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Axial intensity of apertured Bessel beams
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We give a simple interpretation of a recently noted phenomenon, namely, the resemblance between the axial
intensity of an apertured Bessel beam and the squared profile of the windowing function. We also discuss how
this effect can be used to control the axial behavior of the beam, and we present examples for the case of a
flattened Gaussian profile as aperturing function. © 1997 Optical Society of America.
[S0740-3232(97)02701-4]
Bessel beams,1–6 or nondiffracting beams, are exact so-
lutions of the scalar Helmholtz equation that maintain
the same intensity profile at any plane orthogonal to the
propagation direction. They owe their name to the fact
that the solution of order n has a transverse field distri-
bution proportional to the nth order Bessel function of the
first kind, Jn .

7 Their main feature is that they can
transport radiation without any spread or divergence.
For this reason, since their introduction Bessel beams
have attracted the attention of many scientists, who have
proposed a great number of applications.8–12

Since finite-aperture optical elements are always
present in any practical realization,13–18 a more realistic
model for a Bessel beam has to include the presence, at a
certain plane (z 5 0), of a windowing profile. If this pro-
file is chosen as a Gaussian function, the so-called
Bessel–Gauss beams are obtained,19 whose expression in
free paraxial propagation can be given in closed form.
When other forms of aperturing profiles are used, the
propagated field generally has to be evaluated
numerically.20–22

It was recently shown that the axial intensity of an ap-
ertured Bessel beam of zero order can exhibit some re-
semblance to the squared profile of the window,23,24 and
this could afford a means to control axial behavior of the
beam.
In this paper we give a simple explanation for such a

resemblance. This enables us to specify under which
conditions the phenomenon occurs, furnishing an operat-
ing criterion for controlling the axial intensity of an aper-
tured Bessel beam. To illustrate our main conclusions
we shall work out an example, in which a flattened
Gaussian (FG) profile25 is used as a windowing function.
We shall start from the expression of the field at a typi-

cal point (r, z) produced by a Bessel beam of zero order
passing through a circularly symmetric window profile
p(r) centered at the beam axis. Assuming that the
propagation is in the paraxial regime, such a field, say,
V(r, z), is26,27
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where k is the wave number, A is an amplitude factor,
and b characterizes the Bessel beam. As is well known,
the Bessel field can be thought of as arising from the su-
perposition of plane waves whose wave vectors are evenly
distributed on a cone. If we denote by u the semiaperture
of the cone, the parameter b is simply given by

b 5 k sin u. (2)

It follows from Eq. (1) that along the z axis (r 5 0) the
field is
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where we took into account that J0(0) 5 1.
Let us now consider a different situation in which the

profile is illuminated by a single plane wave impinging or-
thogonally on the aperture plane. If we denote by A the
amplitude of the illuminating wave, within the paraxial
approximation the new field distribution, say, U(r, z), is
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Comparing Eqs. (3) and (4) and taking Eq. (2) into ac-
count, we see that the following relation holds:

uV~0, z !u2 5 uU~z sin u, z !u2. (5)
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Equation (5) furnishes a simple key for explaining the re-
semblance phenomenon mentioned above. Indeed, it
shows that the axial intensity associated with the aper-
tured Bessel beam is the same as that produced by the
sole window (under orthogonal plane-wave illumination)
along the line

r 5 z sin u. (6)

To explain the resemblance effect, let us begin with the
crude representation of Fig. 1(a), where we assume for a
moment that the field propagating behind the aperture
plane (z 5 0) can be described by geometrical optics.
The gray area schematizes the illuminated region.
Starting from the origin O and moving along the line de-
scribed by Eq. (6), which is shown in Fig. 1(a) with a
dashed line, we would simply see an oblique projection of
the window profile. Hence, according to geometrical op-
tics, the axial intensity of the apertured Bessel beam
would be equal to the squared profile of the window ex-
cept for a scale factor 1/sin u, which will be called the geo-
metrical expansion factor. Now let us take diffraction
into account. The field distribution behind the aperture
will be different from one plane z 5 constant to another
instead of being a mere projection of p(r). For typical
cases the intensity distribution could appear somewhat
similar to the rough sketch of Fig. 1(b). When we move
along the line of Eq. (6) we can expect the resemblance ef-
fect between the axial intensity of the Bessel beam and
p2(r) to become, generally speaking, weaker and weaker
because of the changes introduced by diffraction in the
transverse field distribution.
The previous discussion should make it clear that the

resemblance effect depends on two main factors. First, if
the profile produces considerable diffraction phenomena,
the resemblance will be appreciable only in the initial
part of the curve representing the axial intensity of the

Fig. 1. Representation of the optical intensity behind the win-
dow aperture in the case of (a) geometrical approximation and (b)
taking into account diffraction effects. The line into Eq. (6) is
dashed.
apertured Bessel beam. This is the case, for example,
when the profile has a steep descent. On the contrary,
slowly varying profiles are likely to enhance the resem-
blance effect. The second factor is the value of sin u.
For a given profile p(r) the resemblance effect should in-
crease on increasing sin u.
FG profiles have recently been introduced25,28 as an al-

ternative to super-Gaussian windows.29 Their main
property is that the field distribution of a beam possess-
ing a FG profile at its waist (or, briefly, a FG beam) can be
evaluated in a simple, closed form at any point in space.
The flatness of these profiles is controlled by an integer
parameter N. In particular, for N → ` the profile tends
to the function circ(r/w0),

30 w0 being the width of the
profile.25,28 The key for studying the propagation of the
field generated by FG profiles (under orthogonal plane-
wave illumination) is the fact that they can be expressed
by a finite sum of Laguerre–Gauss functions.25,26 More
explicitly, the FG profile of order N can be written as
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where Ln is the nth Laguerre polynomial and the expan-
sion coefficients cn are given by25
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By using Eq. (5) as well as the formulas describing the
propagation of FG beams,25,28 we can easily find the fol-
lowing expression for the axial intensity, say, Ia(z), of the
apertured Bessel beam:

Ia~z ! 5 S v0vz D
2U(

n50

N

cn exp@2i~2n 1 1 !fz#

3 LnS 2z2 sin2 u

vz
2 DU2expS 2

2z2 sin2 u

vz
2 D , (9)

where the following quantities have been introduced:

v0 5 w0 /AN 1 1,
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fz 5 tan21S zzRD ,
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It should be noted that, owing to the use of a FG profile as
a windowing function, the axial intensity Ia can be evalu-
ated in a closed form, without any approximations.
To obtain numerical results comparable with those pre-

sented in Ref. 24, we studied the behavior of the axial in-
tensity of a Bessel beam with b 5 40 mm21 apertured by
FG profiles having w0 5 4 mm and with several values of
N [see Eq. (7)]. The wavelength is assumed to be
l 5 632.8 nm. Figure 2 shows Ia(z) for N 5 10, 100,
1000 and can be compared with Fig. 2 of Ref. 24, where
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the axial intensity of the same Bessel beam apertured by
different types of windowing functions is shown. As was
expected, for small values of N, Ia is a rather smooth
function of z, whereas increasing N causes ripples to ap-
pear and diffraction effects to become more and more evi-
dent, as in Fig. 2(a) of Ref. 24, where a circ function was
the window profile.
In Fig. 3 the windowing function is a FG profile with

w0 5 4 mm and N 5 200, and curves are shown for dif-
ferent values of b to highlight the fact that, for a given
profile, the resemblance effect increases with increasing
sin u, i.e., b [see Eq. (2)]. In the figure the axial intensity
is reported as a function of z sin u, to compensate the
aforementioned geometrical expansion factor 1/sin u.
The solid curves correspond to b 5 40 mm21 [curve (a)],
b 5 100 mm21 [curve (b)], and b 5 200 mm21 [curve (c)],
whereas the dashed curve is the squared window profile
itself. It can be noted that, for increasing b, the resem-
blance effect between the axial intensity and the squared
FG profile is more and more evident, as was expected.
Furthermore, a qualitative agreement could be observed
between our curves and the ones obtained by Cox and

Fig. 2. Behavior of axial intensity Ia as a function of z for a
Bessel beam with b 5 40 mm21 apertured by a FG profile hav-
ing spot size w0 5 4 mm; N 5 10 (solid curve), 100 (dashed
curve), and 1000 (dotted curve). l 5 632.8 nm.

Fig. 3. Axial intensity of a Bessel beam apertured by a FG pro-
file with w0 5 4 mm and N 5 200, for b 5 40 mm21 [curve
(a)], b 5 100 mm21 [curve (b)], and b 5 200 mm21 [curve (c)],
as a function of z sin u. The squared window function is drawn
as a dashed line to assess the resemblance effect.
D’Anna,23 where the axial intensities obtained with a few
different flattened profiles were evaluated numerically.
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