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The effects of birefringence on the light distribution in the focal region of a high-NA optical system are inves-
tigated with use of the Debye approach to vector diffraction theory. The attention is limited to uniaxially
birefringent media with symmetry axis along the optical axis of the imaging system. The radially ( p) and
tangentially (s) polarized fields in the exit pupil produce spots in the focal region that are defocused with re-
spect to each other. For small birefringence values the relative defocus causes a distortion and broadening of
the spot; for larger values the two spots separate completely. As a corollary to the theory it is shown that
there is a tangential tornadolike flow of energy in the focal region when the polarization in the entrance pupil
is elliptical. © 2001 Optical Society of America
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1. INTRODUCTION
The information on optical disks is read out by focusing
light of wavelength l and numerical aperture (NA) on the
information layer through a protective cover layer of
thickness d. To increase the information density the
wavelength is decreased and the numerical aperture is in-
creased, as the spot size scales with l/NA. To that end
the existing compact disk (CD) standard (l 5 780 nm,
NA 5 0.45, d 5 1.2 mm) is supplemented with new stan-
dards such as those for digital versatile disk (DVD) (l
5 660 nm, NA 5 0.60, d 5 0.6 mm) and digital video re-
corder (DVR) (l 5 400 nm, NA 5 0.85, d 5 0.1 mm).1

The high-NA values of these new standards introduce po-
larization effects that change the light distribution in the
focal region compared with the distribution predicted by
the scalar theory of light. The light distribution is also
influenced by the effects of the cover layer of the disk. In
particular, birefringence of the cover layer can seriously
distort the light distribution around focus. Effects of po-
larization and birefringence can be described within the
framework of vector-diffraction theory. The goal of this
paper is to extend the vector diffraction theory in the lit-
erature to include the effects of a uniaxially birefringent
cover layer with its symmetry axis perpendicular to the
layer. Birefringence of this type is called axial birefrin-
gence. Next to the field of optical data storage the re-
sults of this paper may also have relevance for the field of
confocal microscopy.

Vector diffraction in a single isotropic medium was
originally considered by Wolf and co-workers,2–5 and later
by Mansuripur.6,7 Focusing through an interface be-
tween two dielectric media was first investigated by Ling
and Lee,8 followed by a number of other authors.9–15 A
general description of focusing in anisotropic media was
given by Stamnes and Jiang.16 They applied their gen-
eral theory to the particular case of focusing with a cylin-
drical lens into a birefringent medium with its uniaxial
0740-3232/2001/112846-14$15.00 ©
symmetry axis in the plane of incidence.17,18 In this two-
dimensional problem only p-polarized incident waves,
which excite only the extraordinary wave in the uniaxial
crystal, are considered. This stands in contrast to this
paper, which deals with focusing with rotationally sym-
metric lenses, making the problem fully three-
dimensional. Moreover, arbitrary states of polarization
in the entrance pupil of the optical system are considered,
implying that both the extraordinary and ordinary waves
contribute to the field close to focus.

The content of this paper is as follows. The Debye ap-
proach for calculating the electromagnetic field close to fo-
cus is generalized to include axially birefringent media in
Section 2. General formulas for the density and flow of
electromagnetic energy are derived in Section 3. The ef-
fects of axial birefringence are discussed in Section 4.
The paper is concluded with a summary of the main re-
sults in Section 5.

2. FOCUSING THROUGH AXIALLY
BIREFRINGENT MEDIA
A. Angular Spectrum of Plane Waves for the
Propagator Matrix
Consider media 1 and 2 separated by an interface in
z 5 2d. The exit pupil of the optical system is in the
plane z 5 2R, and the focal plane is z 5 0 (see Fig. 1).
Medium 1 is isotropic, and medium 2 is uniaxially bire-
fringent with uniaxial symmetry axis â along the optical
axis (the z-axis). The electric and magnetic fields as a
function of position r can be expressed as two-
dimensional Fourier integrals, the so-called angular spec-
trum of plane waves:

E~x, y, z ! 5 E
2`

` E
2`

` d2k

~2p!2 E~kx , ky , z !

3 exp@~i~kxx 1 kyy !#, (1)
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H~x, y, z ! 5 E
2`

` E
2`

` d2k

~2p!2 H~kx , ky , z !

3 exp@i~kxx 1 kyy !#. (2)

The z component of the wave vector of the wave propagat-
ing forward in medium 1, with refractive index n1 , is de-
fined by

k1z 5 ~n1
2k2 2 kx

2 2 ky
2!1/2, (3)

where k 5 2p/l, with l being the wavelength in vacuum.
For the wave propagating backward the sign of the z com-
ponent just changes. The total wave vector is then k1

5 n1kk̂1 , where the unit vector k̂1 along k1 can be pa-
rametrized by the polar and azimuthal angles u1 and f1
as

k̂1 5 ~sin u1 cos f1 , sin u1sin f1 , cos u1!. (4)

The polarization vectors are the p and s vectors, defined
by

p̂1 5 ~cos u1 cos f1 ,cos u1 sin f1 , 2sin u1!, (5)

ŝ1 5 ~2sin f1 , cos f1,0!. (6)

The three unit vectors p̂1 , ŝ1 , and k̂1 form an orthonor-
mal set, i.e., p̂1 3 ŝ1 5 k̂1 . Similar vectors p̂1

2 , ŝ1
2 and

k̂1
2 may be defined for the wave propagating backward by

replacing u1 by p 2 u1 . The electric and magnetic fields
in medium 1 can now be expressed as

E~kx , ky , z ! 5 ~Ep
i p̂1 1 Es

i ŝ1!

3 exp@ik1z~z 2 z1!#

1 ~Ep
r p̂1

2 1 Es
rŝ1

2!

3 exp@2ik1z~z 2 z1!#, (7)

m0cH~kx , ky , z ! 5 ~2n1Es
i p̂1 1 n1Ep

i ŝ1!

3 exp@ik1z~z 2 z1!#

1 ~2n1Es
rp̂1

2 1 n1Ep
r ŝ1

2!

3 exp@2ik1z~z 2 z1!#, (8)

respectively, where m0 is the permeability of vacuum, c is
the speed of light, and 2R < z1 , 2d. The p and s am-
plitudes of the wave incident on the interface in

Fig. 1. Light path from the exit pupil in z 5 2R to the focal
plane in z 5 0 with refraction at the interface in z 5 2d, the
uniaxial symmetry axis â, the associated wave vectors k̂1 and
k̂2 , and polarization vectors parallel to the plane of incidence p̂1
and p̂2 and perpendicular to the plane of incidence ŝ1 and ŝ2 .
z 5 2d are denoted as Ep
i and Es

i , whereas the p and s
amplitudes of the wave reflected at the interface in
z 5 2d are denoted as Ep

r and Es
r . All amplitudes are

functions of kx , ky , and z1 .
In medium 2, the medium with axial birefringence, the

ordinary and extraordinary refractive indices are no and
ne , respectively, and the wave vector z components of the
ordinary and extraordinary modes are

k2z
o 5 ~no

2k2 2 kx
2 2 ky

2!1/2, (9)

k2z
e 5

no

ne
~ne

2k2 2 kx
2 2 ky

2!1/2, (10)

as follows from the dispersion relations of the two
modes.19 For the ordinary mode the total wave vector is
k2

o 5 nokk̂2 , where the unit vector k̂2 and the corre-
sponding polarization vectors p̂2 and ŝ2 can be expressed
in the polar and azimuthal angles u2 and f2 as

k̂2 5 ~sin u2 cos f2 , sin u2 sin f2 , cos u2!, (11)

p̂2 5 ~cos u2 cos f2 , cos u2 sin f2 , 2sin u2!, (12)

ŝ2 5 ~2sin f2 , cos f2 , 0 !. (13)

The polarization of the ordinary mode is perpendicular to
the plane of incidence, i.e., coincides with ŝ2 , whereas the
polarization of the extraordinary mode is in the plane of
incidence, although not perpendicular to k̂2 . This re-
sults in expressions for the electric and magnetic fields,
which can be obtained by rewriting textbook formulas,19

E~kx , ky , z ! 5 Ep
t ~p̂2 1 sk̂2!

3 exp@ik2z
e ~z 2 z2!# 1 Es

t ŝ2

3 exp@ik2z
o ~z 2 z2!#, (14)

m0cH~kx , ky , z ! 5 2noEs
t p̂2 exp@ik2z

o ~z 2 z2!#

1 gnoEp
t ŝ2 exp@ik2z

e ~z 2 z2!#,

(15)

where 2d < z2 and where Ep
t and Es

t are the p (extraor-
dinary) and s (ordinary) amplitudes of the wave transmit-
ted at the interface in z 5 2d, which are functions of kx ,
ky , and z2 . The numbers s and g are given by

s 5
~ne

2 2 no
2!sin u2 cos u2

no
2 sin2 u2 1 ne

2 cos2 u2
, (16)

g 5
ne

~no
2 sin2 u2 1 ne

2 cos2 u2!
, (17)

and deviate from 0 and 1, respectively, due to the axial bi-
refringence.

The continuity of the x and y components of the electric
and magnetic fields at the interface in z 5 2d requires
that f1 5 f2 5 f and that n1 sin u1 5 no sin u2 (Snel’s
law). In addition to this, the amplitudes Ep

t , Es
t , Ep

r ,
and Es

r are related to the amplitudes Ep
i and Es

i by the p
and s transmission and reflection coefficients. These co-
efficients follow from the continuity conditions at the in-
terface as
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tp 5
2n1 cos u1

g2n1 cos u2 1 gno cos u1
, (18)

ts 5
2n1 cos u1

n1 cos u1 1 no cos u2
, (19)

rp 5
n1 cos u2 2 gno cos u1

n1 cos u2 1 gno cos u1
, (20)

rs 5
n1 cos u1 2 no cos u2

n1 cos u1 1 no cos u2
, (21)

where it is used that 1 1 s tan u2 5 g 2. In the isotropic
case no 5 ne (g 5 1, s 5 0) these expressions reduce to
the well-known expressions for the Fresnel coefficients.
The electric and magnetic fields in z 5 z2 can now be
written as

E~kx , ky , z2! 5 tpEp
i ~p̂2 1 sk̂2!

3 exp$i@k2z
e ~z2 1 d !

2 k1z~z1 1 d !#% 1 tsEs
i ŝ2

3 exp$i@k2z
o ~z2 1 d !

2 k1z~z1 1 d !#%, (22)

mocH~kx , ky , z2! 5 2notsEs
i p̂2exp$i@k2z

o ~z2 1 d !

2 k1z~z1 1 d !#%

1 gnotpEp
i ŝ2 exp$i@k2z

e ~z2 1 d !

2 k1z~z1 1 d !#%. (23)

Two successive Fourier transforms are applied to these
formulas. First, the incident Fourier amplitudes Ep

i and
Es

i at z 5 z1 are calculated from the field Ei(x1 , y1 , z1) in
the plane z 5 z1 . Second, the electromagnetic fields in
the plane z 5 z2 are found by the inverse Fourier trans-
forms of E(kx , ky , z2) and m0cH(kx , ky , z2). It then fol-
lows that (a, b 5 x, y, z; summation over b is implied):

Ea~r2! 5 E
2`

` E
2`

`

d2r1Gab~r2, r1!Eb~r1!, (24)

m0cHa~r2! 5 E
2`

` E
2`

`

d2r1Gab8 ~r2 , r1!Eb~r1!, (25)

with the matrix elements (a, b 5 x, y, z)

Gab~r2 , r1! 5 E
2`

` E
2`

` d2k

~2p!2 @tp~ p̂2a 1 sk̂2a!p̂1b

3 exp~iFe! 1 tsŝ2aŝ1b exp~iFo!#, (26)

Gab8 ~r2 , r1! 5 E
2`

` E
2`

` d2k

~2p!2 @2notsp̂2aŝ1b

3 exp~iFo! 1 gnotpŝ2ap̂1b exp~iFe!#. (27)

The phases Fe and Fo are defined by

Fe 5 kx~x2 2 x1! 1 ky~ y2 2 y1!

1 k2z
e ~z2 1 d ! 2 k1z~z1 1 d !, (28)
Fo 5 kx~x2 2 x1! 1 ky~ y2 2 y1!

1 k2z
o ~z2 1 d ! 2 k1z~z1 1 d !. (29)

The propagator matrices are no longer functions of the
difference position vector r2 2 r1 , because translational
invariance is lost owing to the presence of the interface.

B. Approximate Expression for the Propagator Matrix
So far, the present results agree with those of Stamnes
and Jiang.16 In this paper three approximations are
used that simplify the expressions derived for the propa-
gator matrices considerably without compromising the
quantitative validity of the expressions.

The first of these approximations is the small birefrin-
gence approximation, which is introduced in this paper
for the first time. It turns out that in practice the bire-
fringence of the cover layer Dn 5 ne 2 no is of the order
1023 or less. Then it is sufficient to take the effects of bi-
refringence into account by the phases alone. This
means that ne can be set equal to no everywhere except in
the expressions for the phases. Then the numbers s and
g are equal to 0 and 1, respectively, and the p and s trans-
mission coefficients reduce to the classical Fresnel coeffi-
cients. The difference between the phases for the two
modes is well approximated by

DW 5 ~k2z
e 2 k2z

o !~d 1 z2! 5
~k2z

e !2 2 ~k2z
o !2

k2z
e 1 k2z

o ~d 1 z2!

'
~k2z

e !2 2 ~k2z
o !2

2k2z
o ~d 1 z2!,

5 k~d 1 z2!Dn
sin2 u2

cos u2
. (30)

This leads to propagator functions

Gab~r2 , r1! 5 E
2`

` E
2`

` d2k

~2p!2 @tp exp~iDW !p̂2a p̂1b

1 tsŝ2aŝ1b#exp@iF~k1 , k2 , r1 , r2!#, (31)

Gab8 ~r2 , r1! 5 E
2`

` E
2`

` d2k

~2p!2 no@2ts p̂2aŝ1b

1 tp exp~iDW !ŝ2a p̂1b#

3 exp@iF~k1 , k2 , r1 , r2!#, (32)

with the phase

F~k1 , k2 , r1 , r2! 5 kx~x2 2 x1! 1 ky~ y2 2 y1!

1 k2z~z2 1 d ! 2 k1z~z1 1 d !,

(33)

where k2 5 k2
o .

The propagator matrices may be evaluated explicitly
with use of a second approximation, the stationary phase
approximation. Jiang and Stamnes mention the applica-
tion of the stationary phase approximation to the calcula-
tion of the propagator function but give the result only for
the two-dimensional case of focusing with a cylindrical
lens. The stationary phase approximation is quite justi-
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fied, as uz1 1 du and uz2 1 du can be taken to be much
larger than the wavelength l. The calculation is
straightforward, following the methods described in the
book of Stamnes20 and leads to the following results: The
stationary point for each of these integrals corresponds to
the path of the geometrical optics light ray from r1 to r2 ,
refracting at the interface according to Snell’s law8,14 (see
Fig. 1). This implies that the wave vectors can be ex-
pressed in terms of angular variables u1 , u2 , and f as fol-
lows:

kx
s 5 kn1 sin u1 cos f 5 kn2 sin u2 cos f, (34)

ky
s 5 kn1 sin u1 sin f 5 kn2 sin u2 sin f, (35)

k1z
s 5 kn1 cos u1 , (36)

k2z
s 5 kn2 cos u2 , (37)

where n2 [ no . In turn, these angular variables are de-
fined in terms of the coordinates by

x2 2 x1 5 @~R 2 d !tan u1 1 d tan u2#cos f, (38)

y2 2 y1 5 @~R 2 d !tan u1 1 d tan u2#sin f. (39)

The phase for the stationary point is k times the optical
path length

F~k1
s , k2

s , r1 , r2! 5 kOPL~r1 , r2!

5 2
kn1~z1 1 d !

cos u1
1

kn2~z2 1 d !

cos u2
,

(40)

and the Hessian (determinant of the matrix of second-
order derivatives of the phase function with respect to kx
and ky at the stationary point) is

Q 5 S z2 1 d

kn2 cos u2
2

z1 1 d

kn1 cos u1
D

3 S z2 1 d

kn2 cos3 u2
2

z1 1 d

kn1 cos3 u1
D . (41)

This gives rise to the propagator matrices:

Gab~r2 , r1! 5
1

2piAQ
@tp exp~iDW !p̂2a p̂1b

1 tsŝ2aŝ1b#exp@ikOPL~r1 , r2!#, (42)

Gab8 ~r2 , r1! 5
n2

2piAQ
@2ts p̂2aŝ1b 1 tp

3 exp~iDW !ŝ2a p̂1b#

3 exp@ikOPL~r1 , r2!#. (43)

The appearance of the phase factor exp(iDW) is the only
sign of axial birefringence. The Debye approach is fol-
lowed, according to which only the stationary points in-
side the exit pupil are taken into account, i.e. only those
geometrical optics paths for which (x1

2 1 y1
2)1/2 < a,

where a is the radius of the exit pupil. It follows that the
integration domain in Eqs. (24) and (25) is then the exit
pupil. It is mentioned that the quantitative validity of
the Debye approach is limited to the cases where the
Fresnel number (ratio of the aperture radius and the
diffraction-limited spot size) is much larger than one.

A third approximation can be made for diffraction-
limited imaging systems, which are the only relevant sys-
tems in the readout of optical disks. The dimensions of
the focal region, the only region of interest, are of the or-
der of the wavelength l. For points this close to focus the
phase of the propagator matrices may be approximated as

k OPL~r1 , r2! 5 kOPL~r1 , 0 ! 1 k2
s
• r2 . (44)

In addition to this the angular variables u1 , u2 , and f are
now associated with the geometrical optics light path
through the pupil point r1 and the geometrical focus
r2 5 0. It follows that the p and s polarization vectors
and the wave vectors k1

s and k2
s depend on r1 alone. Fi-

nally, z2 may be neglected in the expression for DW, as
uz2u ! d. Clearly, r2 appears only in the propagator ma-
trices in the phase factor exp(ik2

s
• r2).

C. Integral Expression for the Electromagnetic Field
The field in the exit pupil plane z1 5 2R must be known
in order to calculate the image field. It is assumed that
the imaging system is aplanatic, invariant under rota-
tions around the optical axis, and corrected for the defo-
cus and spherical aberration (of all orders) arising from
the cover layer. Furthermore, the system is taken to be
illuminated with a collimated, aberration-free, and uni-
form beam of amplitude E0 , proportional to the (unit) po-
larization vector (Ax , Ay , 0). According to Wolf2 the p
and s amplitudes in the exit pupil are then proportional to

Bp 5 E0~cos fAx 1 sin fAy!, (45)

Bs 5 E0~2sin fAx 1 cos fAy!. (46)

Energy conservation in the imaging step from entrance to
exit pupil through the aplanatic system requires scaling
of the amplitude with a factor

AI 5
R

n1
2k~Q cos u1!1/2 . (47)

The factor cos u1 results from the fact that the ray inter-
sects the exit pupil obliquely.21 Finally, correction for fo-
cusing through the cover layer means that the phase in
the pupil plane is given by 2kOPL(r1 , 0). In case the
optical system is aberrated the field in the exit pupil ac-
quires an additional phase exp(iW), where W is the clas-
sical aberration function. For example, the aberration
function is W 5 (k2z

s 2 k1z
s )d if the system is not cor-

rected for focusing through the cover layer. The field in
the exit pupil is then given by

Ei~r1! 5 AI~Bpp̂1 1 Bsŝ1!exp@2ikOPL~r1 , 0 ! 1 iW#.
(48)

Combining this equation with Eqs. (24), (25), and (42)–
(44) and changing the integration variables from x1 and
y1 and u1 and f leads to the following electromagnetic
field in r2 :
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E~r2! 5
E0R

il
E

0

b1E
0

2p

sin u1 du1df~cos u1!1/2

3 @tp exp~iWp!~cos fAx 1 sin fAy!p̂2

1 ts exp~iWs!~2sin fAx 1 cos fAy!ŝ2

3 exp~ik2
s
• r2!, (49)

m0cH~r2! 5
E0R

il
E

0

b1E
0

2p

sin u1 du1 df~cos u1!1/2

3 @2n2ts exp~iWs!~2sin fAx

1 cos fAy!p̂2 1 n2tp exp~iWp!

3 ~cos fAx 1 sin fAy!ŝ2#exp~ik2
s
• r2!.

(50)

The scalar aberration function W is combined with DW
into the aberration functions of the p and s polarizations
Wp 5 W 1 DW and Ws 5 W, respectively. The integra-
tion domain is the cone with polar angles u1 smaller than
b1 , with b1 5 arctan(a/R). The maximum polar angle
b1 is related to the numerical aperture NA by NA
5 n1 sin b1 .

Equations (49) and (50) show that the field in the prox-
imity of focus is the coherent superposition of two spots,
one coming from the field component that is radially po-
larized in the exit pupil (associated with the extraordi-
nary mode), and the other coming from the field compo-
nent that is tangentially polarized in the exit pupil
(associated with the ordinary mode). The two spots have
aberration functions Wp and Ws . Clearly, the effect of
axial birefringence is the introduction of different aberra-
tions for the two spots. The integral expressions (49) and
(50) generalize Debye’s integral to include effects of high
NA, arbitrary polarization in the entrance pupil, the ef-
fects of focusing through a cover layer, and axial birefrin-
gence in that cover layer. The objective of Section 3 is to
evaluate the diffraction integral from which the distribu-
tion and the flow of electromagnetic energy can then be
calculated.

3. LIGHT DISTRIBUTION CLOSE TO
FOCUS
A. Electric and Magnetic Fields
The integral (49) can be simplified and rewritten similar
to known results in the literature, resulting in

Ex~u, v, c! 5 2ipE0N~T0 /n1n2!1/2$@F0~u, v !

1 F2~u, v !cos~2c!#Ax 1 F2~u, v !

3 sin~2c!Ay%, (51)

Ey~u, v, c! 5 2ipE0N~T0 /n1n2!1/2$F2~u, v !

3 sin~2c!Ax 1 @F0~u, v ! 2 F2~u, v !

3 cos~2c!#Ay%, (52)
Ez~u, v, c! 5 22pE0N ~T0 /n1n2!1/2F1~u, v !

3 @cos~ c!Ax 1 sin~ c!Ay#. (53)

Here, the image point r2 is expressed in terms of the azi-
muthal coordinate c and the dimensionless axial and ra-
dial coordinates u and v, which are defined by

u 5
NA2

n2l
z2 , (54)

v 5
NA

l
~x2

2 1 y2
2!1/2. (55)

The three functions Fk(u, v) for k 5 0,1,2 are defined by

Fk~u, v ! 5 E
0

1

drrgk~r!Jk~2pvr!

3 expF2
2piur2

1 1 ~1 2 r2 sin2 b2!1/2G . (56)

The Bessel functions of the first kind Jk(2pvr) arise from
the integration over f, which can be done analytically.
The integration variable r is obtained from the substitu-
tion

r 5 n1 sin u1 /NA 5 n2 sin u2 /NA

5 sin u1 /sin b1 5 sin u2 /sin b2 , (57)

where the angles bk are related to the numerical aperture
NA by sin bk 5 NA/nk , and the three functions gk(r) for
k 5 0, 1, 2 are defined by

g0~r! 5 ~1 2 r2 sin2 b1!21/4
n1 1 n2

2n1
@ts exp~iWs!

1 tp exp~iWp!~1 2 r2 sin2 b2!1/2#, (58)

g1~r! 5 ~1 2 r2 sin2 b1!21/4
n1 1 n2

2n1
tp

3 exp~iWp!r sin b2 , (59)

g2~r! 5 ~1 2 r2 sin2 b1!21/4
n1 1 n2

2n1

3 @ts exp~iWs! 2 tp

3 exp~iWp!~1 2 r2 sin2 b2!1/2#. (60)

The remaining undefined quantities in Eqs. (51)–(53) are
the normal incidence transmission coefficient of the inter-
face at z 5 2d,

T0 5
4n1n2

~n1 1 n2!2 , (61)

and the Fresnel number,

N 5
n1R sin2 b1

l
5

R sin b1

~l/NA!
. (62)
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Finally, it is noted that in Eqs. (51)–(53) an overall phase
factor exp(2piu/sin2 b2) is left out. Equations (51)–(53)
for the electric field are valid for arbitrary states of polar-
ization in the entrance pupil and describe the effect of
axial birefringence. In this respect they generalize ex-
pressions previously obtained in the literature.

The scalar diffraction theory corresponds to the limit
NA → 0. A series expansion shows that the functions
Fk(u, v) are proportional to NAk for small NA. It follows
that only F0(u, v) is relevant in the limit NA → 0. The
electric field is then simply proportional to the product of
F0(u, v) and the polarization in the entrance pupil
(Ax , Ay , 0). The function g0(r) may be approximated in
this limit by

g0~r! 5 exp~iWp! 1 exp~iWs!. (63)

In the birefringence free case this corresponds to the re-
sults already discussed in Richards and Wolf.3

Next, the magnetic field H is considered. It can be ex-
pressed in terms of integrals similar to the electric field.
It turns out that the magnetic field expression can be ob-
tained from the electric-field expression by substituting
Ax → 2Ay and Ay → Ax , and also tp exp(iWp)
→ ts exp(iWs) and ts exp(iWs) → tp exp(iWp) and by an
overall multiplication with n2 . In Subsection 3.B, the
magnetic functions corresponding to Fk(u, v) and gk(r)
are indicated by Fk8(u, v) and gk8(r).

B. Electromagnetic Energy Density
The intensity of the a component of the electric field is
Ia 5

1
2e0n2

2uEau2. The contribution from the birefrin-
gence may be neglected, as Dn is assumed to be much
smaller than n2 . Introducing a scaling factor

I0 5
1

2
e0

n2

n1
T0p2N2, (64)

it is found that

Ix

I0
5 uF0 1 F2 cos~2c!u2uAxu2

1 2 Re$@F0 1 F2cos~2c!#F2* sin~2c!AxAy* %

1 uF2u2 sin2~2c!uAyu2

5
1

2
@ uF0u2 1 uF2u2 1 2 Re~F0F2* !cos~2c!#

3 ~ uAxu2 1 uAyu2! 1
1

2
@ uF0u2 1 uF2u2 cos~4c!

1 2 Re~F0F2* !cos~2c!#~ uAxu2 2 uAyu2!

1 FRe~F0F2* !sin~2c! 1
1

2
uF2u2 sin~4c!G

3 Re~Ax* Ay! 2 Im~F0F2* !sin~2c!Im~Ax* Ay!, (65)
Iy

I0
5 uF2u2 sin2~2c!uAxu2 1 2 Re$@F0 2 F2

3 cos~2c!#F2* sin~2c!Ax* Ay%

1 uF0 2 F2 cos~2c!u2uAyu2

5
1

2
@ uF0u2 1 uF2u2 2 2 Re~F0F2* !cos~2c!#

3 ~ uAxu2 1 uAyu2! 2
1

2
@ uF0u2

1 uF2u2 cos~4c! 2 2 Re~F0F2* !cos~2c!#

3 ~ uAxu2 2 uAyu2! 1 FRe~F0F2* !sin~2c!

2
1

2
uF2u2 sin~4c!GRe~Ax* Ay!

1 Im~F0F2* !sin~2c!Im~Ax* Ay!, (66)

Iz

I0
5 4uF1u2ucos~ c!Ax 1 sin~ c!Ayu2

5 2uF1u2~ uAxu2 1 uAyu2! 1 2uF1u2

3 cos~2c!~ uAxu2 2 uAyu2!

1 4uF1u2 sin~2c!Re~Ax* Ay!. (67)

These expressions can be rewritten by using the Stokes
parameters, which describe the state of polarization in
the entrance pupil:

S0 5 uAxu2 1 uAyu2 5 1, (68)

S1 5 uAxu2 2 uAyu2 5 cos~2e!cos~2u!, (69)

S2 5 2 Re~Ax* Ay! 5 cos~2e!sin~2u!, (70)

S3 5 2 Im~Ax* Ay! 5 sin~2e!. (71)

Here e is the ellipticity angle and u is the angle between
the long axis of the polarization ellipse and the x axis.
The resulting expressions are

Ix

I0
5

1

2
uF0u2@1 1 cos~2e!cos~2u!# 1 Re~F0F2* !

3 @cos~2e!cos~2c 2 2u! 1 cos~2c!#

2 Im~F0F2* !sin~2e!sin~2c! 1
1

2
uF2u2

3 @1 1 cos~2e!cos~4c 2 4u!#, (72)

Iy

I0
5

1

2
uF0u2@1 2 cos~2e!cos~2u!# 1 Re~F0F2* !

3 @cos~2e!cos~2c 2 2u! 2 cos~2c!#

1 Im~F0F2* !sin~2e!sin~2c! 1
1

2
uF2u2

3 @1 2 cos~2e!cos~4c 2 4u!#, (73)



2852 J. Opt. Soc. Am. A/Vol. 18, No. 11 /November 2001 Sjoerd Stallinga
Iz

I0
5 2uF1u2 1 2uF1u2cos~2e!cos~2c 2 2u!. (74)

The total intensity is then

I

I0
5 uF0u2 1 2uF1u2 1 uF2u2 1 2@ uF1u2

1 Re~F0F2* !#cos~2e!cos~2c 2 2u!. (75)

Equations (72)–(75) generalize the results of Richards
and Wolf and subsequent authors to arbitrary states of
polarization in the entrance pupil. So far, only the spe-
cial case of a linear polarization (e 5 0) oriented along
the x axis (u 5 0) has been considered. In that particu-
lar case Iy has a fourfold rotation symmetry, with maxima
at c 5 p/4, 3p/4, 5p/4, and 7p/4 and zeros at c 5 0, p/2,
p, and 3p/2, whereas Iz has a twofold rotation symmetry,
with maxima at c 5 0 and p and zeros at c 5 p/2 and
3p/2. It follows from the behavior of the functions Fk for
small NA that Ix is of the order unity, Iy is of the order
NA4, and Iz is of the order NA2. The total intensity as a
function of c has a maximum in the plane of the polariza-
tion and a minimum in the plane perpendicular to this
plane, meaning that the spot is elongated in the direction
of the polarization. This behavior is also found with the
computer program Diffract.6,7 For a circular polarization
(e 5 p/4) it is found that

Ix

I0
5

1

2
~ uF0u2 1 uF2u2! 1 Re~F0F2* !cos~2c!

2 Im~F0F2* !sin~2c!, (76)

Iy

I0
5

1

2
~ uF0u2 1 uF2u2! 2 Re~F0F2* !cos~2c!

1 Im~F0F2* !sin~2c!, (77)

Iz

I0
5 2uF1u2. (78)

The dependence on c signifies a broken rotational symme-
try, which is related to the fact that the point of observa-
tion is not necessarily on the optical axis. The total in-
tensity, however, is equal to

I

I0
5 uF0u2 1 2uF1u2 1 uF2u2, (79)

for all directions c, i.e., the elongation of the spot has dis-
appeared. It follows that this elongation is purely a po-
larization effect. Numerical calculations show that the
NA hardly influences the intensity distribution [Eq. (79)],
apart from the scaling contained in the dimensionless co-
ordinates u and v. The most significant change is in the
local minima and maxima, which are less sharp for larger
NA; i.e., the oscillations in the intensity profile are
smoothened. Finally, it is mentioned that the intensities
for unpolarized light can be found by setting the Stokes
parameters S1 5 S2 5 S3 5 0.

Expressions for the magnetic energy density 1
2m0H2

5
1
2e0(m0cH)2 can be found by making the substitutions

Ax → 2Ay and Ay → Ax and Fk → Fk8 . In terms of the
polarization parameters this means u → u 1 p/2, i.e. a
rotation of the polarization ellipse over p/2. This implies
that the distribution of the magnetic energy density de-
pends on the Fk8 in the same way that the distribution of
the electric energy density depends on the Fk , up to an
additional rotation over p/2.

C. Flow of Electromagnetic Energy
The flow of electromagnetic energy is given by the Poyn-
ting vector:

S 5 Re~E 3 H* !. (80)

It follows from substitution of the known expressions for
the electric and magnetic fields that

m0cSx

2I0
5 Re(22i$F2 sin~2c!Ax 1 @F0

2 F2 cos~2c!#Ay%F18* @2sin~ c!Ax* 1 cos~ c!Ay* #

1 2iF1@cos~ c!Ax 1 sin~ c!Ay#$@F08*

2 F28* cos~2c!#Ax* 2 F28* sin~2c!Ay* %)

5 Im@~F0 2 F2!F18* 2 F1~F08* 2 F28* !#cos~ c!

2 Re@~F0 1 F2!F18* 1 F1~F08*

1 F28* !#sin~2e!sin~ c! 2 Im~F0F18*

1 F1F08* !cos~2e!cos~ c 2 2u! 1 Im~F0F28*

1 F2F08* !cos~2e!cos~3c 2 2u!, (81)

m0cSy

2I0
5 Re(22iF1@cos~ c!Ax 1 sin~ c!Ay#

3$F28* sin~2c!Ax* 2 @F08* 1 F28* cos~2c!#Ay* %

1 2i$@F0 1 F2 cos~2c!#Ax

1 F2 sin~2c!Ay%F18* @2sin~ c!Ax* 1 cos~ c!Ay* #)

5 Im@~F0 2 F2!F18* 2 F1~F08* 2 F28* !#sin~ c!

1 Re@~F0 1 F2!F18* 1 F1~F08*

1 F28* !#sin~2e!cos~ c! 1 Im@F0F18*

1 F1F08* #cos~2e!sin~ c 2 2u! 1 Im@F0F28*

1 F2F08* #cos~2e!sin~3c 2 2u!, (82)

m0cSz

2I0
5 Re($@F0 1 F2 cos~2c!#Ax 1 F2 sin~2c!Ay%

3 $@F08* 2 F28* cos~2c!#Ax* 2 F28* sin~2c!Ay* %

2 $F2 sin~2c!Ax 1 @F0 2 F2 cos~2c!#Ay%

3 $F28* sin~2c!Ax* 2 @F08* 1 F28* cos~2c!#Ay* %)

5 Re~F0F08* 2 F2F28* ! 2 Re~F0F28*

2 F2F08* !cos~2e!cos~2c 2 u!. (83)

These equations generalize those of Richards and Wolf 3,5

to describe the effects of arbitrary states of polarization in



Sjoerd Stallinga Vol. 18, No. 11 /November 2001 /J. Opt. Soc. Am. A 2853
the entrance pupil, axial birefringence, and of focusing
through a cover layer. The x and y components of the
Poynting vector can be rewritten in terms of a radial and
a tangential component, giving:

m0cSr

2I0
5 cos~ c!

m0cSx

2I0
1 sin~ c!

m0cSy

2I0

5 Im@~F0 2 F2!F18* 2 F1~F08* 2 F28* !#

2 Im@~F0 2 F2!F18* 1 F1~F08* 2 F28* !#

3 cos~2e!cos~2c 2 2u!, (84)

m0cSc

2I0
5 2sin~ c!

m0cSx

2I0
1 cos~ c!

m0cSy

2I0

5 Re@~F0 1 F2!F18* 1 F1~F08* 1 F28* !# sin~2e!

1 Im@~F0 1 F2!F18* 1 F1~F08* 1 F28* !#

3 cos~2e!sin~2c 2 2u!, (85)

m0cSz

2I0
5 Re~F0F08* 2 F2F28* ! 2 Re~F0F28* 2 F2F08* !

3 cos~2e!cos~2c 2 2u!. (86)
Several new terms are introduced here compared with the
equations of Richards and Wolf.3,5 The terms involving
the azimuthal angle c appear owing to the difference be-
tween the electric and magnetic functions Fk and Fk8 ,
which in turn is rooted in the difference between the p
and s Fresnel coefficients. Clearly, these terms represent
effects of the interface in z 5 2d. The effect is zero for
circularly polarized light (e 5 6p/4) and maximum for
linearly polarized light. Calculations for n1 5 1, n2
5 1.5, NA 5 0.85, Dn 5 0 (no birefringence effects), and
e 5 0 (linear polarization) show that the difference be-
tween the functions Fk and Fk8 is of the order 1023 or less.
The additional flow terms due to the difference between
the Fk and Fk8 are of the order 1023 or less as well. Con-
sequently, these terms may be neglected, leading to the
approximation

m0cSr

2I0
5 2 Im@~F0 2 F2!F1* #, (87)

m0cSc

2I0
5 2 Re@~F0 1 F2!F1* #sin~2e!, (88)
Fig. 2. Intensity on a logarithmic scale (upper left), and the axial (upper right), radial (lower left), and azimuthal (lower right) flow
components in the focal region for NA 5 0.85, n1 5 n2 5 1, Dn 5 0, and for circular polarization in the entrance pupil.
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m0cSz

2I0
5 uF0u2 2 uF2u2. (89)

The absence of the azimuthal angle c in these expressions
implies that the flow pattern is invariant under rotations
around the optical axis.

The remaining contribution to the tangential compo-
nent Sc is absent for linearly polarized light and maxi-
mum for circularly polarized light. It therefore describes
the effects of ellipticity. This term has remained unno-
ticed by previous authors, as they have only considered
linearly polarized light. Ellipticity has the consequence
that the Poynting vector is no longer confined to the me-
ridional plane. It follows that the electromagnetic en-
ergy flows through the focal region similar to the flow of
air in a tornado. This effect can be understood physically
from the fact that elliptically polarized light carries angu-
lar momentum. Figure 2 shows the distribution of inten-
sity and of the axial, radial, and azimuthal components of
the Poynting vector in the focal region for NA 5 0.85, n1
5 n2 5 1, Dn 5 0, and e 5 p/4 (circular polarization).
Clearly, there is a toroidal region around the focal plane
with relatively large azimuthal flow. The maximum is
close to the circle v 5 0.24, which is roughly halfway be-
tween the optical axis and the first minimum of the scalar

Fig. 3. Projection of flow lines on the meridional plane (left) and
on the focal plane (right) for NA 5 0.85, n1 5 n2 5 1, Dn 5 0,
and e 5 p/4 (circular polarization). Starting points of the flow
lines are on the circle v 5 2 in the plane u 5 24. The flow lines
make a rotation around the optical axis of approximately p in the
focal region.
Airy distribution at v 5 0.61. Figure 3 shows projections
of flow lines on the meridional and focal planes for the
same parameters as used for Fig. 2. Flow lines r(t)
5 @u(t), v(t), c (t)# satisfy the set of first-order differen-
tial equations:

dr

dt
5 l

m0cS~r!

2I0
, (90)

where t is a dimensionless number parametrizing the flow
line and l is a unit of length. This differential equation
can easily be integrated with the Runge–Kutta method.
The projection on the meridional plane is the line
@u(t),v(t)#; the projection on the focal plane is the line
@v(t)cos c (t), v(t)sin c (t)]. Starting points of the flow
lines in Fig. 3 are on the circle with radius v 5 2 in the
plane u 5 24. The flow lines converge on the optical
axis for u , 0 and diverge from the optical axis for
u . 0. In the focal region close to u 5 0 the flow lines
spiral around the optical axis, making a nearly p rotation.
The rotation takes place largely in the toroidal region
with the large azimuthal Poynting vector component in-
dicated in Fig. 2. This spiraling of flow lines around the
optical axis stands in contrast to the linearly polarized
case where the azimuthal angle c does not change at all.

It was originally noted by Wolf and co-workers3,5 that
there are regions of anomalous flow, i.e., regions where
the electromagnetic energy flows backwards toward the
focusing lens. These regions are defined by a negative
Poynting vector z component. The flow pattern in the
neighborhood of this region is quite extraordinary when
the polarization in the entrance pupil is circular and can
be analyzed as follows. First it is noted that in the focal
plane u 5 0 the functions Fk are real. It then follows
that the radial flow is zero (Sr 5 0). The axial flow Sz is
zero if F0 5 F2 or F0 5 2F2 . The points closest to the
optical axis for which this is the case are v 5 0.57 and
v 5 0.65, respectively (for n1 5 n2 5 1 and NA 5 0.85).
These points are close to the first minimum of the Airy
distribution of scalar diffraction theory at v 5 0.61. For

Fig. 4. Anomalous flow projected on the meridional plane close
to the first minimum of the scalar diffraction Airy pattern. The
singular point with zero Poynting vector is indicated by ‘‘S’’; the
point where the flow is purely azimuthal is indicated by ‘‘A.’’ The
thin curves have zero axial flow (Sz 5 0) and zero azimuthal
flow (Sc 5 0). The line with zero radial flow (Sr 5 0) is dotted
and coincides with the focal plane u 5 0. Flow lines within the
toroidal region defined by the flow lines through S spiral around
the circle through A.
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Table 1. Sensitivity for Vertical Birefringence for the Three Optical Recording Standardsa

Standard l (nm) NA d (mm) no B Dndl Dndl/10

CD 780 0.45 1.2 1.5 6.31 3 104 1.8 3 1023 5.6 3 1024

DVD 660 0.60 0.6 1.5 6.96 3 104 1.7 3 1023 5.4 3 1024

DVR 400 0.85 0.1 1.5 2.12 3 104 3.1 3 1023 9.7 3 1024

a The coefficient B is the coefficient in the expression for the Strehl ratio S 5 1 2 BDn2, Dndl is the birefringence for which the spot is diffraction limited,
and Dndl/10 is the birefringence for which S 5 0.98.
v 5 0.65 the azimuthal flow Sc is zero as well. Clearly,
the circle in the focal plane with radius 0.65 is a line with
singular flow, i.e. a line where S 5 0. For v 5 0.57 the
flow is purely azimuthal. As a consequence, the circle in
the focal plane with radius 0.57 is a flow line. The sin-
gular point S, the point with purely azimuthal flow A, and
the lines Sz 5 0 and Sc 5 0 are shown in Fig. 4. Projec-
tion of the flow lines on the meridional plane are also
drawn in Fig. 4. The flow lines through S enclose a re-
gion with toroidal topology in which the flow lines spiral
around the circle through A. These flow lines are con-
fined to the region with toroidal topology and form closed
loops when the number of turns around A per revolution
around the optical axis is a rational fraction. This is only
the case for some particular values of the NA. Finally, it
is mentioned that similar regions with anomalous flow
can be found further away from the optical axis.

4. EFFECTS OF BIREFRINGENCE
A. Focus Shift, Strehl Ratio, and Spot Width
We now turn to the case with nonzero birefringence. It is
assumed that the focusing lens is corrected for aberra-
tions introduced by an isotropic cover layer of thickness d
and refractive index n2 5 no . Then

Ws 5 0, (91)

Wp 5 DW 5
kdDnr2NA2/n2

2

~1 2 r2NA2/n2
2!1/2 . (92)

Expanding DW in the radial pupil coordinate r gives to
lowest order a defocus term

DW 5 kdDn~NA/n2!2r2 1 ... . (93)

Clearly, the spot arising from the radial polarization field
in the exit pupil is defocused compared with the spot aris-
ing from the tangential polarization field. It follows that
for large values of the birefringence the spot is split into
two parts, a radial spot and a tangential polarization
spot. For small values of the birefringence the two spots
overlap sufficiently to regard them as a single, broadened
spot. The separation of the two spots is equal to
2dDn/n2 , as the relative defocus is proportional to
kdDn(NA/n2)2. This means that the maximum of the
combined spot is shifted over a distance dDn/n2 . The
defocus is then evenly distributed over both spots. A
measure of spot broadening is the deviation of the Strehl
ratio from one. Because both spots are defocused relative
to the point with maximum intensity this will be propor-
tional to (kdDn)2(NA/n2)4.

An explicit calculation in the limit of small Dn and
small NA confirms this qualitative argument. To calcu-
late the focus shift and Strehl ratio the intensity distribu-
tion must be calculated. The point of maximum intensity
(focus) must be on the optical axis because of rotational
symmetry. The relevant function is then the integral
F0(u, 0). This integral can be evaluated numerically,22

but an analytical treatment appears to be quite possible
for small values of the numerical aperture and birefrin-
gence. In that limiting case,

Fig. 5. Strehl ratio for NA 5 0.85, l 5 400 nm, n1 5 1, n2
5 1.5, and d 5 100 mm, according to the analytical approxima-
tion [Eq. (98)] (solid curve) and according to exact numerical cal-
culations (dashed curve).

Fig. 6. Focus shift for NA 5 0.85, l 5 400 nm, n1 5 1, n2
5 1.5, and d 5 100 mm, according to the analytical approxima-
tion [Eq. (97)] (solid curve) and according to exact numerical cal-
culations (dashed curve).



2856 J. Opt. Soc. Am. A/Vol. 18, No. 11 /November 2001 Sjoerd Stallinga
F0~u,0! 5 E
0

1

drrF1 1 pi~2p 2 u !r2 2
1

2
p2

3 ~2p 2 u !2r4 1 1 2 piur2 2
1

2
p2u2r4G

5 1 1 i
p

2
~ p 2 u ! 2

p2

12
@~2p 2 u !2 1 u2#,

(94)

where the quantity p is defined by

p 5
dDn

l

NA2

n2
2 . (95)

Terms of order NA2 and NA4 that do not depend on u or p
are left out, as they divide out in the expression for the
Strehl ratio (the ratio of the intensity and the maximum
intensity in the zero birefringence case). This Strehl ra-

tio follows as
S 5 1 2 Fp2

6
~2p 2 u !2 1

p2

6
u2 2

p2

4
~ p 2 u !2G

5 1 2
p2

12
~5p2 2 2pu 1 u2!. (96)

Maximum intensity is obtained when u 5 p, meaning
that the focus is no longer in the plane z 5 0, but instead
is shifted over a distance

Dz 5
dDn

n2
. (97)

At this shifted focus point the Strehl ratio is then

S 5 1 2
p2

3
p2 5 1 2

1

12 S 2pdDn

l
D 2S NA

n2
D 4

. (98)

The results for the focus shift and the Strehl ratio agree
with the qualitative argument. The spot is diffraction

limited (Strehl ratio 0.8) if the retardance satisfies
Fig. 7. Intensity distribution in the meridional plane for Dn 5 0 (upper left), Dn 5 5 3 1023 (upper right), Dn 5 10 3 1023 (lower
left), and Dn 5 15 3 1023 (lower right). The intensity increases from black to white. The full lines are isophotes for intensities 0.50,
0.10, 0.05, 0.02, 0.01, 0.005, and 0.001; the dashed lines indicate the geometrical light cone v 5 un2 /(n2

2 2 NA2)1/2. The parameters
used in the calculation are NA 5 0.85, l 5 400 nm, n1 5 1, n2 5 1.5, and d 5 100 mm.
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Fig. 8. Projection of flow lines on the meridional plane for circular polarization in the entrance pupil with Dn 5 0 (upper left), Dn
5 5 3 1023 (upper right), Dn 5 10 3 1023 (lower left), and Dn 5 15 3 1023 (lower right). The parameters used in the calculation are
NA 5 0.85, l 5 400 nm, n1 5 1, n2 5 1.5, and d 5 100 mm. These are the same parameters used in the calculations of the intensity
distributions shown in Fig. 7.
dDn < dDndl 5 A12

5

l

2p
S n2

NAD 2

. (99)

The birefringence for which 10% of the diffraction limited
margin is taken (Strehl ratio 0.98) seems a suitable can-
didate for the maximum tolerable birefringence in a prac-
tical system. This birefringence value is Dndl/10
5 Dndl /A10.

The optical recording standards CD, DVD, and DVR
may be compared to each other in terms of the sensitivity
for vertical birefringence in the cover layer. With use of
Eq. (98) this sensitivity can be easily quantified. Table 1
shows the coefficient of Dn2 in the expression for the
Strehl ratio, the birefringence for which the spot is dif-
fraction limited and the birefringence for which 10% of
the diffraction-limited margin is taken. It turns out that
the CD and DVD standards are comparable in birefrin-
gence sensitivity, whereas the newly proposed DVR stan-
dard has a distinctly lower sensitivity. The values for the
maximum tolerable birefringence are in the range
5 3 1024 –10 3 1024.

The analytical approximations leading to Eqs. (97) and
(98) may be compared with exact numerical calculations
of the focus shift and Strehl ratio as a function of birefrin-
gence. Figs. 5 and 6 show the exact and approximated
Strehl ratio and focus shift, respectively, for the param-
eters pertaining to the DVR optical recording standard
(see Table 1). Quantitative agreement between the exact
and approximate focus shift and Strehl ratio cannot be ex-
pected a priori because of the high NA value of 0.85. It
turns out that the results defy this expectation as the
quantitative agreement is quite satisfactory, especially for
the focus shift.

B. Isophotes and Flow Lines
Figure 7 shows the intensity distribution in the meridi-
onal plane for different values of the axial birefringence.
The full lines are different isophotes (lines of equal inten-
sity). The input parameters of the calculations are the
parameters pertaining to the DVR optical recording stan-
dard. The polarization in the entrance pupil was taken
to be circular. For Dn 5 5 3 1023 (just above the dif-
fraction limit 3 3 1023) the spot is broadened and de-
formed compared with the zero birefringence case. For
Dn 5 10 3 1023 the tangentially and radially polarized
spots are separated. The tangentially polarized spot (or-
dinary mode) is centered at the geometrical focus u 5 v
5 0, whereas the radially polarized spot (extraordinary
mode) is shifted. The separation of the two spots in-
creases with Dn, as follows from comparison of the fig-
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ures for Dn 5 10 3 1023 and Dn 5 15 3 1023. The re-
sults of these numerical calculations are in agreement
with the discussion in the previous subsection. In case of
a linear polarization in the entrance pupil the elongation
of the spot is different for the tangentially and radially
polarized spots, leading to an almost circular spot half-
way between the two spots.23 This resembles the light
distribution of an astigmatic spot in the scalar diffraction
theory.

The axial birefringence gives rise to a distorted flow
profile in the focal region. Figure 8 shows the projection
of the three-dimensional flow lines @u(t), v(t), c (t)# on
the meridional plane, i.e. the lines @u(t),v(t)#, for differ-
ent values of the birefringence, starting from equidistant
points on the line u 5 26, c 5 0. The flow lines do not
give information about the nonzero azimuthal component
of the Poynting vector related to the circular polarization
of the light. However, Fig. 8 clearly shows the distortion
of the flow profile by the birefringence. The broadening
and reduction of intensity for Dn 5 5 3 1023 compared
with Dn 5 0 3 1023 (upper right picture compared with
upper left picture) is clearly visible from the decreased
concentration of flow lines in the central region. The
subsequent splitting of the focus as the birefringence is
increased further to Dn 5 10 3 1023, and Dn 5 15
3 1023 is evident from the lower two pictures.

5. SUMMARY AND CONCLUSION
The influence of axial birefringence on the distribution
and flow of light close to focus is investigated with use of
vector diffraction theory. Integral expressions for the
electric and magnetic fields in the focal region are de-
rived. The Debye approach is followed and the so-called
small birefringence approximation is introduced. The
latter approximation is quite justified in many practical
cases, such as the readout of optical disks through a bire-
fringent cover layer. Expressions for the intensity and
the Poynting vector are derived on the basis of the diffrac-
tion integrals; these expressions are valid for arbitrary
states of polarization in the entrance pupil of the optical
system. For the case of circular polarization the light
distribution is rotationally symmetric, and the Poynting
vector has a tangential component, leading to a tornado-
like flow of energy in the focal region.

The focal spot is the sum of contributions of the field
that is radially polarized and the field that is tangentially
polarized in the exit pupil. The radial polarization field
corresponds to the p or extraordinary wave, and the tan-
gential polarization field corresponds to the s or ordinary
wave. Axial birefringence introduces a relative defocus
of the tangential and radial polarization spots. For small
values of the birefringence this causes a deformation,
broadening, and displacement of the spot; for large values
the two spots separate completely. Analytical expres-
sions for the Strehl ratio and the focal shift are derived
that are strictly valid for small NA and birefringence only.
Numerical calculations show that they are quantitatively
valid, even for large NA. The expression for the Strehl
ratio allows for an estimate of the maximum tolerable bi-
refringence. The spot is diffraction limited if the Strehl
ratio equals 0.8. Taking 10% of the diffraction-limited
margin the maximum tolerable birefringence is the value
for which the Strehl ratio equals 0.98. It turns out that
for the optical recording standards CD, DVD, and DVR,
the maximum allowable birefringence is in the range
0.5–1.0 3 1023.

Further work along the lines presented in this paper is
quite possible. Modifications of the p and s Fresnel coef-
ficients due to focusing through an interference stack or
through a gap with subwavelength thickness (allowing for
evanescent wave coupling) are relatively simple. Ana-
lytical treatment of the azimuthal part of the diffraction
integral is no longer possible when the rotational symme-
try of the system is broken by aberrations such as coma or
astigmatism, or by biaxial birefringence. These nonrota-
tionally symmetric cases require a fully numerical treat-
ment of the diffraction integral, which may complicate
matters considerably.

ACKNOWLEDGMENTS
Martijn Dekker is thanked for discussions on the subject
of birefringence in optical disk readout.

S. Stallinga can be reached at the address on the title
page or by e-mail at sjoerd.stallinga@philips.com.

REFERENCES
1. T. Narahara, S. Kobayashi, M. Hattori, Y. Shimpuku, G. J.

van den Enden, J. A. H. M. Kahlman, M. van Dijk, and R.
van Woudenberg, ‘‘Optical disc system for digital video re-
cording,’’ Jpn. J. Appl. Phys. 39, 912–919 (1959).

2. E. Wolf, ‘‘Electromagnetic diffraction in optical systems I.
an integral representation of the image field,’’ Proc. R. Soc.
London Ser. A 253, 349–357 (1959).

3. B. Richards and E. Wolf, ‘‘Electromagnetic diffraction in op-
tical systems II. structure of the image field in an
aplanatic system,’’ Proc. R. Soc. London Ser. A 253, 358–379
(1959).

4. A. Boivin and E. Wolf, ‘‘Electromagnetic field in the neigh-
borhood of the focus of a coherent beam,’’ Phys. Rev. B 138,
1561–1565 (1965).

5. A. Boivin, J. Dow, and E. Wolf, ‘‘Energy flow in the neigh-
borhood of the focus of a coherent beam,’’ J. Opt. Soc. Am.
57, 1171–1175 (1967).

6. M. Mansuripur, ‘‘Distribution of light at and near the focus
of high-numerical-aperture objectives,’’ J. Opt. Soc. Am. A 3,
2086–2093 (1986).

7. M. Mansuripur, ‘‘Certain computational aspects of vector
diffraction problems,’’ J. Opt. Soc. Am. A 6, 786–805 (1989).

8. H. Ling and S.-W. Lee, ‘‘Focusing of electromagnetic waves
through a dielectric interface,’’ J. Opt. Soc. Am. A 1, 965–
973 (1984).

9. P. Török, P. Varga, Z. Laczik, and G. R. Booker, ‘‘Electro-
magnetic diffraction of light focused through a planar inter-
face between materials of mismatched refractive indices:
an integral representation,’’ J. Opt. Soc. Am. A 12, 325–332
(1995).

10. P. Török, P. Varga, and G. R. Booker, ‘‘Electromagnetic dif-
fraction of light focused through a planar interface between
materials of mismatched refractive indices: structure of
the electromagnetic field. I,’’ J. Opt. Soc. Am. A 12, 2136–
2144 (1995).

11. P. Török, P. Varga, and G. Németh, ‘‘Analytical solution of
the diffraction integrals and interpretation of wave-front
distortion when light is focused through a planar interface
between materials of mismatched refractive indices,’’ J.
Opt. Soc. Am. A 12, 2660–2671 (1995).

12. S. H. Wiersma and T. D. Visser, ‘‘Defocusing of a converging



Sjoerd Stallinga Vol. 18, No. 11 /November 2001 /J. Opt. Soc. Am. A 2859
electromagnetic wave by a plane dielectric interface,’’ J.
Opt. Soc. Am. A 13, 320–325 (1996).

13. S. H. Wiersma, P. Török, T. D. Visser, and P. Varga, ‘‘Com-
parison of different theories for focusing through a plane in-
terface,’’ J. Opt. Soc. Am. A 14, 1482–1490 (1997).

14. V. Dhayalan and J. J. Stamnes, ‘‘Focusing of electromag-
netic waves into a dielectric slab: I. exact and asymptotic
results,’’ Pure Appl. Opt. 6, 33–52 (1997).

15. D. G. Flagello, T. Milster, and A. E. Rosenbluth, ‘‘Theory of
high-NA imaging in homogeneous thin films,’’ J. Opt. Soc.
Am. A 13, 53–64 (1996).

16. J. J. Stamnes and D. Jiang, ‘‘Focusing of electromagnetic
waves into a uniaxial crystal,’’ Opt. Commun. 150, 251–262
(1998).

17. D. Jiang and J. J. Stamnes, ‘‘Numerical and asymptotic re-
sults for focusing of two-dimensional waves in uniaxial
crystals,’’ Opt. Commun. 163, 55–71 (1999).
18. D. Jiang and J. J. Stamnes, ‘‘Numerical and experimental
results for focusing of two-dimensional electromagnetic
waves into uniaxial crystals,’’ Opt. Commun. 174, 321–334
(2000).

19. P. Yeh, Optical Waves in Layered Media (Wiley, New York,
1988).

20. J. J. Stamnes, Waves in Focal Regions (Hilger, Bristol, UK
1986).

21. M. Mansuripur, ‘‘Distribution of light at and near the focus
of high-numerical-aperture objectives: erratum; Certain
computational aspects of vector diffraction problems: erra-
tum,’’ J. Opt. Soc. Am. A 10, 382–383 (1993).

22. A. B. Marchant, ‘‘Cover sheet aberrations in optical record-
ing,’’ in Optical Disk Systems and Applications, E. V. La-
Budde, ed., Proc. SPIE 421, 43–49 (1983).

23. M. Mansuripur, The Physical Principles of Magneto-Optical
Recording (Cambridge U. Press, Cambridge, UK, 1995).


