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ABSTRACT 

In this paper, progressive crushing of prismatic multi-corner thin walled metal tubes under quasi-static 
axial load is investigated in detail.  The novelty of the paper is mainly in considering strain hardening 
effect during plastic deformation instead of rigid plastic model and also the effect of curvature in forming 
the folds instead of plastic hinges.  For this purpose, a new geometric model based on FEM and experi-
mental observations is used which is capable of being adapted with new crushing configurations during 
crushing.  Based on this model, the instantaneous energy associated with plastic deformation of different 
regions are calculated and finally by summing all energies and using minimum absorbed energy, mean 
crushing force and collapse parameters are determined.  To evaluate the results, a detailed finite element 
study using ABAQUS and LS-Dyna solver is conducted on some regular polygonal mild steel tubes under 
axial crushing.  Comparing the results of the new theoretical approach with FEM results show very good 
capability of that in predicting collapse behavior of these structures. 

Keywords: Thin-walled metal tubes, Linear hardening, Axial crushing. 

1.  INTRODUCTION 

Thin walled metal structures, because of their high 
strength-to-weight ratio, have numerous engineering 
applications in various fields such as civil engineering as 
metal components in frames and structures for carrying 
load or transportation applications such as crashworthi-
ness and absorbing impact in aircrafts, ships, road and 
rail vehicles.  Before designing these structures, it is 
important to analyze simple geometries in the shortest 
time and most efficient way possible.  One of the main 
problems in this field is the crushing or collapse analysis 
of thin walled metal columns with different section 
shapes to evaluate energy absorption capacity in axial 
quasi-static loading.  Crushing performance of thin 
walled metal sections has not been investigated enough 
because of two main reasons; firstly, most of the struc-
tures are designed to perform in elastic range loading 
conditions and beyond that they lose their efficiency and 
secondly, if there is any application including large de-
formation of the structure such as energy absorption or 
crashworthiness, the researchers try not to entangle 
themselves in complexity of the problem because large 
deformations include very complicated and uncertain 
nonlinearities which make the solution out of reach and 
suspicious.  The only present way to handle the prob-
lem is to use finite element codes like LS-Dyna solver 

which is also very slow and computationally expensive 
even for simple geometries. 

Axial collapse of thin-walled metal columns have 
been addressed by different researchers from different 
aspects.  Alexander [1] presented a theoretical predic-
tion of mean crushing force for thin walled cylindrical 
metal columns collapsing under quasi-static loading 
based on a simple model.  The first serious analytical 
study on axial collapse of columns under quasi-static 
load were carried out by Wierzbicki and Abramowicz [2], 
Wierzbicki [3], Hayduk and Wierzbicki [4].  They used 
a theory called Super Folding Element (SFE), an alterna-
tive method which instead of solving complicated 
differential equations governing shell deformation, 
calculates the energy absorbed in certain areas of the 
metal plate which undergoes large plastic deformation.  
By means of this method and selecting an element and 
suggesting some collapse modes based on experimental 
observations, they derived relations for absorbed energy 
during collapse.  Their predictions had acceptable, fair 
or relatively good agreement with experimental results 
[2-4].  White et al. [5] and Najafi and Rais-Rohani [6] 
used this method to predict mean crushing force for 
different geometries.  Abramowicz and Wierzbicki [7] 
later on made some predictions for mean crushing force 
of prismatic thin-walled metal columns based on com-
bining previous collapse modes i.e. quasi-extensional 
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and extensional.  Abramowicz [8] used a method for 
determining effective crushing distance and its effect on 
mean force of axially compressed thin-walled metal 
columns.  Tarigopula et al. [9] and Langseth and Hop-
perstad [10] investigated quasi-static axial collapse of 
thin walled columns from different points of view using 
similar approach and compared the results with experi-
mental tests. 

There are some new theoretical and experimental 
studies which have used the conventional plastic hinge 
and perfect plastic material model in crushing.  Song et 

al. [11] presented a new model to obtain a relationship 
between the progressive collapse of an axially loaded 
tube and the initial buckling of its windowed counterpart.  
Zhang and Zhang [12-18] in multiple papers investigated 
crushing behavior of different geometries from several 
aspects such as experimental and numerical investigation 
on crush resistance of polygonal columns, axial crushing 
of multi-cells, Energy absorption of multi-cell stub col-
umns under axial compression and Axial crushing of 
circular multi-cell columns.  Hao et al. [19] investigated 
progressive buckling and energy absorption of the sinus-
oidal corrugated tube subjected to axial crushing based 
on SFE theory.  Hong et al. [20] investigated energy 
absorption of multi-cell tubes with triangular and ka-
gome lattices under quasi-static axial compression based 
on experimental tests. 

The crushing of structures are important from two 
aspects firstly the load carrying capacity under axial 
compression i.e. peak load and secondly absorbed energy 
during crushing.  Based on this, in this paper, first a 
buckling analysis is carried out to estimate ultimate load 
of buckling.  There are two general methods to evaluate 
ultimate buckling load [21]; effective width and direct 
strength methods.  The effective width theory has been 
proved to be more effective so here it is used to estimate 
ultimate load and since in buckling the material is 
assumed elastic the energy of buckling is also added to 
the energy of crushing later on.  Second the energy 
absorbed during crushing is determined by tracking 
instantaneous deformation mode of a corner element by 
dividing it to different energy absorbing regions and 
adding up their energies.  At last, using minimum 
absorbed energy, the mean crushing force and collapse 
parameters are determined.  To evaluate the efficiency 
of this model, a detailed finite element study using 
ABAQUS and LS-Dyna solver is conducted on some 
regular polygonal mild steel tubes under axial crushing.  
Comparing the results of the new theoretical approach 
with FEM results show very good capability of that in 
predicting collapse behavior of these structures. 

2.  THEORETICAL APPROACH 

2.1  Buckling Analysis 

Winter and Pian [21] using effective width method 
and calibration with experimental data, showed that the 
ultimate local buckling load for a thin-walled column is 
as follows: 
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Where N is the number of polygonal tube corners, σy 
is the material yield strength, t is the thickness, C is the 
width and λ is the square root of material yield strength 
to critical stress ratio defined as follows: 

 y
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



  (2) 

σcr is the critical buckling stress which is obtained 
from eigenvalue analysis for one plate as follows: 
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Where kc, E and ν are the buckling coefficient, Young 
modulus and poisson's ratio respectively.  By assuming 
a linear load-displacement curve until collapse and all 
plates having simply supported boundary conditions 
(kc  4) irrespective of connecting angle between plates 
according to FEM results, the absorbed elastic energy 
before collapse is estimated as: 

 
2

0 2
ult

g

P L
E

EA
  (4) 

Where L is the length of column, and Ag is the gross 
cross section area of the tube.  It is assumed that elastic 
energy is absorbed during buckling and in crushing, as it 
will be seen later, material is assumed rigid-linear hard-
ening.  Therefore energy E0 will be added to plastic 
energy obtained in the following section. 

2.2  Crushing Analysis 

In post-buckling regime, the column undergoes large 
plastic deformation and the energy is absorbed through 
large plastic deformation.  A corner element cut out 
from the column sidewalls with geometrical parameters 
shown in Fig. 1(a) is often used as the base element in 
collapse analysis which was suggested by Abramowicz 
and Wierzbicki [1].  We also use this flattened mecha-
nism for describing the relation between geometric 
parameters.  According to Fig. 1(b): 

 1

0
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 (5) 

 1 0tan( ) tan
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 
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 (6) 

According to this model energy is absorbed in con-
centrated regions and the remaining parts have rigid 
motion so this model doesn’t capture the curvature and 
material hardening effects.  Here we are going to offer 
a new model based on the old one that includes the 
curvature of the walls and strain hardening effects.  By 
considering a linear strain hardening model for plastic  
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Fig. 1 (a) quasi-extensional collapse mode including regions under plastic deformations (b) a simple corner element 
model 

 
 
 
deformation, effective stress-strain relation from uniaxial 
tensile test is obtained as follows: 

 ( ) y TE      (7) 

Where σ and ε are effective stress and strain respec-
tively.  According to Levy-Mises flow rule, principal 
stress components for plane stress condition [2, 3]: 
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Where   is Von-Mises equivalent stress based on 
new plastic yield surface and is related to equivalent 
strain   as follows: 

 y TE     (9) 

By assuming incompressibility condition for the plate, 
  is obtained as follows [2, 3]: 

  2 2
1 2 1 2

4
3

        (10) 

In a simple analysis   may be replaced by σy.  Also 
in plane strain condition where ε2 could be neglected 
compared to ε1: 

 1
2
3

   (11) 

Energy absorption rate in shell and plates in general 
form and in case of neglecting shear effects could be 
written as: 
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  (12) 

Where Mαβ and Nαβ are generalized in-plane compo-
nents of moments and forces respectively.    and 

  are components of rate of curvature and extension 
tensors respectively.  Index i denotes corresponding 
principal value in ith direction.  Equations (7-12) are 
the governing constitutive equations used here to derive 
absorbed energy i.e. according to geometry, the strain, 
curvature and rate of strain and curvature are obtained 
then the stress then in-plane moments and forces and 
finally energy is determined. 

To illustrate the method used by this paper lets first 
look at Fig. 2.  As it is shown in Fig. 2(a), there are two 
types of folds in a typically crushed structure named here 
as ingoing and outgoing lobes.  As modelled in Fig. 2(b), 
according to kinematic constraints, at final state of 
crushing, the outgoing lobes are two times bigger than 
ingoing ones because the inner space of the tube should 
accommodate the ingoing lobes from all sides while the 
outgoing lobes are free to go outside.  This model could 
also consider the effective crushing length as a function 
of geometric parameters of the tube.  Also by looking at 
the top view of the crushed tube shown in Fig. 2(c), the 
length of the ingoing folds increase and outgoing folds 
decrease which is modelled as shown in Fig. 2(d). 

Next, the interaction of the walls are considered.  By 
reviewing Figs. 1 and 2, the overall surface of the tube 
could be divided into 3 different zones; sidewall plates 
which separately undergo ingoing and outgoing bending 
deformation (zone denoted by (2) in Fig. 1), rolling of 
the corner edges (zone denoted by (3)) and extension in a 
torus shape surface (zone denoted by (1)).  Therefore 
there are three different radii i.e. ingoing radius, outgoing 
radius and rolling radius which are all related to each 
other and shown in Fig. 3. 

First, the toroidal surface is considered.  According 
to Fig. 3(a) and Fig. 3(b), the torus is connecting the in-
ner and outer radii which have different bending direc-
tions.  Wierzbicki [1] stated in his work that although 
this area is small compared to all the tube surface, but 
due to extention, it accounts for almost 35 percent of the  
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Fig. 2 (a) inner side view showing ingoing and outgoing lobes (b) modelling the curvature of folds (c) top view of the 
crushing tube (d) a model showing progressing the ingoing and outgoing lobes. 

 
 
 

 

Fig. 3  (a) different regions in absorbing energy (b) geometry of toroid surface (c) section of the torus. 
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energy based on his analysis.  Here we assume that the 
torus is growing on a predefined surface with known 
radius and curvatures. 

By assuming a local coordinate system in meridian, 
circumferential and thickness directions respectively 
denoted by {θ,φ,y} as principal directions, the bending 
radius in circumferential direction: 

 1 1
0

cos (3 cos )
2sin

b
r a b  


     (13) 

Where a1 and b1 are major and minor radii of torus 
surface respectively.  The components of strain and 
strain rate in each point are: 
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Where y is the distance from middle surface of the 
plate.  The components of curvature and rate of curva-
ture at each point: 
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1b  is the tangential velocity of the metal passing over 
the torus in θ direction and according to Fig. 1(b) could 
be stated as: 
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Substituting strain components in Eq. (12) into Eq. (8), 
the components of the stress in each direction is obtained 
as follows: 

 2 1;
3 3       (17) 

And by substituting Eq. (14) into Eq. (8) and then 
back into Eq. (7): 
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In which  , based on Eq. (10) and assuming mean 
value for εθ across thickness equals: 
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Assuming a sector area in a cross section as shown in 
Fig. 3(c) and calculating the moment and extension: 
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By substituting Eq. (20) into Eq. (12) and because of 
symmetry: 
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The first term inside Eq. (21) is the contribution of 
bending and by comparing with second term which is the 
contribution of extension could be neglected because 
thickness is much smaller than each radius [2].  By sub-
stituting Eq. (19) into Eq. (21) and performing the inte-
gral, the energy absorbed by the torus up to the current 
configuration α is: 
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Since there are two torus surfaces in a crushing wave-
length (2H) the energy E1(α) must be doubled to give the 
total absorbed energy.  According to Fig. 3(c), 2θ1 is the 
angle between two adjacent plates and is a function of α 
as: 

 2 2
1 0cos 2 1 2cos cos     (25) 

Integrals (23) and (24) should be evaluated numeri-
cally to give absorbed energy at each time α. 

Next, the energy absorbed by horizontal ingoing and 
outgoing folds shown in Fig. 2 is investigated.  For this 
purpose, since the history of forming the lobes is un-
known, it is assumed that bending strain and curvature in 
each point are changed linearly from initial undeformed 
state to the current crushed state so we assume: 
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Since the extension rate in direction perpendicular to 
bending is neglected, the plane strain condition is as-
sumed and the stress at each instance and at each point 
through thickness for ingoing and outgoing folds are: 
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Therefore the corresponding moments are obtained as 
follows: 
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Fig. 4 (a) rolling of a sheet metal (b) rolling region in the corner element (c) detailed model of rolling (d) a flattened 
corner element showing region swept by rolling deformation. 
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Using Eq. (12) and since there are two complete in-
going and outgoing folds in each wavelength with vary-
ing lengths as shown in Fig. 2(d), after integrating, the 
energy due to forming these folds: 
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The third energy is due to rolling.  First, suppose the 
sheet metal in Fig. 4(a) rolling from state 1 to state 2.  It is 
easy to prove that the energy absorbed during this transi-
tion is composed of a bending and then unbending of 
sheet in swept area (s.w) and also a pure bending like a 
hinge from state 1 to state 2.  So for the element shown 
in Fig. 4(b), the corner of the tube rolls and bend from 
BEHK to B'E'H'K' as shown in Fig. 4(c).  Figure 4(d) 
shows the flattened form of the rolling corner. 

The mean stress in rolling direction for each point 
through thickness is determined in a similar way: 

 02 2sin
3 3

T
rol y

E y

b
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 

 (30) 

And the corresponding rolling moment: 
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The energy is sum of rolling (bending and unbending) 
and a pure bending: 
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(32)

 

In which the integral I3 is: 
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The effective crushing distance ratio according to 
Fig. 2(b) equals: 
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Fig. 5  Different regular polygon thin walled columns with geometric parameters. 

 
 
2.3  Solution Procedure 

In this section, a procedure for solving the equations is 
proposed.  For this purpose first two sets of variables 
are considered; independent known variables including 
geometric parameters and mechanical properties denoted 
by χ: 

  0, , , , , ,y Tt C E E     (35) 

And dependent unknown variables including collapse 
variables denoted by ξ: 

  ,H b   (36) 

The aim is to evaluate ξs and mean crushing force Pm 
for every given combination of χ.  To this aim the total 
internal energy up to final instance αf, which is the sum 
of derived energies should be equal to external work Wext 
as follows: 

 

3

0

( )
( , )

2

i f

i
m

eff

E

P
H


 





 (37) 

αf based on Fig. 2(b) equals 
2
  .  For equal in-

going and outgoing of folds η = 0.21 or could be even 
neglected.  Now using minimum value of Pm(χ,ξ) with 
respect to ξ: 

 ( , ) 0mP  






 (38) 

Equation (38) consists of two nonlinear algebraic 
equation which should be solved numerically for each 
combination of χ to give a point for ξ.  By repeating this 
procedure for each χ, different ξs are obtained.  In this 
way it is possible to plot variation of ξ and mean force 
Pm for different combination of input parameters χ. 

 
 

3.  FEM MODELLING AND SIMULATION 

In this section, the procedure of modelling metal pol-
ygon tubes is illustrated.  First the tubes are modelled in 
a CAD software as shown in Fig. 5 then they are submit-
ted for buckling analysis in ABAQUS to obtain ultimate 
buckling load sometimes known as load carrying capac-
ity under quasi-static axial load. 

In the remaining of the paper, to avoid multiple num-
ber of simulations and to save time, only the results of 
triangular, square and hexagonal tubes are considered for 
validation of theoretical approach.  Also we use eight 

different aspect ratios t

C
 for each tube as enough by 

changing only thickness from 0.5 mm to 1.6 mm.  The 
width C is chosen as 50 mm and constant.  Length of all 
tubes denoted by L is chosen 250 mm.  To initiate 
crushing in so called quasi-extensional mode, the tubes 
must have imperfections.  A real tube even with best 
tolerances has geometric imperfections.  There are two 
ways of embedding imperfections into tubes; one way is 
inserting crushing initiators artificially such as grooves 
which is not natural and just used for energy absorption 
purposes.  The other way which is more realistic is to 
embed imperfections naturally via buckling mode shapes, 
To this aim, first a linear buckling analysis is conducted 
in ABAQUS to capture some enough modes, here the 
first three buckling modes are used.  then by combining 
these mode shapes by a small amplitude, here 0.03 of 
thickness, the imperfect geometry is generated which is 
then submitted for nonlinear Static Riks analysis to de-
termine ultimate buckling load.  The new geometry 
with imperfections is then imported into LS-Dyna for 
axial crushing.  Figure 6 shows the first mode shape of 
each tube.  Static Riks analysis in ABAQUS uses arc 
length method which is a nonlinear analysis to converge 
to an ultimate buckling load in a stability problem such 
as axial buckling.  The reason for using two different 
software i.e. buckling in ABAQUS then crushing in 
LS-Dyna is capabilities of each software in simulation of 
related analysis.  Static Riks analysis doesn’t exist in 
LS-Dyna as it is in ABAQUS and crushing simulation 
ability in LS-Dyna is more fast and easy to implement 
compared to ABAQUS. 
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Fig. 6  Linear buckling of the tubes showing first shape mode and mesh size. 

 
Table 1  Mechanical and geometric properties of thin-walled tubes used in this study 

Mechanical properties of AISI1020 alloy Dimensions (geometric parameters) 
E (GPa) σy (MPa) ν σu (MPa) K (MPa) n εu L (mm) C/t 

207 345 0.29 442 500 0.1 0.3 250 Variable 

 
 

Table 2  FEM and the current theoretical approach ultimate load and mean crushing force 

 Thickness (mm) 0.5 0.6 0.7 0.8 0.9 1 1.3 1.6 

Hexagon 
Tube 

(N = 6) 

Analytic ultimate load (KN) 23.31 31.82 41.76 54.80 70.73 91.04 134.70 166.60 
Analytic mean crushing force (KN) 10.30 14.22 18.41 23.45 28.67 34.64 54.93 79.14 
FEM ultimate load (KN) 22.25 31.30 41.58 52.98 66.41 81.35 125.72 165.63 
FEM mean crushing force (KN) 9.80 13.47 17.31 22.20 27.37 33.84 53.44 77.83 

Square 
Tube 

(N = 4) 

Analytic ultimate load (KN) 15.54 21.16 28.11 36.49 47.09 60.58 89.78 111.11 
Analytic mean crushing force (KN) 5.06 7.38 9.60 12.08 14.94 17.91 28.30 40.21 
FEM ultimate load (KN) 14.52 20.43 27.16 34.63 42.76 51.47 80.28 110.40 
FEM mean crushing force (KN) 5.40 7.85 9.90 12.40 15.10 18.23 27.78 38.94 

Triangle 
Tube 

(N = 3) 

Analytic ultimate load (KN) 12.01 17.08 22.42 30.65 39.77 49.73 66.16 82.51 
Analytic mean crushing force (KN) 2.71 3.93 5.08 6.42 7.81 9.42 14.91 21.31 
FEM ultimate load (KN) 11.90 16.71 22.14 28.15 34.64 41.55 64.07 82.80 
FEM mean crushing force (KN) 2.78 3.78 6.55 7.99 9.18 10.06 14.77 21.17 

 
 

Shell elements with 5 integration points through 
thickness, mild steel carbon steel alloy AISI1020 with 
properties given in Table 1 and 4 mm mesh size are 
chosen.  The boundary condition in lower edges are 
clamped in all directions. 

A rigid plate with friction coefficient 0.2 compresses 
the tube in axial direction.  Afterwards, for crushing 
analysis, the imperfect tubes are imported into LS-Dyna 
software for preprocessing operation such as assigning 
material, meshing, boundary, load and initial conditions 
and so on.  Material model number 24 i.e. 
24_MAT_PIECEWISE_LINEAR_PLASTICITY with 
properties in Table 2.  In order to model hardening in 
FEM simulation a power law strain hardening formula 
also known as Ludwik's formula which is a realistic 
model is used which is stated as follows: 

 nK   (39) 

K and n are plastic stiffness and power hardening which 
for Alloy AISI1020 are determined by curve-fitting 

Eq. (39) on experimental data.  These values are already 
determined and given in Table 1.  In LS-Dyna the val-
ues of plastic stress is calculated for different strains up 
to ultimate strain εu using Eq. (39) point by point and 
entered into the related keyword.  Since we have used a 
linear hardening model instead of a power hardening in 
our analytic approach, it is necessary to determine hard-
ening modulus

TE in Eq. (9) based on data in Table 1.  
The relation is as follows: 

 u y

T

u

E
 



  (40) 

εu is the plastic strain corresponding to ultimate stress 
σu.  For regular polygonal shapes there is a relation 
between number of corners N and internal angle of each 
corner π  20 so that based on our model: 

 0
N

   (41) 
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Fig. 7  Crushed tubes modelled in LS-Dyna. 

 
 

 

Fig. 8  Crushing force vs. axial displacement for hexagonal, square and triangular tubes. 

 
 

For shell elements, formulation number 2 i.e. Be-
lytschko-Tsay SECTION_SHELL is used.  Zero trans-
lational boundary conditions are used for all lower edges.  
AUTOMATIC_SINGLE_SURFACE contact type is used 
for shell self-contact with friction coefficient 0.2.  
RIGIDWALL_GEOMETRIC_FLAT_MOTION Key-
word is used to model the rigid plate crushing the tube 
axially with predefined 150 mm crushing distance.  
Since LS-Dyna solves the equations using explicit time 
increments, to simulate a quasi-static load condition, the 
rigidwall compresses the tube with a low constant veloc-
ity of 1.5 m/s.  This is done by putting CON-
TROL_TERMINATION_ENDTIME 0.1 s.  The time 
increment is also chosen 0.001 s to capture enough 

number of 100 points.  After generating the FEM code, 
it is submitted to LS-Dyna solver for solution.  Figure 7 
show the crushed state of the tubes.  Reducing velocity 
to less than 1.5 m/s results in no significant change but 
increases simulation time therefore this velocity is re-
garded as quasi-static. 

4.  RESULTS AND DISSCUSION 

In this section, the results of finite element modelling 
including ultimate load obtained from Static Rik's 
analysis in ABAQUS and mean crushing force in  
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Fig. 9 Mean crushing force vs. thickness/width ratio for different polygonal tubes (a) comparison between theoretical and FEM 

(b) theoretical approach for all the tubes. 

 

 

Fig. 10 Mean crushing force vs. thickness/width ratio 
for square tubes for three different plastic hard-
ening modulus. 

 

 
Fig. 11 Variation of Mean crushing force for each cor-

ner element by changing angle of the corner 
element 0 for both FEM (single points) and the 
current theoretical approach (solid lines). 

 
LS-Dyna solver along with the corresponding values by 
the current theoretical approach are evaluated and 
compared with each other.  The results are presented in 
Table 2.  As it is seen there is a very good agreement 
between the two approach.  Also, the results of mean 
crushing force for FEM simulation and the theoretical 
approach are in good agreement.  There is only a slight 
difference for some triangular tubes which is due to 
assymetric section of triangular tube. 

The force vs. axial displacement curves for different 
thicknesses of tubes are plotted and shown in Fig. 8(a) to 
Fig. 8(c).  As it is shown there are multiple succeeding 
peaks associated with progressive folds which shows a 
complicated irregular behavior but in terms of energy 
absorption it is possible to assign a mean force for each 
wavelength.  There is only a different behavior for thick 
triangular tubes because as thickness increases it acts like 
an Eularian column which undergoes global buckling.  
Generally larger thickness to width ratios may result in 
global buckling not axial progressive collapse which is 
not considered here because in that case the tubes are no 
longer regarded as thin walled. 

The results of mean crushing force vs. thickness to 
width ratio for FEM and the theoretical approach are 
shown in Fig. 9(a) which shows very good agreement of 
the current approach in predicting the absorbed energy.  
One of the disadvantages of FEM method is that it is 

computational expensive and needs a lot of time for 
modelling and preprocessing but analytic approach if 
there is any is too fast and simple to implement.  The 
results shown in Fig. 9(b) which are the results for other 
tubes with different thicknesses have been created in a 
very short time once the code is written, it needs only to 
run one time to give the mean crushing force for any tube 
with any shape and size. 

Figure 10 shows the effect of plastic hardening on the 
mean crushing force of square tubes for both FEM and 
the current theoretical approach.  As it can be seen in 
Fig. 10, the hardening have a mild but significant effect 
on the mean force.  The value of ET = 0 corresponds to 
a perfectly plastic material.  The results of other tubes 
are similar to Fig. 10. 

Figure 11 shows the effect of corner angle π  20 on 
mean crushing force for different polygons i.e. from 

triangular tube with 0 3
   to octagonal tube with 

0
3
4
  .  As it can be seen in Fig. 11 the more the 

corner angle π  20, the crushing force and absorbed 
energy will increase this behavior is justified by looking 
at crushing modes in Fig. 2 and Fig. 3 because for opener 
angles of the corner element, the ingoing lobes and 
rolling area which have smaller curvature radii, have  
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Fig. 12 Crushing wavelength H for different polygon 
tubes. 

 

 

 

 

Fig. 13  bending radius b for different polygon tubes. 

 
 
 
 

more contribution in absorbing energy compared to 
closer angles. 

As discussed before collapse variables ξ including half 
wavelength of crushing H and also the ingoing, outgoing 
and rolling radii of folds formed during progressive col-
lapse are obtained by the current theoretical approach 
which are not obtained using FEM.  Figures 12 and 13 
show the variation of half wavelength H and bending 
radius b by thickness to width ratio for different polygo-
nal tubes.  As it can be seen in these figures, both H and 
b increase with thickness to width ratio and also these 
values are decreased for opener corner angles this is also 
the reason for increasing effective crushing length and 
mean crushing force for opener angles. 

5.  CONCLUSIONS 

Axial crushing of multi-corner prismatic metal col-
umns undergoing progressive quasi-extensional collapse 
mode was investigated in detail.  Instead of using pre-
vious simple models in Refs. [2-8] which assumed that 
material model as rigid-perfect plastic, in this study 
hardening of material during plastic deformation was 
considered also instead of using plastic hinges like pre-
vious studies, here the effect of curvature was taken into 
account.  Based on these assumptions and using plastic 
flow rules governing stress and strain relations for sheet 
metal, the energies of buckling and post-buckling were 
derived and finally using minimum absorbed energy the 
mean crushing force and collapse parameters were de-
termined.  A detailed finite element modelling and sim-
ulation using ABAQUS for peak loads and LS-Dyna for 
crushing analysis and obtaining mean crushing force 
were carried out.  Based on the results, there were very 
good agreement between the theoretical and FEM results 
which makes it possible to be used as a code as an alter-
native method for axial crushing of such structures be-
cause unlike FEM simulation which takes too much time 
for preprocessing, post-processing and solution, this 
method is very fast and gives reliable results for different 
material and mechanical properties. 
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NOMENCLATURE 

E Modulus of elasticity 
ν Poisson's ratio 
σy Yield strength 
σu Ultimate strength 
λ Stress ratio in effective width theory 
σcr Critical buckling stress 
Pult Ultimate buckling load 
Ag Gross cross section of thin-walled column 
εu Ultimate strain 
n Power law hardening coefficient 
kc Buckling coefficient 
ET Plastic linear hardening modulus 
  Strain rate 

α,β Indices of in-plane components 
t,C,L Thickness, width and length of the column 

,   Von-Mises equivalent stress and strain 
0 Corner angle 
E0 Elastic absorbed energy 
Ei Plastic absorbed energies (i = 1,..,3) 
Nαβ Generalized In-plane forces 
Mαβ Generalized In-plane moments 

,    Curvature and curvature rate 
,    Extension and extension rate 

y Distance from mid plane 
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a1,b1 Larger and smaller radii of the torus 
Ii Integrals 
χ = {t,C,0,…} Geometric and Mechanical parameters 
Vt Tangential velocity of sheet 
σI,σO referred to ingoing or outgoing folds 
N Number of corners of polygonal tube 
δeff Effective crushing length for each fold 
α,β,γ,,θ Angles of crushing mechanism 
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