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ROBERT SHORTER, JOHN D. SMITH, VINCENT A. COVENEY AND JAMES J. C. BUSFIELD

When thin-walled hollow elastic spheres are compressed between two parallel rigid surfaces, there is an

initial flattening of the sphere in the contact regions, followed by a snap-through buckling of the flattened

surface. As the compression increases the sphere undergoes further buckling modes as a number of ridges

and folds are formed. This elastic buckling deformation is investigated using a finite element analysis

(FEA) technique. It is shown that the ratio of displacement at buckling to wall thickness depends weakly

not only on Poisson’s ratio, ν, but also on the ratio of the geometric wall thickness, h, to sphere radius,

R. This approach is validated by comparison with experimental compression results on microspheres of

approximately 40 µm in diameter to table tennis balls with a diameter of 40 mm.

The analysis shows that a simple axial compression of a thin-walled hollow sphere can be used to

measure both the average wall thickness of the sphere, from the deformation at the buckling snap-through,

and the modulus from the force at this point. This provides a good technique to fully characterise the

geometry and the elastic behaviour of thin-walled spheres of any size.

Introduction

Hollow thin-walled spheres are used for a variety of applications ranging from the recreational (table ten-

nis balls, tennis balls, footballs), the industrial (lightweight and syntactic foams), through to the medical

(the use of ultrasonic contrast agents to enhance ultrasonic imaging). In many of these applications the

mechanical properties of the spherical shell play an important role, yet reliable measurements of those

properties are often difficult to obtain. For example, with sintered foam structures made from hollow

spheres, such as that proposed in [Taguchi and Karushige 2007; Peng et al. 2000], it is important that

the mechanical properties of the individual spheres are known. With polymer spheres, even if samples

of the polymer constituent are available, the manufacturing method may influence the final mechanical

properties. This is often the case for example with polymers made by blow or injection moulding where

an in-situ measurement may be desirable.

The situation is even starker for microscopic fillers: for example, with ultrasonic contrast agents where

experimental evidence indicates that the elasticity and thickness of the shell are important components to

the overall dynamics [Leong-Poi et al. 2002; Ketterling et al. 2007]. Such shells often have a diameter of a

few µm and are constructed of proteins and lipids. Another type of hollow sphere, commercially available

as Expancelr microspheres, are encountered in industrial applications as either a way of reducing weight

or to act as a blowing agent. These range in diameter from 20 to 55 µm with shell thicknesses of

approximately 0.1 µm. In [Trivett et al. 2006], when the behaviour of these microspheres was studied

in castor oil, the Young’s modulus of the shell was estimated to be ∼3 GPa from the sound speed of the
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mixture, but in this case the spheres are formed by a chemical reaction in-situ and it is not possible to

obtain a test sample of the shell polymer to confirm this estimate.

The axial compression of either hollow hemispheres and spheres between parallel rigid planes has been

studied in [Updike and Kalnins 1970; 1972; Taber 1983; Pauchard and Rica 1998]. In the first of these

references an axisymmetric elastic solution was developed and it was shown that during compression the

initial response is to form a flat surface followed at larger deformations by a buckled solution. Updike

and Kalnins [1972] extended this work to larger displacements and derived a solution that indicates that

a nonsymmetric solution exists where contact lobes are formed on the contact ring. Taber [1983] tackled

the problem of what happens if the sphere is filled with a pressurised fluid. It was found experimentally in

[Pauchard and Rica 1998] that, for low applied forces, the shell flattens against the surfaces as predicted

in [Updike and Kalnins 1970]. As the force is increased the shell suddenly buckled when the deformation

was close to twice the thickness of the shell. Using the Föppl–von Kármán theory for thick shells [Föppl

1907, § 24, pp. 132–144; Ben and Pomeau 1997; Pomeau 1998], together with the observed configuration

of the deformation, Pauchard and Rica deduced the form of the energy of an axially symmetric deformed

spherical shell. This expression qualitatively explains the observed features but it contains a set of

unknown parameters that, on dimensional grounds, are only expected to depend on the Poisson’s ratio of

the shell material. In this paper these various earlier approaches are re-examined using a finite-element

analysis (FEA) numerical investigation into the dependence of the buckling transition and associated

force-deflection curve on the material and geometric properties. It is shown that the ratio of displacement

at buckling to wall thickness depends weakly not only on Poisson’s ratio but also weakly on the geometric

wall thickness to sphere radius ratio as well.

The precise form of the force-deflection curve before buckling is also found to be dependent on Pois-

son’s ratio, the sphere geometry and the modulus. It should therefore be possible to derive master curves

of buckling force and displacement at specified Poisson’s ratios which can then be used to determine the

Young’s modulus and thickness of a sphere, from a measurement of the force at a specified displacement

together with the displacement at the point of the buckling instability. This is clearly a very useful

extension of previous work. The theory is tested here using experimental results measured during the

axial compression of table tennis balls and Expancel microspheres.

1. Theory

Pauchard and Rica [1998] considered the contact of a spherical shell with a rigid plate. Before buckling,

the situation is assumed to conform to Configuration I of Figure 1, in which the top and bottom contact

surface of the sphere flatten against the flat rigid plates, the total deflection being 2x . After buckling

it is assumed that the deformed sections of the sphere invert and the situation corresponds to Configu-

ration II in the figure. The theory used to derive our dimensional approach is given in the Appendix.

The displacements here are expressed as a dimensionless term given as the ratio of the deflection to the

thickness ratio of the shell, ε = x/h.

Equation (A-3) implies that the scaled displacement to buckle the shell, εb is expected to depend only

on Poisson’s ratio and is independent of the Young’s modulus and the size of the sphere whereas (A-5)

states that the reduced force, RF/Eh3, is a function only of ε and Poisson’s ratio. It should be noted

that, if the functions f , gI and gII depend only weakly on υ, then εb is approximately constant and the
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Figure 1. Assumed configurations of sphere and plate before buckling (Configuration

I) and after (Configuration II).

reduced force lies on an approximately universal curve which is the same for any sphere, regardless of

size or material parameters. The assumed forms of the energy expressions leading to the results (A-5)

and (A-6) appear to be based on thin shell theory however the exact nature of some of the approximations

is unclear. It is to be expected however that the buckling displacement arises from the root of an equation

of the form of (A-3) and the reduced force will have a form similar to (A-5) however the exact functional

dependence could be more complicated. This will be explored using the numerical model presented in

the following section.

This paper focuses on the initial elastic buckling phenomena observed when a thin-walled shell is

compressed between two rigid flat plates. An approach similar to that proposed in [Maalawi 2008]

has been used to derive dimensionless functions to make the work applicable to a very wide range of

conditions. In this work the measured or predicted force, F , is plotted in a normalised dimensionless

form suggested by (A-5) as RF/Eh3 and the scaled displacement is plotted as ε. Initial modelling also

confirmed that the force scales directly with the applied modulus. Figure 2 shows a schematic for the full
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Figure 2. Schematic of the force-deflection curve for the compression of a spherical

shell between two rigid plates.
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compression of a hollow sphere until it is totally crushed. In the figure we are primarily concerned with

the small strain initial elastic buckling behaviour. There is an initial inflexion in the curve at A: this is

predicted by the form of (A-6)1 and is associated with the dominance with increasing deformation of the

energy associated with the compressed material on the flat portion of Configuration I over the energy in

the fold, however it is typically more pronounced in practice. The second kink in the curve, labelled B, is

the buckling instability that is the major focus of this paper. Immediately above B the sphere resembles

Configuration II in Figure 1. As the displacement increases further (C) the graph stiffens further due to

the onset of self contact between the internal top and bottom surfaces meeting inside the sphere. The

further peaks in the force behaviour, labelled D, result from detailed buckling and folding as the sphere

becomes fully compressed.

2. Numerical methods

The initial compression and buckling instability of the hollow spheres was modelled using ABAQUS

finite element software. Previous studies [Kelly and Takhirov 2007] showed that ABAQUS was a suitable

software package for modelling simple elastic buckling phenomena. Trials showed that the best way to

model the elastic buckling behaviour required the use of the explicit dynamics package, with the time

step set to model a pseudostatic analysis. Initially full three-dimensional models using solid continuum

three-dimensional reduced integration (C3D8R) elements were used, a typical example of which is shown

in Figure 3, left. Mesh sensitivity studies indicated that to replicate the buckling modes correctly, at least

four elements had to be used through the thickness. The studies also showed that the most reproducible

results were obtained for models based on elements that were approximately cubic. This put a significant

demand on the model creation for thin, full three-dimensional models, as when the thinnest models were

attempted it was necessary to use over 200,000 elements, which required significant solution time to

solve. It was clearly possible to add the additional elements only in the regions of contact and buckling;

however at large displacement the contact regions moved substantially, making it easier to use a uniform

Figure 3. Left: Three-dimensional model showing mesh. Right: Axisymmetric model

showing mesh and boundary conditions.
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mesh. Next a model that incorporated thin shell finite elements was used. Wong and Pellegrino [2006a;

2006b] have shown that buckling phenomena of thin shell structures can in general be well modelled

using this approach. However, in the case presented here this approach had difficulty resolving all

the contact constraints. An alternative modelling approach that used a 2D axisymmetric model with

continuum axisymmetric four node (CAX4) elements was produced. A typical model adopted is shown

in Figure 3, right, with the appropriate symmetry and boundary conditions highlighted. In this case it

was not computationally too expensive to use a large number of elements.

The numerical methods introduce an inherent uncertainty in the prediction of the point of instability,

εb. To minimise this, a standard approach was adopted where the separation between the top contacting

node in the model and the rigid surface was monitored throughout the analysis. The buckling was taken

to be when the rate of change of this separation with time was at a maximum. The error in determining

the maximum for a particular model is therefore determined by the discretisation of the time step and

has a value of about 3%. The mesh convergence studies suggested that the errors due to meshing were

much smaller and hence the overall estimate for the error is thought to be about 3%. This is the source

of the error bars shown in some of the figures.

Figure 4 plots normalised buckling instability displacement ǫb for a range of different shell thickness

to sphere radius ratios (h/R) predicted using both the three-dimensional models and the axisymmetric

models for a Poisson’s ratio of 0.3. Clearly there is very little to distinguish between the two sets of results.

This confirms, that at least for this initial snap-through elastic buckling, the behaviour is axisymmetric

and no out of plane buckling arises that would require the use of a full three-dimensional model. It is

also worth noting that the work presented here has a very similar buckling displacement to that seen in

[Updike and Kalnins 1970] who reported for similar geometries a scaled buckling displacement, εb, of

between 2.2 and 2.3. To speed up the analysis all the initial elastic buckling work reported in the rest of

the paper uses the axisymmetric modelling approach.
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Figure 4. Snap-through deflection as a function of sphere radius when ν = 0.3.
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Figure 5. Left: Snap-through buckling point εb versus Poisson’s ratio ν for a range of

thickness-to-radius ratios (h/R) (left), and versus h/R for a range of values of ν (right).

The two parts of Figure 5 plot the dependence of the buckling instability displacement on the Poisson’s

ratio of the material and also for a wide range of ratios of wall thickness to sphere radius. Pauchard and

Rica [1998] approach as given by (A-1) suggests that each of the various different geometries should

superimpose to a single master curve when the buckling point is plotted against Poisson’s ratio. Clearly

this is not the case as there is a small but clear geometric dependence as well. Pauchard and Rica

suggested a value of about 2 for εb and this is comparable with the values that we have derived for the

thinnest spheres. It is not clear from their paper but it appears likely that their approach is only valid

for very thin shells. A principal aim of this work is to produce curves to allow the wall thickness to be

measured from a simple measure of the buckling displacement provided that the Poisson’s ratio for the

material is known.

The second aim of this paper is to use the buckling force to deduce the modulus for the sphere.

However, there is a problem, as even though the actual buckling displacement was relatively insensitive

to mesh shape producing errors of less than 3%, the maximum force, Fb (shown in Figure 2) achieved

at this displacement was sensitive to discretisation details and produced much more significant errors of

about 15%. An approach was adopted here to reduce this artefact of the modelling; this used the force,

f , at the point half way to buckling, εb/2. As this point is far from the buckling instability, it is much

less sensitive to small changes in the mesh geometry or the precise detail of the discretisation of the time

step.

The wide range of geometric variations shown in Figure 5 are again plotted in Figure 6, but this time

to show how the normalised force at half of the buckling displacement varies with Poisson’s ratio and

for different values of normalised wall thickness. Again, there is a clear geometric dependence that

is not predicted in [Pauchard and Rica 1998]. Knowledge of this dependence, as shown in the graph,



AXIAL COMPRESSION OF HOLLOW ELASTIC SPHERES 699

2

2.5

3

3.5

4

0 0.02 0.04 0.06 0.08 0.1

h  / R

 R
f
 /

 E
h

3

ν

0.49

0.40

0.30

0.20

0.10

0.0

Figure 6. Normalised force versus radius. The value given is for the force at half of the

buckling point, f .

allows one to identify the modulus of the sphere from a knowledge of the force at the point half way to

buckling, f . Figure 6 also verifies that the data for similar geometries and Poisson’s ratio reduce to the

same normalised force when modelled at different moduli.

3. Experimental comparison and discussion

Initially this theory was validated by experiments on table tennis balls, where independent measurements

can be made of both the wall thickness and the modulus. Similar validation experiments were attempted

on a series of Expancel spheres. It did however prove much harder to measure the modulus and experi-

ments that tried to break open individual spheres to measure their wall thickness resulted in the spheres

being damaged too extensively.

The experimental process to test the stiffness of the table tennis balls required for each ball to be

placed on a flat rigid steel plate, as shown in Figure 7. Table tennis balls are manufactured in two halves

with a welded seam joining the two parts. The balls were placed so that the seam was horizontal. A 1 kN

load cell was used to measure the force and the displacement was measured by the movement of the

crosshead which moved at a rate of 5 mm/min. The average scaled buckling displacement, εb, measured

over 12 samples was 2.30. Assuming that the Poisson’s ratio was 0.3, taken from [Nakamura et al.

2004] and the measured radius for the table tennis ball of 19.85 mm ±0.05 mm, the prediction for the

wall thickness deduced from Figure 5 was 0.42 mm. This compares well to the average experimentally

measured wall thickness value of 0.40 mm ±0.04 mm. Similarly the average experimentally measured

force at the half buckling point for the same geometry gives a prediction using Figure 6 for the modulus

for the table tennis ball of 2.19 MPa.

An independent measure for the elasticity modulus was made using a dynamic mechanical thermal

analyser (DMTA) on samples cut from the shells of the table tennis balls. In this machine a forced oscil-

lation is applied with both the displacement and the force measured during the loading cycle. From this
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Figure 7. A schematic of the experimental setup used to measure the compression be-

haviour of the table tennis balls.

is derived the elastic behaviour. These properties were measured both in tension and then in three point

bending. Both techniques delivered similar values for the tensile modulus of 2.2 MPa which compares

very well with the value deduced from the compression experiment. Stresses taken from the model at

buckling show that the maximum stresses were well below the yield stress measured at 60 MPa on a

dumbbell shaped tensile test piece also cut from the table tennis ball shell.

Figure 8 plots the force versus displacement (on the appropriate dimensionless axes) from an axisym-

metric model of the initial buckling of the table tennis ball with the modulus data in the model being
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Figure 8. Finite element axisymmetric model compared to experimental compression

of a table tennis ball of radius 20 mm and wall thickness 0.4 mm, FEA prediction uses a

modulus of 2.2 MPa.
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taken from the DMTA tests and the geometry from the measured results. This is compared with an

experimentally measured data set for the compression of a table tennis ball. It is clear that the general be-

haviour is well predicted by the FEA approach, with the initial buckling displacement, εb being predicted

accurately. The small oscillations observed in the model response are due to small discrete changes in the

number of elements that are in contact with the rigid surfaces throughout the model. A separate model,

not shown, with a realistic amount of plasticity introduced in the model, had no influence on this initial

buckling phenomenon.

Next a series of different Expancel spheres were compressed using a UMIS 2000 nano-indentation

machine. The machine was calibrated using the incorporated video microscope display and the X , Y

coordinates set at a reference point. A small number of microspheres were placed on a microscope

slide and were dispersed using distilled water, which was allowed to evaporate. The microscope slide

was placed onto a specimen plinth using dental wax, which was melted at approximately 40◦C and

allowed to cool and set. The plinth was then placed in the nano-indention machine and initially single

microspheres were located using the video microscope display. Clearly it was important to compress

just a single sphere. The indenter tip was 1 mm in diameter and made from a ruby, it was initially placed

above the microsphere and allowed to stabilise for thirty minutes.

The indentation was achieved by moving the indenter tip in the −Z direction by approximately 50%

of the microsphere diameter. The process was repeated for a number of microspheres of differing mea-

sured diameters. Figure 9 shows the typical behaviour of the initial elastic compression of one of the

microspheres with a radius of 24 µm. Assuming a Poisson’s ratio of 0.3 as in [Nakamura et al. 2004],

from the buckling point it is possible to identify the wall thickness to be 0.38 µm ± 0.02 µm and from

the force at the half way to buckling point the modulus was deduced as being 3.4 MPa. This gives a

good indication of the values that we can expect for the wall thickness and the modulus. This will be
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Figure 9. Experimental compression of a single microsphere (R = 20.24 µm). The

predicted curve has wall thickness 0.4 µm, modulus 3.4 MPa and Poisson’s ratio 0.3.
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Figure 10. Finite element three-dimensional model compared to experimental compres-

sion of a table tennis ball.

particularly important in future work whereby we aim to model the influence of these microspheres on

the physical properties when incorporated as a filler into rubber.

Whilst the post-buckling behaviour is beyond the scope of this paper, Figure 10 shows what happens

beyond the initial buckling for a table tennis ball. In this test the ball has been compressed to just

6% of the original diameter of 40 mm, between two flat rigid plates using a screw-driven Instron 5584

test machine. This experiment is compared to a full three-dimensional model, as a two-dimensional

axisymmetric model gave a much stiffer post-buckling response since it constrained the model to having

only symmetric buckling modes. Clearly the elastic limit for the material is exceeded in this experiment

and so to get an accurate model it was necessary to model the sphere using elastoplastic behaviour. In

this case the properties were derived from a tensile test strip cut from the wall of the sphere. The plastic

behaviour used had an initial yield stress of 50 MPa and then the materials became perfectly plastic at a

plastic strain of 0.012 and at a stress of 60 MPa. Under these conditions not only is the initial buckling

predicted well but also the final folding. A model without plasticity introduced was far too stiff. The

FEA model gives too soft a response in the middle range. This is most likely to result from inaccuracies

associated by ignoring the weld line in the model.
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4. Conclusions

The compression of a thin-walled hollow elastic sphere between two parallel rigid surfaces is predicted

well using an explicit dynamics finite element analysis package. The observed initial flattening of the

sphere in the contact regions, followed by a snap-through buckling of the flattened surface are all mod-

elled well. The ratio of displacement at buckling at point B in Figure 2 to wall thickness was seen to

not only depend weakly upon the Poisson’s ratio, as predicted in [Pauchard and Rica 1998], but there

was also a dependence upon the geometric wall thickness to sphere radius ratio that had not previously

been reported. This approach was validated by comparison with experimental compression results on

microspheres of approximately 20 µm in radius and table tennis balls with a radius of 20 mm.

The analysis shows that a simple axial compression of a thin-walled hollow sphere can be used to

measure both the average wall thickness of the sphere from the deformation at the buckling snap-through

and the modulus from the force at the point half way to the point of the snap-through. This provides a

good technique to fully characterise the geometry and the elastic behaviour of thin-walled spheres of any

size.
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Appendix

Pauchard and Rica [1998] considered the contact of a spherical shell with a rigid plate. In the limit that

the wall thickness, h, tends to zero, the situation before buckling is assumed to conform to configuration

(I ) of Figure 1, in which the top and bottom contact surface of the sphere flatten against the flat rigid

plates, the plate having moved through a deflection, 2x . When the shell has Young’s modulus, E , and

radius, R, the energy of this configuration has the form

UI =
c0

4

Eh5/2

R
x3/2

+ c1

Eh

R
x3. (A-1)

The first term is the energy of the axisymmetric fold and is deduced from the results for flat plates

[Pauchard and Rica 1998; Ben and Pomeau 1997; Pomeau 1998]. The second term is the contribution

from the compression of a portion of the sphere.

After buckling a section of the sphere inverts and the situation corresponds to Configuration II of

Figure 1, which has energy given as

UII = c0

Eh5/2

R
x3/2

+ c2

Eh3

R
x . (A-2)

Here the first term is the contribution from the steeper axisymmetric fold and the second is due to the

inversion of the spherical section by the flat surface. When x is small UI < UII and Configuration I is

energetically favourable. As x increases however, UI increases faster than UII (due to the x3 dependence)

and hence a point will be reached at which Configuration II is energetically more favourable and I is
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unstable. This critical deformation corresponds to the energies being equal and thus depends on h and

the parameters c0, c1 and c2. The force in each of the configurations is given by the first derivatives

of Equations (A-1) and (A-2), and is expected to be discontinuous at the transition for an experiment

where the displacement increases monotonically. It is worth considering that the changes in the internal

pressure as a result of the buckling are very small as a simple calculation of sphere volume shows that

buckling introduces modest changes of only about 1% to the volume. The resulting pressure changes

would have almost no contribution to the buckling forces.

The arguments leading to Equations (A-1) and (A-2) for the energies in the different configurations

are essentially statements on the functional dependence of x from shell theory, hence the parameters c0,

c1 and c2, although dimensionless, can still be expected to depend on the material properties of the shell

through Poisson’s ratio, ν. In addition, these expressions strictly hold when the radius of the shell is

much larger than the thickness and the deflections are larger than the fold radius of curvature.

Rather than derive the exact form of (A-1) and (A-2), this numerical investigation seeks to adopt the

dimensionless approach of [Pauchard and Rica 1998]. Two hypotheses follow from this, which can be

expressed in terms of the ratio of the deflection to the thickness ratio of the shell,

ε = x/h.

There is a critical value of ε at which buckling occurs, εb, which is the solution of a relation of the

form

f (εb, ν) = 0, (A-3)

where (in terms of the Pauchard parameters)

f (ε, ν) = c1(ν)ε3
−

3
4
c0(ν)ε3/2

− c2(ν)ε. (A-4)

By differentiating the expressions for the energy in each of the configurations, the functional de-

pendence of the force, F , needed for a particular scaled deflection, ǫ, on the material and geometric

parameters can be determined. In terms of the Young’s modulus of the shell, E , its outer radius, R, and

the shell thickness, h, this dependence is found to be

R

Eh3
F =

{

gI (ε, ν) if ε < εb,

gII(ε, ν) if ε > εb,
(A-5)

and

gI (ε, ν) =
3
8
c0(ν)ε1/2

+ 3c1(ν)ε2, gII(ε, ν) =
3
2
c0(ν)ε1/2

+ c2(ν). (A-6)
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D. PAMPLONA Universidade Católica do Rio de Janeiro, Brazil

M. B. RUBIN Technion, Haifa, Israel

A. N. SHUPIKOV Ukrainian Academy of Sciences, Ukraine

T. TARNAI University Budapest, Hungary

F. Y. M. WAN University of California, Irvine, U.S.A.

P. WRIGGERS Universität Hannover, Germany

W. YANG Tsinghua University, P.R. China

F. ZIEGLER Technische Universität Wien, Austria

PRODUCTION

PAULO NEY DE SOUZA Production Manager

SHEILA NEWBERY Senior Production Editor

SILVIO LEVY Scientific Editor

Cover design: Alex Scorpan Cover photo: Wikimedia Commons

See inside back cover or http://www.jomms.org for submission guidelines.

JoMMS (ISSN 1559-3959) is published in 10 issues a year. The subscription price for 2010 is US $500/year for the electronic

version, and $660/year (+$60 shipping outside the US) for print and electronic. Subscriptions, requests for back issues, and changes

of address should be sent to Mathematical Sciences Publishers, Department of Mathematics, University of California, Berkeley,

CA 94720–3840.

JoMMS peer-review and production is managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
http://www.mathscipub.org

A NON-PROFIT CORPORATION

Typeset in LATEX

©Copyright 2010. Journal of Mechanics of Materials and Structures. All rights reserved.

http://www.jomms.org
http://www.jomms.org
http://www.mathscipub.org
http://www.mathscipub.org


Journal of Mechanics of Materials and Structures
Volume 5, No. 5 May 2010

Axial compression of hollow elastic spheres ROBERT SHORTER, JOHN D. SMITH,

VINCENT A. COVENEY and JAMES J. C. BUSFIELD 693

Coupling of peridynamic theory and the finite element method

BAHATTIN KILIC and ERDOGAN MADENCI 707

Genetic programming and orthogonal least squares: a hybrid approach to

modeling the compressive strength of CFRP-confined concrete cylinders

AMIR HOSSEIN GANDOMI, AMIR HOSSEIN ALAVI, PARVIN ARJMANDI,

ALIREZA AGHAEIFAR and REZA SEYEDNOUR 735

Application of the Kirchhoff hypothesis to bending thin plates with different

moduli in tension and compression XIAO-TING HE, QIANG CHEN, JUN-YI

SUN, ZHOU-LIAN ZHENG and SHAN-LIN CHEN 755

A new modeling approach for planar beams: finite-element solutions based on

mixed variational derivations

FERDINANDO AURICCHIO, GIUSEPPE BALDUZZI and CARLO LOVADINA 771

SIFs of rectangular tensile sheets with symmetric double edge defects

XIANGQIAO YAN, BAOLIANG LIU and ZHAOHUI HU 795

A nonlinear model of thermoelastic beams with voids, with applications

YING LI and CHANG-JUN CHENG 805

Dynamic stiffness vibration analysis of thick spherical shell segments with variable

thickness ELIA EFRAIM and MOSHE EISENBERGER 821

Application of a matrix operator method to the thermoviscoelastic analysis of

composite structures ANDREY V. PYATIGORETS, MIHAI O.

MARASTEANU, LEV KHAZANOVICH and HENRYK K. STOLARSKI 837

http://dx.doi.org/10.2140/jomms.2010.5.707
http://dx.doi.org/10.2140/jomms.2010.5.735
http://dx.doi.org/10.2140/jomms.2010.5.735
http://dx.doi.org/10.2140/jomms.2010.5.755
http://dx.doi.org/10.2140/jomms.2010.5.755
http://dx.doi.org/10.2140/jomms.2010.5.771
http://dx.doi.org/10.2140/jomms.2010.5.771
http://dx.doi.org/10.2140/jomms.2010.5.795
http://dx.doi.org/10.2140/jomms.2010.5.805
http://dx.doi.org/10.2140/jomms.2010.5.821
http://dx.doi.org/10.2140/jomms.2010.5.821
http://dx.doi.org/10.2140/jomms.2010.5.837
http://dx.doi.org/10.2140/jomms.2010.5.837

	Introduction
	1. Theory
	2. Numerical methods
	3. Experimental comparison and discussion
	4. Conclusions
	Acknowledgements
	Appendix
	References

