
Awareness in the Wild: Why Communication Breakdowns Occur

Daniela Damian, Luis Izquierdo, Janice Singer* and Irwin Kwan
Dept of Computer Science, University of Victoria

PO Box 3055, Victoria, BC V8W 3P6, Canada
{ danielad, luis, irwink@}@cs.uvic.ca

*National Research Council Canada
Montreal Rd., Bldg M50, Ottawa, ON K1A 0R6

janice.singer@nrc-cnrc.gc.ca

Abstract

Global software teams face challenges when collaborating
over long distances, such as communicating changes in
the project. During a four-month case study at IBM Ot-
tawa Software Lab we observed the collaboration patterns
of a multi-site development project team. In this period, we
inspected project documentation, interviewed team lead-
ers, attended project meetings, and spoke with developers
to identify problems originated by the lack of awareness of
changes related to the implementation of work items. Our
observations show (1) that organizational culture has an
effect on how developers are made aware; (2) that com-
munication-based social networks revolving around par-
ticular work items are dynamic throughout development,
and therefore awareness needs to be maintained in infra-
structures of work; and (3) that information overload and
communication breakdowns contributed to the generation
of a broken integration build. We discuss these break-
downs in communication and implications for the design
of collaboration tools that could mitigate these problems.

1. Introduction
Awareness is becoming an important topic of research

in software engineering. Frequently defined as “an under-
standing of the activities of others, which provides a con-
text for one’s own activities” [6], in software engineering,
awareness is generally linked to issues related to coordina-
tion, or managing dependencies between activities [15].
Awareness is seen as a means by which team members can
become aware of the work of others that is interdependent
with their current tasks, therefore enabling better coordina-
tion of teams. Examples of task awareness include know-
ing who has most recently worked on a particular piece of
code, or knowing who has what code checked out of a
repository at a particular time, or knowing who is expert
on a particular module or section of code.

Several recent systems have been developed
([16][4][10][18][2]) that attempt to increase the awareness
of individuals as they work in teams. These systems focus
on identifying various pieces of information (such as
where conflicts may occur), that are thought to be of value
to software engineers, and then using awareness mecha-
nisms to disseminate/convey information to interested or
relevant individuals.

Most of these systems are focused on small or collo-
cated teams. As Sarma and van der Hoek [17] point out,
global software development (GSD) teams have special
needs with respect to “awareness in the large.” Geographi-
cally distributed software development is becoming a
business necessity and common practice in most large
companies. Yet, it is unclear if the awareness systems pro-
posed for small teams will support development in GSD.
Furthermore, while the awareness needs of GSD teams
appear to be greater than those of small co-located teams,
an understanding of those needs ‘in the wild’ has not yet
been explored. Before we can build useful tools and proc-
esses, we need to gain insights into the awareness needs of
GSD teams and their role in supporting more effective
coordination.

Our goal in this paper is thus to investigate and charac-
terize awareness in GSD, especially at the task level. To
do so, we conducted a case study of a globally distributed
team of developers at IBM. Specifically we were inter-
ested in studying the consequences of gaps in awareness
and in examining possible relationships between broken
builds and problems in awareness.

2. Related work
Much of the work in the area has focused on communi-

cation and coordination issues in software teams. Curtis et
al. [5] studied how communication networks and break-
downs affected software development. Their findings
raised many issues that are critical for awareness systems,
such as the importance of both formal and informal com-
munication in development. Gutwin, et al. [10] looked at
several open source development projects and found that
developers needed to maintain awareness of others to con-
tribute to development, and that they did so primarily
through text based communication. Herbsleb and Grinter
[12] conducted a field study showing the importance of
informal communication, and furthermore the difficulty in
communicating across globally distributed teams–
suggesting that an increase in awareness would benefit
development. Others have looked at the mismatch between
coordination requirements and actual communication
[3][7] and proposed mechanisms to improve the mis-
matches that occur. Espinosa, et al [8] have identified fac-
tors that affect awareness in software development, includ-
ing the nature of team knowledge and distance.

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

Although these studies have pointed out many potential
requirements for awareness systems, they unfortunately do
not specifically investigate specific collaboration and co-
ordination situations and how they are affected by aware-
ness. Therefore, we used an approach not widely used in
software engineering to examine collaboration by charting
social networks to understand who communicated with
whom, what information was transferred, and so on. An-
other difference from existing literature is our in-depth “in
the wild” examination of a large project, rather than reli-
ance on interviews, document inspection, or project his-
tory.

We report three critical findings related to building
awareness in GSD. First, organizational culture differs
across distributed teams involved in the same project and
has an impact on how awareness is managed. Second, so-
cial networks revolving around particular work items are
dynamic and evolve depending on development cycle, thus
awareness needs to be maintained within organic infra-
structures of work. Finally, inadequate communication and
coordination mechanisms can themselves lead to problems
in awareness – illustrated in the study by an example of
communication overload leading to a broken build. These
findings have implications for the design of awareness
mechanisms as we discuss in our conclusions.

Our paper is structured as follows. First, we provide an
overview of our research process and data collection
methods. Second, we provide a detailed account of each of
our findings. Next, we interpret the findings with respect
to requirements for awareness in GSD, and how they may
differ from collocated teams. Finally, we propose a charac-
terization for awareness needs in GSD.

3. Research Design
We conducted a case study of a distributed software

development team at the IBM Ottawa Software Lab. We
conducted on-site observations and interviews with the
development team and managers during a 4-month period,
September-December 2005.

Our research approach was to study the collaboration
practices of the distributed team in order to understand
how distributed developers maintain awareness, what lack
of awareness means, and what the consequences are of
lack of awareness. Specifically, in studying the collabora-
tion of distributed teams working on system features we
wanted to gain more understanding of the membership of
collaboration networks around features (i.e. who are the
contributors to feature development, what information
they exchange for cross-site coordination), whether this
communication of awareness information is timely, and
whether there are any gaps that lead to ineffective coordi-
nation.
3.1. Study setting: the company, the project and its

process, and the distributed team
At IBM, we had access to a large distributed develop-

ment project that required extensive cross-site communica-
tion and coordination of technical work.

The project had fifty developers in a total of nine sites
in the USA, Europe and Canada. To study aspects of
awareness and in particular of change information propa-
gation between developers working on the same feature,
we focused the investigation on the implementation of a
major feature and the collaboration patterns of the mem-
bers associated with the feature. This involved two of the
nine locations, one in Canada and one in United States.
The site located in Canada is the one leading the develop-
ment, and the site in US recently joined the project. These
two sites are involved in the implementation of one of the
most important components in the system (also referred to
as a feature). We call this component the CSM component
for confidentiality reasons. The development of this com-
ponent required decision-making and cross-site synchroni-
zation on a daily basis. The Canada and US teams had not
previously worked together and each team had a different
organizational culture, even though both teams were a part
of IBM. The Canadian team had extensive experience in
distributed software development, as part of the Eclipse
IDE team - in the past, they have continuously coordinated
with several IBM sites in the US and Europe. On the other
hand, the American team was new to distributed software
development, since the product-line that they had previ-
ously worked on did not require much interaction with
remote teams.

3.1.1. Development Process
In the project studied, a project plan is divided into fea-

tures, of which development is further subdivided into
work items. A work item is assigned to one or more devel-
opers for implementation.

The work item implementation process typically in-
volves a design stage during which a number of develop-
ers are assigned to create and contribute to an implementa-
tion proposal, and a coding stage during which this pro-
posal is implemented. When an implementation proposal
is drafted, it is posted to a Bugzilla tracking system for
review by other developers. One of the assigned develop-
ers posts a comment in Bugzilla to alert team members
about the availability of the implementation proposal,
which is then accessed for review and comments during a
stage referred to as the design phase. Once the proposal is
reviewed, the assigned developers implement the work
item and check it in when it is completed.

3.1.2. Build Generation Process
To investigate the consequences of awareness with re-

spect to coordination problems, we investigated each bro-
ken build that occurred during our research. A broken
build, in addition to being an easily-observable event, has
a large negative effect on development. Broken builds lead
to lost productivity because of the need to roll back
changes, and the delays caused to developers’ work. We
focused on broken builds because of a lack of other met-
rics, such as hours of rework. Broken builds are also in-
dicative of errors in development and lower quality in the
software product.

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

The project generated two types of builds for the soft-
ware being developed: continuous and integration builds
Generated every 30 minutes, continuous builds are done
on per-component basis, so that each component has con-
tinuous feedback and catches build breakers quickly; red
flags in continuous builds are not as critical as in integra-
tion builds. Weekly integration builds, on the other hand,
compile all the components of the whole project. Keeping
integration builds error-free is one of the concerns of the
whole team.

3.2. Data sources, collection and analysis methods
During a period of four months one researcher was lo-

cated at the IBM Ottawa Software Labs, and observed the
daily interaction between the local team members involved
in the CSM component development. Additionally, the
researcher was allowed to participate in most teleconfer-
encing project meetings with the distributed team, and was
also included in the project mailing list discussions. Spe-
cifically, the data sources and data collection and analysis
methods we used are as follows:

Project Documentation Review. Most of the project
documentation generated in the project was posted on a
WIKI that was accessible to the researcher. The project
plan was used to identify the developers assigned to each
of the work items. The design documentation was in-
spected on a daily basis to track changes to the design and
identify the contributing developers.

Interviews. Interviews with the local Ottawa based pro-
ject members were held during the four-month period,
almost on a daily basis. In the beginning of the study, our
goal was to identify a software component whose devel-
opment required high interaction among distributed team
members and to understand which of our data collection
methods were allowed by the project team. A first inter-
view with the project manager was thus conducted to un-
derstand project characteristics. Subsequently, the CSM
component and its team were identified as the target for
our study. We then interviewed the CSM team leader in
order to obtain a picture of the component development
complexity, and to define the best approach for data col-
lection. Ongoing interviews, mostly unstructured and in-
formal, were then conducted throughout the four-month
stay with the team.

Monitoring of discussions in the bug tracking system.
Bugzilla was used in this project not only as a bug tracking
system, but also to host discussion about design and im-
plementation of work items. Work items were assigned to
developers by creating a bug ticket in Bugzilla. We moni-
tored the discussions on all work items to identify con-
tributors associated with the design and implementation of
each work item. Bugzilla was one of the two main data
sources used to determine each work item’s normative
plan as well as the communication-based social network at
design stage (see Figure 1).

Activities log compilation. Project members were in-
vited to keep a diary of their interactions with other team
members. An interaction log was designed to record, for

each interaction: the work item number, name of the con-
tact person, reason for the communication, and the media
used to reach the person. See Table 1 for a sample of the
data requested from a developer. The names have been
changed to preserve anonymity. The interaction logs were
the other main source of information for constructing the
social network shown in Figure 2.

Six developers agreed to provide this interaction data,
four in Ottawa and two at the US site. To collect this in-
formation, the on-site researcher met every day with each
of the four developers located in Ottawa where they re-
ported their daily interactions. The two US developers sent
their logs by email each day for a period of five business
days. While the process of interaction recording relied on
retrospection for the Ottawa developers, the US developers

agreed to record instances of interaction when they oc-
curred.

4. Findings
Three findings stood out in our analysis of the data.

First, as discussed in Section 4.1, organizational culture
played a role in the effective coordination of development
and maintenance of awareness of work across develop-
ment sites. Second, as discussed in Section 4.2, we found
that the development of features involves a dynamic and
evolving communication-based social network that is dif-
ferent than the one indicated in the task allocation plan.
 Finally, we present in Section 4.3 an investigation of
collaboration patterns in the development of a work item
that indicates a relationship between awareness mecha-
nisms within dynamic social networks and coordination
problems. Specifically, we see that an overload of infor-
mation caused a broken integration build.

4.1. Lack of awareness due to differences in organ-
izational cultures

In large companies such as IBM, there is a diversity of
products, technologies, teams and processes, and conse-
quently organizational cultures—affecting both working
and communication styles. In our case study, we observed
how social factors, such as organizational culture and his-
tory of the relationship between sites, play an important
role in awareness of changes during the development of
work items that require cooperation and coordination

Table 1: Excerpt from the interaction log pro-
vided by Brian for Nov 9th

Name: Brian Nov 9th
Location: Ottawa

Work Item
Contact
person

Reason of communi-
cation

Media
Used

Bug 0001 Trish
Update of the module
1 development email

 Fabio
Coordination of the
implementation phone

 Chris
API issues and se-
mantic checks

Face to
face

Bug 0002 Florian

Discussion and com-
ments about the new
proposal

chat

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

across sites. As an example, we highlight the differences
in organizational culture between the U.S. and the Cana-
dian team in terms of the process followed to communi-
cate changes in a new build.

We identified this by analyzing email threads in the
mailing list. We looked for messages related to a commu-
nication problem, then followed the subsequent discussion,
and evaluated its relevance to the task awareness context.

The two teams involved in the development of the
CSM component had not worked together before, and the
process of the US team joining the project required a long
negotiation. Previously, the team in US was involved in
the development of a similar feature; hence the members
of the US team felt they could and wanted to play an im-
portant role in the overall development of this project.

Email messages posted on CSM’s mailing list indicate
that changes to artifacts were not communicated due to
false assumptions the Canadian team made about the US
team. More precisely, developers at the Canadian site as-
sumed that their remote peers always refer to the build
notes to review the list of changes, while, in fact, the US
site relied on email lists to communicate changes regard-
less of their importance.

To illustrate these observations, the following mes-
sages are included from a thread posted in the CSM mail-
ing list; the discussion provides some insights about a par-
ticular case where developers from both teams found a
problem caused by the lack of awareness of changes.

One of the US developers found that his work was af-
fected due to changes made by a Canadian developer, and
he was not alerted in a timely fashion of this change:

Developer (US) : "When I came in this morning,
expecting to be able to deliver after last eve-
ning's work, I was thwarted by changes that I
wasn't expecting. That pushed back my sched-
ule, in turn pushing back [other developer]’s
schedule."

Moreover, the concerns of this developer go further when
he notes that there has not been any discussion about the
process of communication of changes in the code, i.e. the
introduction of new classes:

Developer (US): "The second issue is the introduc-
tion of new classes that I didn't hear any discus-
sion on. Maybe I missed it. Or maybe the classes
were deemed too trivial to comment on - that's
fine. However, in the culture I work in, folks
send out mail on new classes… Sure, I can see it
in the sync report, but I think it helps to get a
head's up on it, esp. when we're not sitting in the
same office" (bold is our emphasis).
Of note is the explicit mention of the existence of a

culture perceived as being different than that found at
other development sites. The US developer indicates that,
due to the team distribution, they cannot rely only on the
code synchronization reports; instead they would prefer to
use a mechanism that alerts them about the changes, re-
gardless if a log of changes is generated during the build
creation.

This implicit proposition of using email as a primary
communication tool to propagate changes at different lev-
els of granularity generates a reaction at the Canadian site:

Developer 1 (Ottawa): "To me, emailing every
intention/commit is overkill. Is there not some-
where in between that we can meet?" (bold is our
emphasis).
The reaction of the Ottawa developer shows concern

about the volume of communication that could be handled
by an individual. The team members at both sites finally
agree that the use of email to communicate any minor
change is overkill, yet acknowledge the need to somehow
address communication style in lieu of their distributed
relationship:

Developer 2 (US): "I sympathize with your feeling
that "check-in email" for every minor change is
overkill. I also think that given the newness of our
distributed team, we need to err on the side of over
communication for the time being."

Although developers agree that the use of email could
harm the productivity:

Developer 2 (Ottawa): "I should spend more time
coding than communicating",

they are aware that they have to reach a balance between
amount of communication and other activities, and that
technology plays an important role in how communication
will be propagated among team members. Other solutions
are proposed within the existing project infrastructure.

Developer 2 (US): "Is there a way for the CVS
server to be configured to send check-in email,
such that if we put useful comments into the
commit dialog box, others would see it? CVS has
such a feature …"

Developer 2 (Ottawa): “… Rather than explicit
emails, I would be happier with updating the bug-
zilla entries, so to consolidate discussion and to
avoid interaction with lotus notes. “
The time spent in discussing the role of email messag-

ing for change notification finally pays off: team members
in Ottawa and the US agreed to use Bugzilla and its notifi-
cation functionality as a mechanism to keep members
alerted about changes in the implementation of work
items.

The cultural differences between the US and Ottawa
teams highlight challenges for any awareness system. Al-
though ostensibly both teams are part of the larger IBM
culture, the specific organizational culture across the teams
varies greatly, especially with respect to how to communi-
cate changes. Thus, when considering the awareness needs
of distributed teams, it is not enough to focus on just one
site. Rather, each of the teams in the distributed partner-
ship may have special needs or requirements with respect
to awareness. The cross-team communication styles may
need to be negotiated such that they are amenable across
the cultural divide.

Furthermore, a major challenge in the design of effec-
tive awareness mechanisms is providing the appropriate

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

amount and quality of awareness information to the rele-
vant developers without introducing extraneous informa-
tion that affects their productivity. Interview data indicates
that developers often hesitate using email because of the
perception of leaving a copy of the communication in the
email server of the company, which could be used to
measure performance.

The lack of knowledge about how to communicate
changes harms the trust relationship between teams, and
slows down the integration process of a new team into
development. Here, this lack of trust was exacerbated by
differences in organizational culture and history of the
relationships between the two sites. An interview with the
CSM component team leader, indicates that the implemen-
tation of this component was particularly challenging, not
only because of technical reasons, but also because the
Ottawa team was the lead-team chosen by management,
although there was a perception that the US team, accord-
ing to its credentials, should have been chosen.

In summary, awareness needs are at least partly deter-
mined by organizational culture. Because different sites
may have their own organizational cultures, one challenge
is to build an awareness mechanism that can handle differ-
ences in organizational culture and process across distrib-
uted teams.

4.2. Dynamic, Emergent Teams in Software De-
velopment

To better understand how people coordinate in a soft-
ware engineering workplace, we tracked the evolution of
eleven work items in the project. The information col-
lected in the interaction logs and the Bugzilla tracking
system allowed us to construct communication-based so-
cial networks showing interaction patterns during the im-
plementation of these work items. We were interested in
gaining a deeper understanding of (1) the membership of
collaboration networks around work items (i.e. who are the
contributors to specific work items, what information they
exchange for cross-site coordination), and (2) any gaps in
collaboration and awareness that lead to coordination
breakdowns.

To investigate the collaboration patterns within these
social networks, we chose to focus on a work item (WI
1009) that was part of the core functionality of the CSM,
which had high coordination needs with several other API
clients, and for which we observed a broken integration
build. Moreover, WI 1009 was chosen for analysis because
its integration error at the weekly integration build was
due to communication problems, whereas other broken
builds were due to technical problems.

We tracked the evolution of the WI over its develop-
ment cycle of 19 days, from its inception until its delivery
to the CVS code repository to observe the collaboration of
project members and examine aspects of awareness of
work within the team. In particular, we wanted to study
whether developers are aware of who else is contributing
to the development of this work item, i.e. know who
whose work affects their own, and whether they notify or

get notified about changes that affect their work and thus
ultimately avoid broken builds. In this direction, we col-
lected information on the project members that contributed
to different phases of the development of WI 1009 (design,
implementation and integration) and their communication
patterns. Social networks visualizing instances of collabo-
ration around WI 1009 at these distinct stages in its life-
cycle were created and show interesting characteristics that
aided our analysis of awareness within a dynamic team.
This is discussed in Section 4.2.2.

Before that, however, Section 4.2.1 includes some de-
tails on the communication media and patterns of use for
this particular work item, to provide context to better un-
derstand the insights described in Section 4.2.2.

4.2.1. Communication Patterns for WI 1009
Information on project communication behavior

(communication tools used, who communicated with
whom and for which reason, whether in the local or with
remote colleagues) was gathered by means of the interac-
tion log described in Section 2.2, over the period of 19
business days. The criterion for the data compilation was
the same for local and remote teams.

 If an interaction involving more than one developer
was mentioned by multiple respondents, we counted it
only once. A total of 418 unique interactions among de-
velopers were recorded for the 19-day time period, either
through the interaction logs or from inspections of the
mailing list and the Bugzilla system (one posting in Bug-
zilla or the mailing list was recorded as one interaction).
Out of 418 interactions, 271 of the interactions were re-
ported in the interaction logs; further, 26 out of the 271
interactions included more than one communication me-
dia. The communication media reported in the interaction
logs were: SameTime, email, face to face (F2F), phone
and NetMeeting. Chart 1 shows the number of times each
of these media was reported as used in the interaction logs,
together with the number of postings in Bugzilla and in the
mailing list.
 Table 2 shows the actual breakdown of the reported
interactions as well as the Bugzilla postings by the six re-

46

77

119

88

28

1

59

0

20

40

60

80

100

120

140

ST
em

ail F2
F

Bug
zil

la
ph

on
e

NetM
ee

tin
g

mail
ing

 lis
t

Chart 1. Number of times each communication
medium was used, from interaction logs, Bugzilla,

and mailing lists.

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

Table 2. Number of interactions reported in the
interaction log and postings on Bugzilla
Developer Interactions reported

in interaction log
Postings in
Bugzilla

Brian - CA 92 20
Zoe - CA 58 6
Chris - CA 33 18
Lucas - CA 5 0
Trish - US 34 9
Joshua - US 23 2
Total 245 88

spondents (Brian, Zoe, Chris, and Lucas, from the Cana-
dian site, and Trish and Joshua from the US site). The
names have been changed to preserve anonymity. The
communication in Bugzilla (separate from the interaction
logs) is included to illustrate an interesting pattern in using
Bugzilla in this project. Typically a bug tracking and not
communication system, Bugzilla was used to host discus-
sion about the design proposals and implementation. As
shown in Chart 1, the 88 postings counted in Bugzilla rep-
resent 21% of the total project communication. In the ab-
sence of any other change management system, the team
used Bugzilla to communicate changes in the development
of particular work items.
 As can be seen from Table 2, the amount of commu-
nication varies across developers quite substantially, with
a low of 5 and a high of 92 interactions reported over the
19 day period. In terms of creating awareness mecha-
nisms, this variability in amount of communication could
have an impact. For someone who communicates fre-
quently, a different type of awareness mechanism may be
necessary than for someone who communicates infre-
quently. Furthermore, developers communicate quite fre-
quently using Bugzilla which was not developed as a
communication tool. This highlights the fact that develop-
ers will co-opt other tools to fit their needs, and this must
be taken into account when searching for ways to provide
awareness in a software engineering context.

The use of collaboration tools and mechanisms differed
when used in local vs. remote communication. Face-to-
face communication is only possible locally, and it was
used for longer discussions. As shown in Chart 1, F2F
communication represented the highest amount of interac-
tion within the project (a total of 119 instances out of 418
(28%)).

If we add the proportion of F2F communication (28%)
and phone communication (6%), a total of 34% of com-
munication among the team members is neither recorded
nor stored in a data repository. This poses challenging de-
sign requirements for awareness systems that use commu-
nication information in the creation of associations be-
tween people.

SameTime (11% of total), IBM’s IRC tool, was used
locally for quick questions or comments; in the remote
communication it was used for longer conversation or to
request a phone call. Email (18%) was used for both local
and remote communication, and developer interview data
suggests that email was used more for “requests that are
not urgent”, or “letting people know about something that

has been done or will be done”, or “initiating discussions
that have some visual aspect, like code excerpts”. Phone
was almost never used locally.

4.2.2. Evolving social networks in the collaborative
development of WI 1009

As mentioned above, we tracked information on pro-
ject members involved in the development of WI 1009
during the stages of its development life-cycle. Here we
discuss the dynamic nature of the social network associ-
ated with this work item, emphasizing how the member-
ship of this social network evolved throughout the devel-
opment stages especially when compared to that initially
planned for this work item.

Implementation Proposal Development and Review.
 As identified from the CSM component planning
documentation, two Canadian developers only were as-
signed to create the implementation proposal for WI 1009,
Zoe and Brian. Once a proposal is completed, it is posted
to Bugzilla and reviewed by other team members during
the design phase. Figure 1 shows a sociogram of the social
network of the seven developers who contributed to the
design of WI 1009 by posting comments. The directed
arrows from person A to person B indicate that person A
was the poster and person B the receiver respectively for
the message. We observe two interesting patterns. First,
for this particular work item, developers from additional
US sites were involved in the discussion because they
were clients of WI 1009 (their work was dependent on WI
1009).

Second, Brian and Zoe, who were assigned to imple-
ment WI 1009, do not only receive information from other
developers, but also provide information to them.

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

We also see information exchanged among developers
that are not Brian and Zoe. This indicates that the knowl-
edge required to develop this work item is very distributed
in nature, and is a mismatch from the plan.

Implementation and integration of WI 1009. After
an agreement was reached on the implementation pro-

posal, the coding began. Figure 2 shows the large number
of project members that collaborated during the implemen-
tation of WI 1009. While three developers were the main
coders (Brian, Zoe and Chris), the other developers were
clients of the module containing the changes specified by
WI 1009.

Figure 2 also shows the communication data acquired
from the developers’ interaction logs during WI 1009’s
life. The numbers are summarized in Table 3. It is impor-
tant to observe that the original model of implementation
indicating just two members assigned to development has
grown to a social network involving 17 members (devel-
opers and managers).

It is clear to see that not only do the social networks
evolve as development occurs, but also that each phase of
development has unique social networks. Moreover, the
social networks that develop are almost completely unre-
lated to those that are documented in the project proposal.
This information has important ramifications for aware-

ness tools in distributed teams. First, the documentation
does not reflect the actual character of the coordination
necessary to implement software. Thus, any awareness
system will need to find ways to determine who is relevant
for which pieces of information independent of the docu-
mented team relationships. More interestingly, over only
19 days, the team not only evolved but changed dramati-
cally. The team members involved in the design were al-
most entirely different than the team members involved in
the implementation phase. The quickness with which the
teams change over the course of a work item is quite as-
tounding. A few central members are part of the whole
development process, but other members come and go as
the need for them arises and dissipates. Awareness
mechanisms must be able to account for the dynamic na-
ture of team collaboration and coordination throughout the
development lifecycle. This is especially important when
teams are globally distributed and the ability to track who
is working with whom may be limited.

4.3. Analysis of a Broken Build: Information
Overload and a Lack of Awareness

 Our further analysis of the communication within the
dynamic social network and the amount of communication
around the days of the broken build for WI 1009 reveals
that the generation of the broken build was caused by a
gap in communication between team members. Typically
the generation of the weekly-integration build happens
every Monday at night. We monitored both the continuous
and the weekly integration builds for WI 1009 and, when
the integration build was broken, we spoke with the devel-
oper responsible for the build in order to identify the rea-
son why the broken build occurred.

Figure 2. Communication exchanged over
Bugzilla during design of WI 1009

Table 3. Number of interactions regarding WI
1009 reported in interaction logs

Communication media Number of
times used

Face-to-face 51
Bugzilla 19
Email 13
SameTime 14
Phone 4

Figure 1. Interactions recorded in interaction
logs during the implementation of WI 1009

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

Before the build was generated, the developer respon-
sible for the preparation of the client submission of the
integration build sent a notification email to every CSM
developer and asked them to keep the related files in good
shape throughout the day. When integration build oc-
curred, the developer responsible for the build noticed that
the failure of the build was originated by changes done by
Zoe. Changes had to be rolled back to the point that al-
lowed the generation of a green build, resulting in a loss of
time and effort.

An interview with Zoe after the broken build indicated
that due to the amount of information handled by her dur-
ing the days of the integration build, she was not able to
attend to the email sent by the build developer. In fact, she
did not even read the email at all.

The examination of the communication patterns in the
growing and dynamic social networks associated with WI
1009 provides some insights into this incident. Figure 2
shows the type of communication media, as reported in the
interaction logs, used between the members of the social
network, over the 19 day period. F2F indicates face-to-
face interaction, P indicates phone conversation, ST refers
to SameTime chat and M indicates email message. Note
that this figure does not include messages that are broad-
cast on mailing lists.

4.3.1. Information Overload
Looking at Figure 2, one can then observe the signifi-

cant network of interrelationships that should be handled
by Zoe, which made her prone to miss information that
could lead to the generation of a broken build. She was
also indirectly related to the development of another work
item in the CSM, and sometimes asked to provide support
or share her expertise with other local and remote team
members.

 A closer examination of the volume of communica-
tion during the days of the generation of the broken build
provides us with more insights about the amount of infor-
mation that was handled by the developers of the distrib-
uted team. Chart 2 shows the number of messages posted
in the CSM mailing list during the period observed. Chart
3 shows the amount of F2F interactions each day during
this period, as reported by the six developers. The CSM

mailing list is where the notification message, sent by Lu-
cas in Figure 2, was distributed.

 In these charts, one should observe the volume of
communication generated on November 14th, the day when
the broken build was caused. It can be seen that a high
volume of mailing list traffic was generated on this day,
the second highest this period in the project. With respect
to the F2F interactions on November 14th, 4 out of the 10
reported involved Zoe. It is, however, reasonable to expect
that the overall amount of communication was even
higher, since these numbers only relate to reported interac-
tions among only 6 developers, and the numbers of people
on the social network implies a possibly larger amount of
communication (including SameTime and individual email
messages). We see that Zoe was subjected to a large vol-
ume of information on the day before the integration build
scheduled that evening.

From this analysis, we conclude that in the particular
time that the broken build occurred, the developers were
exposed to a high volume of communication in the imple-
mentation of this WI in addition to supporting develop-
ment in other components of the system. Handling this
volume of information relied on the personal skills of the
developers in tracking all the links or dependencies of
their implementation. Zoe, in particular, had to handle a
large amount of communication during a stressful period,
and it is no surprise that she did not read the notification
message sent by the developer responsible for the integra-
tion build.
4.3.2 Communication of changes in the development of
WI 1009
To understand the communication of change information
in the project, we explored how changes pertaining to the
development of WI 1009 were communicated within these
dynamic social networks. We collected data on the reason
information was exchanged between team members shown
in Figure 2. We sought to determine whether certain types
of information were more predominantly communicated
F2F, or other media such as email, phone or ST, and
whether any interesting patterns with respect to communi-
cation of changes emerge.

Chart 2. Number of messages on CSM mailing
list by date

Chart 3. Number of face-to-face interactions re-
ported by developers by date

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

Table 4 summarizes the data we collected from the in-
teraction logs. It can be observed that, overall, communi-
cation of changes was reported third in frequency, after
coordination messages and implementation issues. Email
was also observed to be the preferred medium when com-
municating changes; this is an exception to the dominant
use of F2F interactions to discuss every other issue.

Change notification is important in a project, and
Email is the preferred method of sending change notifica-
tion. However, if developers are overloaded with Email
messages and fail to read an important Email change noti-
fication, then they will be unable to react. We see in this
case study how easy it is for a developer to miss critical
notifications due to large volumes of communication.
5. Limitations of the research

 The results of this research are limited by two primary
considerations. First, the case study was conducted look-
ing at only one project in one company. The results may
or may not generalize to other projects, or other compa-
nies. While it appears safe to assume that this project is
fairly representative of other projects in GSD, more re-
search will need to be conducted to verify this claim. Sec-
ond, the use of retrospective reports may limit the accu-
rateness of the social networks. However, a more in-vivo
way of reporting the social interactions would likely make
the networks more complex, and not less so, which would
support our results. Again, this finding will need to be
confirmed using different data collection techniques.

6. Implications for research and practice
An understanding of the awareness needs of software

engineers “in the wild” has not been studied yet. To rem-
edy this situation, our study sought to empirically charac-
terize aspects of awareness, and in particular what could
be the factors leading to gaps in awareness, as well as the
consequences of these gaps for coordination. We draw
here some implications for further research and the devel-
opment of improved awareness mechanisms.

First, our finding that organizational culture affected
effective coordination of development and maintenance of
awareness of work across development sites indicates that
the causes of gaps in awareness are not simply technical in
nature. Intra-organizational partnerships in global software
development create working relationships in which factors

such as culture play an important role and where new tools
or processes are not a quick fix to the problem. Moreover,
cross-site collaboration is affected not only by differences
in the national culture of remote teams [14][13] but also in
the way the organizational culture has developed and
emerged across sites [1][11]. Therefore, organizational
culture manifested in the way in which project teams fol-
low processes or use common tools needs to be recognized
as an important factor in affecting how awareness of
change should be promoted between remote sites.

Second, our finding that the development of features
involves a dynamic and evolving social network that does
not reflect the plans set out in the initial task allocation has
important implication for awareness systems. First, it cor-
roborates with evidence that documentation quickly be-
comes out of date in organizations [19]. Thus, any aware-
ness system will have to use other sources of information
to understand the current status of the project. Second, a
collaborative system should be able to facilitate unplanned
collaborative work among software developers. Such a
system must be able to (1) allow expertise finding such
that these emerging interactions do occur, and (2) maintain
awareness among each person who has contributed to the
work item, without overloading them. One research ques-
tion that we can draw from this finding is, “Who are these
additional people, and why are they contributing, or why
have they been contacted about the work item?” This find-
ing also reveals that there is a significant amount of emer-
gent interactions between developers across different geo-
graphical sites, despite the fact that these people are not
mentioned in the plan. We know that a large amount of
information is communicated face-to-face in a remote site,
but what are the best ways to support informal communi-
cation among developers across sites? What knowledge is
exchanged within a local site that makes a developer aware
of experts in another geographical location? The fact the
social network evolves to include many developers means
that we should investigate mechanisms to keep these peo-
ple aware and up-to-date with the work item.

Third, because of information overload due to subscrip-
tion to mailing lists, a developer failed to read an impor-
tant notification and checked in code that caused a broken
build. The broken build directly led to productivity loss
because changes had to be reversed, preventing other de-
velopers from building new code and testing changes until
the build was repaired. It has been shown that maintaining

Table 4. Classification of issues and number of interactions for each reported communication me-
dia. Percentage indicates proportion of media that is used for each category.

Category F2F Phone SameTime Email Total Number
Implementation issues 31 (36%) 7 (8%) 21 (25%) 26 (31%) 85 (100%)
Coordination of activities 27 (41%) 10 (15%) 15 (15%) 14 (21%) 66 (100%)
Communication of changes 9 (20%) 2 (4%) 8 (8%) 26 (58%) 45 (100%)
Synchronization 22 (61%) 5 (14%) 8 (8%) 1 (3%) 36 (100%)
Planning 13 (65%) 3 (15%) 1 (1%) 3 (15%) 20 (100%)
Support 3 (18%) 1 (6%) 10 (10%) 3 (18%) 17 (100%)
Risk Assessment 1 (33%) 0 (0%) 1 (33%) 1 (33%) 3 (100%)
Other - not relevant 0 (0%) 0 (0%) 0 (0%) 1 (100%) 1 (100%)

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

awareness using mailing lists requires significant effort on
part of the developers [9], but we also see that developers
transmit change notifications most frequently using email.
One of our future research goals is to find a mechanism to
filter notification messages such that they reach only re-
cipients that need to be aware of the notification, thus re-
ducing message volume and preventing awareness over-
load. By targeting developers specifically, we believe that
the relevance of email messages will increase, and that
notifications will be more effective.

This lack of awareness of the actual membership of the
social network associated to the development of certain
features is critical when teams fail to adequately commu-
nicate changes in the project. Our evidence of the relation-
ship between information overload and broken integration
builds has implications for coordination theories and sup-
porting tools in software development and particularly in
GSD. A study by Cataldo et al. [3] indicated that, in a
study of coordination requirements, developers were not
interacting with each other as stated in the plan. Our re-
sults indicate a different, but related result: that, as work
on a work item progresses, the emergent team expands,
and more people are involved in communication than was
originally planned.

This study thus provides further empirical evidence
about collaboration patterns in software development, and
particularly with respect to aspects of awareness in distrib-
uted teams. When looked in the light of the sparse existing
literature on awareness and coordination in software de-
velopment, our work contributes to the development of
very much needed theories of collaboration and coordina-
tion in software development.

7. References
[1] B. Berenbach. Impact of organizational structure on dis-

tributed requirements engineering processes: Lessons
learned. In GSD ’06: 2006 International workshop on
Global software development for the practitioner, pages 15–
19, New York, NY, USA, 2006. ACM Press.

[2] B. Bruegge, A.H. Dutoit, T. Wolf. Sysiphus: Enabling in-
formal collaboration in global software development. In
First International Conference on Global Software Engi-
neering, Florianópolis, Brazil, October 16-19, 2006

[3] M. Cataldo, P. Wagstrom, J. Herbsleb, and K. Carley. Iden-
tification of Coordination Requirements: Implications for
the Design of Collaboration and Awareness Tools. In Con-
ference on Computer Supported Cooperative Work
(CSCW'06), Banff, Alberta, Canada, 2006.

[4] L.-T. Cheng, Susanne Hupfer, Steven Ross, John Patterson,
Bryan Clark, Cleidson R. B. de Souza: Jazz: a collaborative
application development environment. OOPSLA Companion
2003: pp. 102-103

[5] B. Curtis, H. Krasner, N. Iscoe: A Field Study of the Soft-
ware Design Process for Large Systems. Comm. of the ACM
31(11): 1268-1287 (1988)

[6] P. Dourish, V. Bellotti: Awareness and Coordination in
Shared Workspaces. CSCW 1992: pp. 107-114

[7] S.B. Fonseca, C.R.B de Souza, D.F. Redmiles. Exploring
the Relationship between Dependencies and Coordination to
Support Global Software Development Projects. In First In-

ternational Conference on Global Software Engineering,
Florianópolis, Brazil, October 2006. pp 243-243.

[8] J. A. Espinosa, S. A. Slaughter, R. Kraut, and J. D. Herb-
sleb. “Team knowledge and coordination in geographically
distributed software development”. Journal of Management
Information Systems, 24 (1), 2007. To Appear.

[9] C. Gutwin, R. Penner, K. A. Schneider: Group awareness in
distributed software development. CSCW 2004: 72-81

[10] C. Gutwin, K. Schneider, R. Penner, and D. Paquette. Sup-
porting Group Awareness in Distributed Software Devel-
opment, Engineering Human Computer Interaction and In-
teractive Systems, Revised Selected Papers, Springer–
Verlag, Berlin, 2005, pp. 383-397.

[11] C. A. Halverson, J. B. Ellis, C. Danis, and W. A. Kellogg.
Designing task visualizations to support the coordination of
work in software development. In CSCW ’06: Proceedings
of the 2006 20th anniversary conference on Computer sup-
ported cooperative work, pages 39–48, New York, NY,
USA, 2006. ACM Press.

[12] J. D. Herbsleb, R. E. Grinter: Architectures, Coordination,
and Distance: Conway's Law and Beyond. IEEE Software
16(5): 63-70 (1999)

[13] G. Hofstede. Culture’s Consequences: Comparing Values,
Behaviours, Institutions, and Organizations Across Nations.
Sage Publications: Thousand Oaks, California. 2001.

[14] Y. Hsieh. Culture and Shared Understanding in Distributed
Requirements Engineering. In First International Confer-
ence on Global Software Engineering, Florianópolis, Brazil,
October 2006. pp. 101-108.

[15] T. W. Malone and K. Crowston. “The Interdisciplinary
Study of Coordination.” Computing Surveys, 26 (1), 1994.

[16] A. Sarma, Z. Noroozi, André van der Hoek: Palantír: Rais-
ing Awareness among Configuration Management Work-
spaces . ICSE 2003: pp. 444-454

[17] A. Sarma and A. van der Hoek, Towards Awareness in the
Large. In First International Conference on Global Soft-
ware Engineering, Florianópolis, Brazil, October 2006,
pages 127-131

[18] T. Schümmer: Lost and Found in Software Space. HICSS
2001

[19] J. Singer: Practices of Software Maintenance. In Interna-
tional Conference on Software Maintenance (ICSM) 1998:
pp. 139-145

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

