions,
which might interact with devices, the radio, etc. Each thread
consumes clock cycles until it reaches the synchronization event ei

in the event queue. When ei fires, it will block the thread on the
GlobalClock and wait until all of the simulation threads have entered
the GlobalClock. After all threads have blocked, each is guaranteed
to have stopped at the same local simulation time. Global information
about the simulation can be computed, and the synchronization point
ei+1 is inserted into the event queues of each nodeL cycles in the
future. If no node has transmitted in this time interval, all threads are
released to run again in parallel.

However, if any bytes have been transmitted, they will be received
in the next interval, because the synchronization interval has been

chosen to beL. Avrora uses this fact to compute the point in time in
the next interval at which receivers will receive the radio transmission
and inserts a new synchronization pointd for delivery into the event
queues of all nodes. The second synchronization at delivery time
is needed because other nodes may begin new transmissions in the
next interval which could collide with the byte being transmitted
before it is delivered. When the Simulators meet at the delivery
synchronizationd, the data to be received is calculated by considering
all recent transmissions; overlapping transmissions can be handled
according to the radio model. The simplest radio model performs an
arithmeticor on each of the bytes appropriately shifted by their rela-
tive offsets in time and discards stray bits before and after a complete
byte transmission. After the data is delivered to the receiving nodes’
radios, the threads are freed from the synchronization pointd to run
in parallel again. They will meet again at the next synchronization
point ei+1 and repeat the process.

Avrora provides flexible instrumentation points for inserting more
complex radio models than simple full-byte reception, while retaining
timing accuracy. For example, a more complex radio model can
be used to simulate partial preamble loss. This happens because
although the software sends and receives individual bytes from the
CC1000 radio, a receiver radio may not receive the first few bits
from a transmission as it attempts to lock on to the signal, causing
subsequent bytes delivered to the software to be shifted over by some
number of bits. The software radio stack must be written to deal with
this by scanning for a start symbol and then realigning the bytes.
This behavior can be simulated by discarding the first few bits or
bytes of a radio transmission and then delivering data shifted-over by
some number of bits. Correct reception time can still be preserved
by delivering the shifted byte at the correct time to the radio using
a delivery event inserted into the event queue.

IV. EXPERIMENTAL RESULTS

The four graphs on the next page display our experimental results.
The first graph compares the scalability and performance of three
sensor network simulators (ATEMU, Avrora, and TOSSIM) over
the number of nodes in the network. The second graph compares
the performance of three AVR simulators (ATEMU, Avrora, and
Simulavr) for executing three AVR assembly benchmarks. The third
graph shows measurements of radio channel utilization obtained with
Avrora, and the fourth graph evaluates Avrora’s scalability over the
number of processors. We performed the first two experiments on
a dual 3.06ghz Xeon machine with hyperthreading enabled with
4GB of RAM running Linux 2.4.20. The last two experiments were
performed on a Sun V880 with 8 Ultrasparc III 900MHz processors
and 16GB of RAM running Solaris 9. On the Linux machine, we used
Sun’s HotSpot JVM 1.4.2 to run Avrora, and on the Solaris machine,
we used Sun’s HotSpot 64-bit JVM 1.4.2. The performance results
for Avrora on multi-node simulations are fairly consistent across VM
implementations; experiments with IBM’s Java 1.4.2 and Sun’s Beta
1.5.0 produced results that are very similar. Each of the results is
an average over three runs. In multi-node simulations, each node’s
starting time is randomly perturbed between 0 and 1 second in order
to avoid artificial lock-step timing phenomenon.

A. Comparison of ATEMU, Avrora, and TOSSIM

The first graph illustrates the scalability of three sensor network
simulators as measured by their performance varying over the number
of nodes in the network. In pure event-based simulation, the number
of events is often the primary variable of interest, but for sensors
that can sense, compute, and communicate, events do not capture the

cost of simulating program execution, which can be significant. In this
experiment, half of the nodes run the CntToRfm TinyOS program and
half run RfmToLeds, each running ten simulated seconds. CntToRfm
was described earlier; RfmToLeds listens for radio packets and
displays them as a binary value on the LEDs attached to the physical
node. TOSSIM compiles the program for the host machine (Linux)
and runs it, while ATEMU and Avrora execute the same AVR binary
that would be loaded onto the actual hardware device. We compare all
three simulators in their most accurate configurations; for TOSSIM
this means a bit-level radio without precise timing; ATEMU simulates
the byte-oriented interface to the radio and its transmissions at the bit
level with precise timing; Avrora works at the byte level with precise
timing. For 512 nodes, ATEMU did not complete within 8 hours.
We can see that all three simulators scale linearly with the number
of nodes, and TOSSIM has the best performance. We found that
Avrora is approximately 50% slower than TOSSIM, while ATEMU
lags behind Avrora by a factor of 20 and behind TOSSIM by a factor
of 30. Notice that Avrora’s performance improves quickly on small
numbers of nodes; this is partly due to the multithreaded architecture,
and partly due to amortizing some startup costs associated with Java
class loading and JIT compilation.

B. Comparison of ATEMU, Avrora, and Simulavr

The second graph compares Avrora with ATEMU and Simulavr
[13], to compare the raw performance of interpreting AVR instruc-
tions. We measure megahertz (rather than seconds or MIPS) to
compare with the speed of an actual AVR processor and capture
the cost of simulating device operation or sleeping, which a MIPS
measure cannot. We use three computationally intensive Livermore
Loops as benchmarks; these are not sensor network programs. They
are coded in C [14] and compiled to AVR machine code by avr-
gcc. We can see that Avrora and ATEMU are closely matched
when Avrora is run on the default Hotspot VM, but Avrora runs
much faster on the server Hotspot VM. Simulavr performs poor in
comparison, suggesting it is not suitable for large-scale simulation of
sensors. ATEMU and Simulavr were compiled with gcc 3.2.2 with
-O2 optimization level; using -O9 did not measurably impact the
runtimes of either ATEMU or Simulavr. Running on the HotSpot
server VM, Avrora gives the best performance due to the event queue
organization and fast VM.

C. Radio channel utilization

Precise network measurements on a fine-grained timing scale are
necessary for radio stack development and tuning, which often has
delicate timed code. It would be useful to measure and tune this layer
of the stack in the presence of applications with varying behaviors,
including significant computation and bi-directional communication.
Simulating such applications with precise time, which cannot be done
with TOSSIM, is a pre-requisite for an accurate picture of MAC
layer behavior. The third graph shows measurements obtained with
Avrora of the radio channel utilization for a network of nodes. In this
experiment, each node runs the CntToRfm application. We were able
to identify and measure a race condition present in the MAC protocol
of TinyOS where a delay between sensing a clear channel and
beginning transmission admits an opportunity for collisions to occur.
We can see that for a network of smaller than 32 nodes, the RSSI
sampling and exponential backoff restrain the number of attempted
byte transmissions to be logarithmic in the network size, but when the
network becomes dense, the number of attempts rises dramatically,
and the number of bytes corrupted by colliding transmissions rises
sharply. From this we see that as the density of the network increases,

Network Scalabilty Comparison: Sensor
Network Simulators

0.1

1

10

100

1000

10000

1 2 4 8 16 32 64 128 256 512 1024

Number of nodes

S
ec

o
n

d
s

ATEMU
Avrora
TOSSIM

Performance Comparison: AVR Simulators

0

5

10

15

20

25

30

Livermore Loop 1 Livermore Loop 2 Livermore Loop 5

benchmark

M
h

z

Avrora (-server)
Avrora
ATEMU
simulavr

Channel Utilization

0

2000

4000

6000

8000

10000

12000

1 2 4 8 16 32 64 128 256 512

Number of Nodes

B
yt

es
 p

er
 s

ec
o

n
d

Attempts
Delivered
Corrupted
Channel Limit

Multiprocessor Scalability

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

Number of processors

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

1 node
4 nodes
32 nodes

more nodes will attempt to ”pile-on” a quiet period when they sample
the RSSI and find it to be quiet, resulting in massive collisions. Our
experiments with larger numbers of nodes confirm that.

D. Scalability over number of processors

The fourth graph illustrates Avrora’s scalability over the number
of processors available on the machine. In this experiment we use
the Sun V880 server with 8 Ultrasparc III processors to evaluate
the benefits from Avrora’s highly multithreaded architecture. As in
our first graph, half of the nodes run the CntToRfm application and
half run the RfmToLeds application. For each run, we restrict the
number of processors available to the Java Virtual Machine and
normalize with respect to the running time for the simulation on
a single processor. The fourth graph validates our expectation by
showing that Avrora’s performance increases with the number of
processors. For one node, we can see that the simulation benefits
from more processors by allowing the Java virtual machine to run
the JIT compiler thread in the background. For four nodes, we see the
simulation time is cut in half on four processors. However, when the
number of nodes is greater than the number of processors, contention
for global data structures and OS thread switching overhead limit the
performance benefits significantly, as is seen in the much smaller
gains for the 32 node network. On the Sun V880 machine, we
successfully simulated a network of 10,000 nodes with one CntToRfm
and the remaining nodes running RfmToLeds for 2 simulated seconds
in a total of 30 minutes. For sensor network programs with more in-
network processing such as acoustic processing or data compression,
we expect the benefits from multithreaded simulation to be more
pronounced, since simulating the computation happens concurrently,
without needing frequent synchronization. Neither CntToRfm or
RfmToLeds are particularly computationally intensive, yet the simu-
lation performance still benefits from Avrora’s highly multithreaded
architecture.

V. CONCLUSION

We have implemented a sensor network simulator which is cycle-
accurate like ATEMU and scalable like TOSSIM, while merely
50% slower than TOSSIM. This solves an open problem stated by
Levis et al. [5, Section 6]. The event-queue model for cycle-accurate
simulation of device and communication behavior allows improved
interpreter performance and enables an essential sleep optimization.
Avrora enables us to validate time-dependent properties of large-scale
networks. Sensor network deployments can now be carried out with
more confidence after detailed instruction-level simulation has been
performed.

One limitation of Avrora is that it does not model clock drift,
a phenomenon where nodes may run at slightly different clock fre-
quencies over time due to manufacturing tolerances, temperature, and
battery performance. In recent work, we model distance-attenuation
for multi-hop scenarios, but we do not yet model mobility [15], [16],
[17]. Validating our timing results with real-world systems down to
the clock cycle level for all devices remains as future work; until now
we have verified our timings results against those of ATEMU for large
programs with radio communication and against real hardware only
for small, simple programs.

Although described in this paper, we have not yet implemented
partial preamble loss. We expect that its implementation will allow
even larger synchronization intervals, since the latency between the
transmission of the first byte of a packet and the reception of the
first byte will be larger because the first few bytes can be lost.

Additionally, we expect our approach to scale well to new, packet-
oriented radio devices. Since the software sends the entire packet to
the radio to be buffered and then instructs the radio to transmit it,
and the radio buffers packets it is receiving, the latency valueL is
much larger (however, the bitrate of the new radios is also higher).

Avrora is available from http://compilers.cs.ucla.edu/avrora.
Acknowledgments.We thank Kevin Chang, Simon Han, Krishna

Nandivada, and Vidyut Samanta for helpful comments on a draft
of the paper. We thank Olaf Landsiedel for his energy model work
in Avrora and Simon Han for work on timing validation against
real hardware. We thank the NSF Center for Embedded Networked
Sensing (CENS) for access to the Sun V880 server, which was
a generous donation from Sun Microsystems. We were partially
supported by the NSF ITR award #0427202.

REFERENCES

[1] S. Park, A. Savvides, and M. Srivastava, “Sensorsim: a simulation
framework for sensor networks,” inProceedings of MSWiM’00, 3rd
ACM International Workshop on Modeling, Analysis and Simulation of
Wireless and Mobile Systems, 2000, pp. 104–111.

[2] J. Liu, L. F. Perrone, D. M. Nicol, M. Liljenstam, C. Elliott, and D. Pear-
son, “Simulation modeling of large-scale ad-hoc sensor networks,”
in Proceedings of Euro-SIW’01, European Simulation Interoperability
Workshop, 2001.

[3] S. Sundresh, W. Kim, and G. Agha, “SENS: A sensor, environment
and network simulator,” inProceedings of 37th Annual Simulation
Symposium, 2004, pp. 221–230.

[4] L. F. Perrone and D. Nicol, “A scalable simulator for TinyOS applica-
tions,” in Proceedings of WSC’02, Winter Simulation Conference, 2002.

[5] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and
scalable simulation of entire TinyOS applications,” inProceedings of
SenSys’03, First ACM Conference on Embedded Networked Sensor
Systems, 2003.

[6] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan, and
D. Estrin, “Emstar: a software environment for developing and deploying
wireless sensor networks,” inProceedings of the USENIX Technical
Conference, 2004.

[7] J. Polley, D. Blazakis, J. McGee, D. Rusk, J. S. Baras, and M. Karir,
“ATEMU: A fine-grained sensor network simulator,” inProceedings of
SECON’04, First IEEE Communications Society Conference on Sensor
and Ad Hoc Communications and Networks, 2004.

[8] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. Pister,
“System architecture directions for networked sensors,” inProceedings
of ASPLOS’00, International Conference on Architectural Support for
Programming Languages and Operating Systems, 2000, pp. 93–104.

[9] D. Gay, P. Levis, J. R. von Behren, M. Welsh, E. A. Brewer, and D. E.
Culler, “The nesC language: A holistic approach to networked embedded
systems,” inProceedings of PLDI’03, ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2003, pp. 1–11.

[10] C.-C. S. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “SOS
operating system,” http://nesl.ee.ucla.edu/projects/sos.

[11] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,”Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[12] O. Landsiedel, K. Wehrle, S. Rieche, S. Gotz, and L. Petrak, “Accurate
prediction of power consumption in sensor networks,” 2004, manuscript.

[13] T. A. Roth, “Simulavr: an AVR simulator,”
http://savannah.nongnu.org/projects/simulavr.

[14] T. Peters, “Livermore loops coded in C,” 1992,
www.netlib.org/benchmark/livermorec.

[15] L. Bajaj, M. Takai, R. Ahuja, and R. Bagrodia, “Simulation of large-scale
heterogeneous communication systems,” inProceedings of MILCOM’99,
Military Communications Conference, 1999, pp. 1396–1400, Volume 2.

[16] V. Naoumov and T. Gross, “Simulation of large ad hoc networks,”
in Proceedings of MSWiM’03, Sixth ACM International Workshop on
Modeling, Analysis and Simulation of Wireless and Mobile Systems,
2003.

[17] J. Liu, Y. Yuan, D. Nicol, R. Gray, C. Newport, D. Kotz, and L. Perrone,
“Simulation validation using direct execution of wireless ad-hoc routing
protocols,” inProceedings of PADS’04, 18th Workshop on Parallel and
Distributed Simulation, 2004.

