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We present results on the nucleon axial form factors within lattice QCD using two flavors of
degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes
of spatial length L = 2.1 fm and L = 2.8 fm. Cut-off effects are investigated using three different
values of the lattice spacings, namely a = 0.089 fm, a = 0.070 fm and a = 0.056 fm. The nucleon
axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass
enabling comparison with experiment.
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I. INTRODUCTION

The nucleon (N) form factors are fundamental
hadronic observables that probe the structure of the nu-
cleon. Experiments to measure the electromagnetic nu-
cleon form factors have been carried out since the 50’s.
A new generation of experiments using polarized beams
and targets are currently under way at major facilities
in order to measure the nucleon form factors more accu-
rately and at higher values of the momentum transfer.
The nucleon form factors connected to the axial vector
current are more difficult to measure and therefore less
accurately known than its electromagnetic form factors.
As in the electromagnetic case the nucleon matrix ele-
ment of the axial vector current is written in terms of
two Lorenz invariant form factors, the axial form fac-
tor GA(q

2) and the induced pseudo-scalar form factor,
Gp(q

2) where q2 is the momentum transfer squared. The
nucleon axial charge gA = GA(0), which can be deter-
mined from β−decay, is known to a high precision. The
q2-dependence of GA(q

2) has been studied from neutrino
scattering [1] and pion electroproduction [2, 3] processes.
The nucleon induced pseudo-scalar form factor, Gp(q

2),
is even less well known. Muon capture at low q2 val-
ues [4] and pion electroproduction for larger Q2 [2, 3] are
the main experimental sources of information forGp(Q

2).
Both GA(q

2) and Gp(q
2) have been discussed within chi-

ral effective theories [5, 6]. In this work we present results
on these form factors obtained in lattice QCD using two
degenerate light quarks (NF=2) in the twisted mass for-

mulation [7].
Twisted mass fermions [8] provide an attractive for-

mulation of lattice QCD that allows for automatic O(a)
improvement, infrared regularization of small eigenval-
ues and fast dynamical simulations. For the calculation
of the nucleon form factors in which we are interested
in this work,the automatic O(a) improvement is particu-
larly relevant since it is achieved by tuning only one pa-
rameter in the action, requiring no further improvements
on the operator level.
The action for two degenerate flavors of quarks in

twisted mass QCD is given by

S = Sg + a4
∑

x

χ̄(x)
[

DW+mcrit+iγ5τ
3µ
]

χ(x) , (1)

where DW is the Wilson Dirac operator and we use the
tree-level Symanzik improved gauge action Sg [9]. The
quark fields χ are in the so-called “twisted basis” ob-
tained from the “physical basis” at maximal twist by a
simple transformation:

ψ=
1√
2
[1+ iτ3γ5]χ and ψ̄=χ̄

1√
2
[1+ iτ3γ5] . (2)

We note that, in the continuum, this action is equivalent
to the standard QCD action. A crucial advantage is the
fact that by tuning a single parameter, namely the bare
untwisted quark mass to its critical value mcr, a wide
class of physical observables are automatically O(a) im-
proved [7]. A disadvantage is the explicit flavor symme-
try breaking. In a recent paper we have checked that this
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breaking is small for the baryon observables under consid-
eration in this work and for the lattice spacings that we
use [10–14]. To extract the nucleon FFs we need to eval-
uate the nucleon matrix elements 〈N(p′, s′)|Aa

µ|N(p, s)〉,
where |N(p′, s′)〉, |N(p, s)〉 are nucleon states with fi-
nal (initial) momentum p′(p) and spin s′(s). Due to its
isovector nature, the axial vector current, defined by

Aa
µ(x)=ψ̄(x)γµγ5

τa

2
ψ(x) , (3)

receives contributions only from the connected diagram
for a = 1, 2 and up toO(a) for a = 3. Simulations includ-
ing a dynamical strange quark are also available within
the twisted mass formulation. Comparison of the nu-
cleon mass obtained with two dynamical flavors and the
nucleon mass including a dynamical strange quark has
shown negligible dependence on the dynamical strange
quark [15]. We therefore expect the results on the nu-
cleon form factors to show little sensitivity on a dynam-
ical strange quark as well.
The axial current matrix element of the nucleon

〈N(p′, s′)|Aa
µ(0)|N(p, s)〉 can be expressed in terms of the

form factors GA and Gp as

〈N(p′, s′)|A3
µ|N(p, s)〉 = i

(

m2
N

EN (p′)EN (p)

)1/2

ūN (p′, s′)

[

GA(q
2)γµγ5 +

qµγ5
2mN

Gp(q
2)

]

1

2
uN(p, s). (4)

In this work we consider simulations at three values
of the coupling constant spanning lattice spacings from
about 0.05 fm to 0.09 fm. This enables us to obtain re-
sults in the continuum limit. We find that cut-off effects
are small for this range of lattice spacings. We also ex-
amine finite size effects on the axial form factors by com-
paring results on two lattices of spatial length L = 2.1 fm
and L = 2.8 fm [16–18].

II. LATTICE EVALUATION

A. Correlation functions

The nucleon interpolating field in the physical basis is
given by

J(x) = ǫabc
[

ua⊤(x)Cγ5db(x)
]

uc(x) (5)

and can be written in the twisted basis at maximal twist
as

J̃(x)=
1√
2
[1+ iγ5]ǫ

abc
[

ũa⊤(x)Cγ5d̃b(x)
]

ũc(x). (6)

The transformation of the axial vector current, Aa
µ(x),

to the twisted basis leaves the form of A3
µ(x) unchanged.

The axial renormalization constant ZA is determined

(~x, t)

(~xi, ti)

~q = ~p′ − ~p

OΓ

(~xf , tf )

FIG. 1: Connected nucleon three-point function.

non-perturbatively in the RI’-MOM scheme using two
approaches [19, 20] and [21, 22] both of which yield con-
sistent values. We use the values of ZA found in latter
approach [21], which employs a momentum source [23]
and a perturbative subtraction of O(a2) terms [24, 25].
This subtracts the leading cut-off effects yielding only
a very weak dependence of ZA on (ap)2 for which the
(ap)2 → 0 limit can be reliably taken. It was also shown
with high accuracy that the quark mass dependence of
ZA is negligible. We find the values

ZA=0.757(3) , 0.776(3) , 0.789(3) (7)

at β=3.9, 4.05 and 4.2 respectively. These are the values
of ZA which we use in this work to renormalize the lattice
matrix element.
In order to increase the overlap with the proton state

and decrease overlap with excited states we use Gaussian
smeared quark fields [26, 27] for the construction of the
interpolating fields:

qasmear(t, ~x) =
∑

~y

F ab(~x, ~y;U(t)) qb(t, ~y) , (8)

F = (1+ αH)n ,

H(~x, ~y;U(t)) =

3
∑

i=1

[Ui(x)δx,y−ı̂ + U †
i (x− ı̂)δx,y+ı̂] .

In addition, we apply APE-smearing to the gauge fields
Uµ entering the hopping matrix H . The smearing pa-
rameters are the same as those used for our calculation
of baryon masses with α and n optimized for the nucleon
ground state [13]. The values are: α = 4.0 and n = 50,
70 and 90 for β = 3.9, 4.05 and 4.2 respectively.
In order to calculate the nucleon matrix element of

Eq. (4) we calculate the two-point and three-point func-
tions defined by

G(~q, tf ) =
∑

~xf

e−i~xf ·~q Γ0
βα 〈Jα(tf , ~xf )Jβ(ti, ~xi)〉 (9)

Gµ(Γν , ~q, t) =
∑

~x,~xf

ei~x·~q Γν
βα 〈Jα(tf , ~xf )Aµ(t, ~x)Jβ(ti, ~xi)〉,

where Γ0 and Γk are the projection matrices:

Γ0 =
1

4
(1+ γ0) , Γk = iΓ0γ5γk . (10)
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FIG. 2: The ratio of Eq. (11) for representative momentum
combinations at β = 3.9 and different values of µ. The
filled (black) circles show results with a sink-source separa-
tion tf/a = 14 and the filled (red) squares for tf/a = 12,
shifted to the left by one time-slice.

The kinematical setup that we used is illustrated in
Fig. 1: We create the nucleon at ti=0, at ~xi=0 (source)
and annihilate it at a later time tf with ~p′=0 (sink). The
current couples to a quark at an intermediate time t.
For our kinematics ~q = −~p. From now on all quanti-
ties are given in Euclidean space and where Q2 = −q2 is
the Euclidean momentum transfer squared. The leading
time dependence of the Euclidean time evolution and the
overlap factors cancel for the ratio

Rµ(Γ, ~q, t) =
Gµ(Γ, ~q, t)

G(~0, tf )

√

G(~pi, tf − t)G(~0, t)G(~0, tf)

G(~0, tf − t)G(~pi, t)G(~pi, tf )
,

(11)
yielding a time-independent value

lim
tf−t→∞

lim
t−ti→∞

Rµ(Γ, ~q, t) = Πµ(Γ, ~q) . (12)

We refer to the range of t-values where this asymptotic
behavior is observed within our statistical precision as
the plateau range. As mentioned already, only the con-
nected diagram contributes. It is calculated by perform-
ing sequential inversions through the sink yielding the

form factors at all possible momentum transfers and cur-
rent orientation µ. Since we use sequential inversions
through the sink we need to fix the sink-source separa-
tion. Statistical errors increase rapidly as we increase
the sink-source separation. Therefore we need to choose
the smallest possible that still ensures that the nucleon
ground state dominates when measurements are made at
different values of t. In order to check that a sink-source
time separation of ∼ 1 fm is sufficient for the isolation
of the nucleon ground state we compare the results at
β=3.9 obtained with tf/a=12 i.e. tf ∼ 1 fm with those
obtained when we increase to tf/a=14 [18]. As can be
seen in Fig. 2, where we plot Rµ(Γ, ~q, t), the plateau val-
ues are compatible yielding the same plateau value for
the two time separations. This means that the shorter
sink-source separation is sufficient and the ground state
of the nucleon dominates in the plateau region. We there-
fore use in all of our analysis tf − ti ∼ 1fm.

New inversions are necessary every time a different
choice of the projection matrix Γα is made. In this work,
we consider choices, which are optimal for the form fac-
tors considered. Namely we use the spatial Γ’s and con-
sider the spatial component of the current i.e. we extract
the form factors from

Πi(Γk, ~q)=
ic

4m

[qkqi
2m

Gp(Q
2)−(E+m)δi,k GA(Q

2)
]

,

(13)

where k = 1, 2, 3, and c =
√

2m2

E(E+m) .

B. Simulation details

The input parameters of the calculation, namely β,
L/a and aµ are summarized in Table I. The lattice spac-
ing a is taken from the nucleon mass as described in the
next section. The pion mass values, spanning a mass
range from 260 to 470 MeV, are taken from Ref. [28]. At
mπ ≈ 300 MeV and β=3.9 we have simulations for lat-
tices of spatial size L=2.1 fm and L=2.8 fm allowing to
investigate finite size effects. Finite lattice spacing effects
are studied using three sets of results at β=3.9, β=4.05
and β=4.2 for the lowest and largest pion mass avail-
able in this work. These sets of gauge ensembles allow us
to estimate all the systematic errors in order to produce
reliable predictions for the nucleon axial form factors.

C. Determination of the lattice spacing

The nucleon mass has been computed on the same en-
sembles that are now used here for the computation of the

nucleon axial form factors [13]. Therefore we can use the
nucleon mass at the physical point to set the scale. We
show in Fig. 3 results at three values of the lattice spac-
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β = 3.9, a = 0.089(1)(5) fm, r0/a = 5.22(2)

243 × 48, L = 2.1 fm aµ 0.0040 0.0064 0.0085 0.010

Stat. 943 553 365 477

mπ (GeV) 0.3032(16) 0.3770(9) 0.4319(12) 0.4675(12)

mπL 3.27 4.06 4.66 5.04

323 × 64, L = 2.8 fm aµ 0.003 0.004

Stat. 667 351

mπ (GeV) 0.2600(9) 0.2978(6)

mπL 3.74 4.28

β = 4.05, a = 0.070(1)(4) fm, r0/a = 6.61(3)

323 × 64, L = 2.13 fm aµ 0.0030 0.0060 0.0080

Stat. 447 326 419

mπ (GeV) 0.2925(18) 0.4035(18) 0.4653(15)

mπL 3.32 4.58 5.28

β = 4.2, a = 0.056(1)(4) fm r0/a = 8.31

323 × 64, L = 2.39 fm aµ 0.0065

Stat. 357

mπ (GeV) 0.4698(18)

mπL 4.24

483 × 96, L = 2.39 fm aµ 0.002

Stat. 245

mπ (GeV) 0.2622(11)

mπL 3.55

TABLE I: Input parameters (β, L, aµ) of our lattice calculation and corresponding lattice spacing (a) and pion mass (mπ).

ings corresponding to β=3.9, β=4.05 and β=4.2. As can
be seen, cut-off effects are negligible and we can therefore
use continuum chiral perturbation theory to extrapolate
to the physical point. For the observables discussed in
this work the nucleon mass at the physical point is the
most appropriate quantity to set the scale. This also
provides a cross-check for the determination of the lat-
tice spacing as compared to the pion decay constant used
in the meson sector. If lattice artifacts are under control
then these two determinations should be consistent, un-
der the assumption that quenching effects due to the ab-
sence of the strange quark from the sea are small for these
quantities. In order to correct for volume effects we use
chiral perturbation theory to take into account volume
corrections coming from pions propagating around the
lattice, following Ref. [29]. A similar analysis was carried
out in Ref. [11] at β = 3.9 and β = 4.05 and we refer to
this publication for additional details. In addition, this
work is extended by an analysis of results at β = 4.2. In
Table II we give the volume corrected nucleon mass.
To chirally extrapolate we use the well-established

O(p3) result of heavy baryon chiral perturbation theory
(HBχPT) given by

mN = m0
N − 4c1m

2
π − 3g2A

16πf2
π

m3
π. (14)

We perform a fit to the volume corrected results at β=3.9,
β=4.05 and β=4.2 and extract r0=0.462(5) fm. Fit-

amπ Lmπ amN amN(L → ∞)

β = 3.9

0.2100(5) 5.04 0.5973(43) 0.5952

0.1940(5) 4.66 0.5786(67) 0.5760

0.1684(2) 4.06 0.5514(49) 0.5468

0.1362(7) 3.27 0.5111(58) 0.5043

0.1338(2) 4.28 0.5126(46) 0.5115

0.1168(3) 3.74 0.4958(43) 0.4944

β = 4.05

0.1651(5) 5.28 0.4714(31) 0.4702

0.1432(6) 4.58 0.4444(47) 0.4426

0.1038(6) 3.32 0.4091(60) 0.4056

β = 4.2

0.1326(5) 4.24 0.380(3) 0.3763

0.0740(3) 3.55 0.306(4) 0.3049

TABLE II: Results on the nucleon mass. The last column
gives the values after a volume correction.

ting instead to the β=3.9 and β=4.05 results we find
r0=0.465(6) fm showing that indeed cut-off effects are
small. To estimate the error due to the chiral ex-
trapolation we use HBχPT to O(p4), which leads to
r0=0.489(11). We take the difference between the O(p3)
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FIG. 3: Nucleon mass in units of r0 at three lattice spacings
and spatial lattice size L such that mπL > 3.3. The solid
(black) and dashed (red) lines are fits to O(p3) and O(p4)
HBχPT. The physical point is shown with the asterisks. Re-
sults at β = 3.9 and 243 × 48 are shown with filled (red)
circles, at β = 3.9 and 323 × 64 with the filled (blue) squares,
at β = 4.05 and 323 × 64 with the filled (green) triangles, at
β = 4.2 and 323 × 64 with the open (yellow) square and at
β = 4.2 and 483 × 96 with the star (magenta).

and O(p4) mean values as an estimate of the uncertainty
due to the chiral extrapolation. Fits to other higher
order χPT formulae are also shown in Fig. 3. These
are described in Ref. [13] and are consistent with O(p4)
HBχPT. Using r0=0.462(5)(27) and the computed r0/a
ratios we obtain

aβ=3.9 = 0.089(1)(5) ,

aβ=4.05 = 0.070(1)(4) ,

aβ=4.2 = 0.056(2)(3) .

These values are consistent with the lattice spacings de-
termined from fπ and will be used for converting to phys-
ical units in what follows. We note that results on the nu-
cleon mass using twisted mass fermions agree with those
obtained using other lattice O(a2) formulations for lat-
tice spacings below 0.1 fm [11].

III. RESULTS

In the first subsection we discuss our results on the nu-
cleon axial charge and in the second subsection we discuss
the momentum dependence of the axial GA(Q

2) and the
induced pseudo-scalar Gp(Q

2).

A. Axial charge

Our lattice results on the nucleon axial charge are
shown in Fig. 4 and listed in Table III. In the same
figure we also show results obtained using NF = 2 + 1

FIG. 4: The nucleon axial charge. Results using NF = 2
twisted mass fermions are shown using the same notation as
that of Fig. 3. Crosses show results obtained using NF = 2+1
DWF, circles are results in a mixed action approach on a
lattice of size 203 × 64 and the triangle on a lattice of size
283 × 64.

domain wall fermions (DWF) by the RBC-UKQCD col-
laborations [30] and using a mixed action with 2+1 fla-
vors of asqtad sea and domain wall valence fermions by
LHPC [31]. The first observation is that results at our
three different lattice spacings are within error bars. The
second observation is that results at two different volumes
are also consistent. The third observation is that there
is agreement among lattice results using different lattice
actions even before taking the continuum and infinite vol-
ume limit.

mπ Lmπ gA gA(L → ∞)

β = 3.9

0.4675 5.04 1.163(18) 1.167

0.4319 4.66 1.134(25) 1.140

0.3770 4.06 1.140(27) 1.150

0.3032 3.27 1.111(34) 1.133

0.2978 4.28 1.103(32) 1.106

0.2600 3.74 1.156(47) 1.162

β = 4.05

0.4653 5.28 1.173(24) 1.177

0.4035 4.58 1.175(31) 1.182

0.2925 3.32 1.194(66) 1.218

β = 4.2

0.4698 4.24 1.130(26) 1.144

0.2622 3.55 1.138(43) 1.146

TABLE III: Results using NF = 2 twisted mass fermions
(TMF) on the axial nucleon charge. The last column gives
the values after a volume correction.
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FIG. 5: The nucleon axial charge as a function of Lmπ. The
notation is the same as that of Fig. 4.

1. Finite volume effects

In order to assess volume effects we plot in Fig. 5 re-
sults on gA versus Lmπ. Besides TMF results we show
the results obtained using NF = 2+1 DWF [30] as well as
within the mixed action approach [31]. As can be seen
the results are consistent with a constant in the whole
range of Lmπ spanned. In particular we do not observe
a decrease in the value of gA for values of Lmπ ∼ 3.3.
Therefore, given that finite volume effects are negligible
for the smallest value of mπL = 3.3 as compared to the
value we find at mπL = 4.3, we conclude that for all of
our data for which mπL > 3.3 volume effects are small.

We can estimate the volume correction on gA within
heavy baryon chiral perturbation theory (HBχPT) in the
so called small scale expansion (SSE) [32], which includes
explicitly the ∆ degree of freedom. In this scheme one
expands the results in powers of a small parameter ǫ,
which denotes small pion four-momenta, the pion mass,
baryon three-momenta and the nucleon-∆ mass splitting
in the chiral limit. Writing

gA(mπ,∞) = gA(mπ , L)−∆gA(mπ, L) (15)

the dependence of gA on the spatial length L of the lattice

FIG. 6: The nucleon axial charge as a function of the lattice
spacing in units of r0 at: r0mπ = 0.615, r0mπ = 0.85, r0mπ =
0.95, r0mπ = 1.10, from top to bottom. We use r0 = 0.462(5)
extracted from the nucleon mass. In the upper most and
lower most graphs we show both the linear (dotted line) and
constant fits (dashed line).

is given by [33]

∆gA(mπ, L) = − g
0
Am

2
π

4π2f2
π

′
∑

~n

K1(L|~n|mπ)

L|~n|mπ

+
(g0A)

3m2
π

6π2f2
π

′
∑

~n

[

K0(L|~n|mπ)−
K1(L|~n|mπ)

L|~n|mπ

]

+
c2A
π2f2

π

(

25

81
g1 − g0A

)
∫ ∞

0

dy y

′
∑

~n

[

K0(L|~n|f(mπ, y))

−L|~n|f(mπ, y)

3
K1(L|~n|f(mπ, y))

]

+
8c2Ag

0
a

27π2f2
π

∫ ∞

0

dy y
′
∑

~n

f(mπ, y

∆0

[

K0(L|~n|f(mπ, y))

−K1(L|~n|f(mπ, y))

L|~n|f(mπ, y)

]

+ −4c2Ag
0
A

27πf2
π

m3
π

∆0

′
∑

~n

1

L|~n|mπ
e−L|~n|mπ +O(ǫ4) (16)
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with f(mπ, y) =
√

m2
π + y2 + 2y∆0 and fπ the pion de-

cay constant in the chiral limit which we approximate
with its physical value i.e. we take fπ = 0.092 GeV. In
the sum

∑′
~n all vectors ~n are summed except ~n = ~0. In

order to estimate the volume correction ∆gA we take the
experimental value of the axial charge in the chiral limit
i.e. g0A ∼ gexpA = 1.267 and the nucleon - ∆ mass splitting
in the chiral limit ∆0 = 0.2711. For the ∆ axial coupling
constant we use the SU(4) relation g1 = 9gexpA /5 and for
the nucleon to ∆ axial coupling constants cA = 1.5. The
estimated volume corrected gA is given in Table III.
In order to assess cut-off effects we use the simula-

tions at three lattice spacings at the smallest and largest
pion mass used in this work. We take as reference

pion mass the one computed on the finest lattice and
interpolate results at the other two β-values to these
two reference masses. In Fig. 6 we show the value of
gA at these reference pion masses computed in units of
r0. We perform a fit to these data using a linear form
gA(a) = gA(0) + c(a/r0)

2. The resulting fit is shown in
Fig. 6. Setting c = 0 we obtained the constant line also
shown in the figure. As can be seen, for both large and
small pion masses the slope is consistent with zero yield-
ing a value in the continuum limit in agreement with the
constant fit. Therefore we conclude that finite a effects
are negligible and for the intermediate pion masses we
obtained the values in the continuum by fitting our data
at β = 3.9 and β = 4.05 to a constant.

r0mπ gA(β = 3.9) gA(β = 4.05) gA(β = 4.2) gA(a → 0) gA(L → ∞, a → 0)

1.1019 1.165(18) 1.173(25) 1.130(26) 1.159(13) [1.127(40)] 1.165(13) [1.144(40)]

1.0 1.132(25) 1.172(33) 1.147(20) 1.153(20)

0.95 1.125(29) 1.175(31) 1.148(21) 1.155(21)

0.85 1.138(28) 1.179(37) 1.153(22) 1.165(22)

0.686 1.110(39) 1.194(66) 1.127(34) 1.129(34)

0.615 1.153(47) 1.199(69) 1.138(43) 1.154(29) [1.142(76)] 1.165(29) [1.156(76)]

TABLE IV: In the second, third and fourth column we give the interpolated values of gA at the value of mπr0 given in the first
column. We used r0/a = 5.22(2), 6.61(3) and 8.31(5) for β = 3.9, 4.05 and 4.2 respectively. In the fifth column we give the
value of gA after extrapolating to a = 0 using a constant fit. In the parenthesis we give the corresponding values when using a
linear fit. In the last column we give the continuum value of gA for the volume-corrected data.

The values for gA found at six reference pion masses
are given in Table IV. We give both the continuum values
obtained using a constant fit when no volume corrections
are carried out as well with the volume corrected data.
The volume corrected data extrapolated to a = 0 are
plotted in Fig. 7.

2. Chiral extrapolation

Our simulations cover a range of pion masses from
about 470 MeV down to about 260 MeV. The pion mass
dependence for the nucleon axial charge has been stud-
ied within HBχPT in the SSE formulation [34]. We use
the one-loop result including explicitly the ∆ degrees of
freedom in order to extrapolate our lattice results to the
physical point. We make a three parameter fit to the
form

gA(m
2
π) = g0A − (g0A)

3m2
π

16π2f2
π

+ 4

{

CSSE(λ)

+
c2A

4π2f2
π

[

155

972
g1 −

17

36
g0A

]

+ γ ln
mπ

λ

}

m2
π

+
4c2Ag

0
a

27πf2
π∆0

m2
π +

8

27π2f2
π

c2Ag
0
Am

2
πR(mπ)

+
c2A∆

2
0

81π2f2
π

(25g1 − 57g0A)

{

ln
2∆0

mπ
−R(mπ)

}

+O(ǫ4) , (17)

with

γ =
1

16π2f2
π

[

50

81
c2Ag1 −

1

2
g0A − 2

9
c2Ag

0
A − (g0A)

3

]

R(mπ) =

√

1− mπ

∆0

[

∆0

mπ
+

√

∆2
0

m2
π

− 1

]

. (18)

The three parameters to fit are g0A, the value of the
axial charge at the chiral point, the ∆ axial coupling
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FIG. 7: The nucleon axial charge obtained by taking the con-
tinuum limit of the volume corrected data. The shaded area
shows the best fit to the data shown on the graph. The dashed
line shows the best fit to the raw lattice data at the three val-
ues of β with the dotted lines being the associate error band.

constant g1 and a counter-term CSSE(λ). We again take
the nucleon to ∆ axial coupling constant cA = 1.5, the
mass splitting between the ∆ and the nucleon at the
chiral limit, ∆0 = 0.2711 and λ = 1 GeV. Fitting the
volume corrected continuum results we find gA=1.12(8),
g1=2.37(1.52) and CSSE= − 1.01(2.01). The parame-
ters g1 and CSSE are highly correlated explaining the
resulting large error band. Fitting the lattice without
any volume correction and without extrapolating to the
continuum limit we obtained gA=1.08(8), g1=2.02(1.21)
and CSSE= − 0.63(1.57) which are consistent with the
continuum volume corrected results. This shows that
both cut-off and volume artifacts are small as compared
to the uncertainty due to the chiral extrapolation.

B. Axial form factors

In this section we discuss the results obtained for the
axial form factors GA(Q

2) and Gp(Q
2).

To assess cut-off effects we compare in Fig. 8 results for
GA(Q

2) and GP (Q
2) versus Q2 for three different lattice

spacings at a similar pion mass of about 470 MeV. As
can be seen, results at these three lattice spacings are
consistent indicating that cut-off effects are negligible for
these lattice spacings. We perform a dipole fit to GA(Q

2)
using

GA(Q
2)=

gA
(1+Q2/m2

A)
2
, (19)

with a momentum upper range of Q2 ∼ 1.5GeV2. The
axial mass mA of the fits is larger than in experimen-
tal value of mexp

A = 1.1 GeV extracted from the best
dipole fit to the electroproduction data. This is evident
from the smaller slope shown by the lattice data both for
twisted mass fermions and domain wall fermions. Assum-

FIG. 8: The nucleon axial form factors GA(Q
2) and Gp(Q

2)
at mπ ∼ 470 MeV at β = 3.9 (filled red circles), 4.05 (filled
green triangles) and 4.2 (yellow squares) versus Q2. The line
is the result of a dipole fit (to the form given in Eq. (20))
GA(Q

2) (Gp(Q
2)) data on the coarse lattice.

ing the partially conserved axial current relation and pion
pole dominance we can relate the form factor Gp(Q

2) to
GA(Q

2):

Gp(Q
2)=GA(Q

2)
Gp(0)

Q2 +m2
p

. (20)

The dependence of these form factors on the pion mass
is seen in Fig. 9, where we show both GA and Gp com-
puted at several values of the pion mass spanning a range
from about 470MeV to 300 MeV at β = 3.9. We show fits
to the lattice data using a dipole form as given in Eq. (19)
for GA(Q

2) and to the form given in Eq. (20) for Gp(Q
2),

which described the data rather well. Although the mass
dependence is weak and the general trend is to approach
experiment, lattice data show a weaker Q2 dependence
as compared to experiment. As already pointed out, the
best dipole fit to the electroproduction data yields an
axial mass mexp

A = 1.1 GeV [5], and it is shown by the
solid line. The experimental line in the case of GP (Q

2)
shown in Fig. 9 is obtained using Eq. (20) and pion mass
of mp = 135 MeV.
In Fig. 10 we check for finite volume effects by com-

paring results obtained at β = 3.9 on a lattice of spatial
length L = 2.8 fm and L = 2.1 fm at mπ ∼ 300 MeV.
As can be seen volume effects are negligible for GA. In
the case of Gp we have a strong dependence on Q2 as
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FIG. 9: The nucleon axial form factors GA(Q
2) and Gp(Q

2)
at β = 3.9 for mπ = 468 MeV (crosses), mπ = 432 MeV
(filled red circles) and mπ = 303 MeV (filled blue triangles)
versus Q2. The dashed lines are the result of a dipole fit for
GA(Q

2) and to the form given in Eq. (20) for Gp(Q
2) on the

coarse lattice.

Q2 → 0 because of the pion pole dependence expected
for this form factor. Therefore the fits are strongly de-
pendent on the lowest values of Q2 that are available.
E.g. discarding the point at the lowest momentum yield
the dotted lines which are steeper as compared to includ-
ing it. Although there is an overall consistency between
the two data sets at β = 3.9 deviations are seen in the
fits when the same momentum range is used. The fit
using the whole range of data obtained on the smaller
lattice, shown by the dashed red line exhibit a weaker
dependence as compared to the fit using the results on
the larger lattice but discarding the point at the lowest
momentum, shown by the dotted blue line. In Figs. 11
and 12 we compare our results with the results by LHPC
which were obtained in a mixed action approach that
uses DWF on staggered sea quarks [31] on a lattice with
L = 3.5 fm. The results are in agreement in the case of
GA(Q

2), while in the case of Gp(Q
2) there are larger dis-

crepancies. Given the mass dependence of Gp(Q
2) shown

in Fig. 9 a difference in the pion mass of 50 MeV cannot
fully account for this. Such discrepancies may indicate
that volume effects are not negligible on form factors such
as Gp(Q

2) which are strongly affected by the pion-pole.

In the case of Gp(Q
2) one can extract the fit parame-

ters Gp(0) and mp by either fitting the ratio of Gp/GA

FIG. 10: The nucleon axial form factors GA and Gp at mπ ∼

300 MeV for a lattice of size 243 × 48 (filled red circles) and
323 × 64 (filled blue squares). For GA(Q

2) (upper graph) the
dotted lines are the best dipole fits to the lattice data. For
Gp(Q

2) (lower graph) the dotted lines are fits of lattice results

to the form CGA(Q2)

(Q2+m2
p)

discarding the point at the lowest value

of Q2. The dashed lines are fits using all data points.

FIG. 11: Axial form factor GA(Q
2) as a function of Q2.

NF = 2 TMF results at mπ = 298 MeV are shown with filled
squares, NF = 2+1 DWF with the crosses at mπ = 330 Mev
and NF = 2 + 1 using a mixed action of DWF and staggered
sea quarks at mπ = 356 MeV with triangles. The solid line is
the dipole parametrization of experimental data.
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FIG. 12: Induced pseudo-scalar form factor Gp(Q
2) as a func-

tion of Q2. NF = 2 TMF results at mπ = 298 MeV are
shown with filled squares and NF = 2 + 1 using a mixed ac-
tion of DWF and staggered sea quarks at mπ = 356 MeV
are shown with triangles. The solid line is obtained using the
parametrization of experimental electroproduction results for
GA and pion-pole dominance.

aµ mπ (GeV) gA mA (GeV) Gp(0) mp (GeV)

β = 3.9

0.0100 0.4675 1.163(14) 1.776(48) 6.99(74) 0.738(77)

0.0085 0.4319 1.140(11) 1.634(32) 4.40(62) 0.458(106)

0.0064 0.3770 1.081(31) 2.021(17) 3.33(40) 0.254(113)

0.004 0.3032 1.135(34) 1.572(82) 4.30(76) 0.512(133)

0.004 0.2978 1.160(37) 1.513(70) 4.28(63) 0.459(119)

0.003 0.2600 1.166(28) 1.445(51) 2.80(25) 0.255(95)

β = 4.05

0.008 0.4653 1.174(24) 1.696(24) 5.88(43) 0.595(53)

0.006 0.4035 1.174(32) 1.725(65) 4.90(84) 0.514(124)

0.003 0.2925 1.180(67) 1.392(44) 4.13(85) 0.458(153)

β = 4.2

0.0065 0.4698 1.120(21) 2.030(93) 5.72(40) 0.599(60)

0.002 0.2622 1.158(22) 1.575(42) 3.56(18) 0.325(39)

TABLE V: Results on the axial nucleon charge and axial mass
extracted by fitting GA(Q

2) to a dipole form. The two last
column give the Gp(0) and the mass mp by fitting Gp(Q

2) to
the form given in Eq. (20).

or use the fitted values for GA(q
2) and fit to the form

of Eq. (20). The values extracted by performing these
fits are compatible within error bars. Our lattice data
on Gp(q

2) are flatter than pion-pole dominance predicts
requiring a larger pole mass mp than the pion mass mea-

sured on the lattice. In Table V we tabulate the resulting
fitting parameters for all β and µ values. The parameters
Gp(0) and mp have been extracted from fits to the form
given in Eq. (20). The full set of our lattice results on
GA(q

2) and Gp(Q
2) is given in the Tables VI-VIIIof the

Appendix.
IV. CONCLUSIONS

Using NF = 2 twisted mass fermions we obtain ac-
curate results on the axial GA(Q

2), and Gp(Q
2) form

factors as a function of Q2 for pion masses in the range
of about 260-470 MeV. The general feature is a flatter de-
pendence on Q2 than experiment. This is a feature also
seen in the electromagnetic nucleon form factors. Finite
volume effects are found to be small on GA. Our results
are in agreement with recent results obtained using other
lattice fermions such as dynamical NF = 2 + 1 domain
wall fermions. Having results at three lattice spacings
enables us to take the continuum limit. We find that
cut-off effects are small for the values of the lattice spac-
ings used in this work. Performing a chiral extrapolation
of our continuum results for the nucleon axial charge, we
find at the physical point the value gA = 1.12(8). This
is one standard deviation lower than the physical value.
The large error associated with our determination of gA
is mostly due to the chiral extrapolation. Therefore it is
crucial to perform an analysis with a pion mass closer to
its physical value.
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mπ (GeV) (aQ)2 GA Gp

(no. confs)

β = 3.9, 243 × 48

0.0 1.163(18)

0.066 0.945(15) 7.368(390)

0.4675 0.126 0.825(19) 4.889(230)

(477) 0.182 0.711(31) 3.267(227)

0.235(1) 0.564(48) 2.175(278)

0.286(1) 0.571(65) 2.066(287)

0.334(1) 0.554(14) 1.847(536)

0.0 1.134(25)

0.065 0.908(22) 6.999(510)

0.4319 0.125 0.755(26) 4.211(287)

(365) 0.181(1) 0.657(43) 2.551(298)

0.233(1) 0.499(68) 1.571(361)

0.282(1) 0.454(91) 0.977(288)

0.328(2) 0.361(154) 0.845(445)

0.0 1. 140(27)

0.065 0.931(24) 7.504(614)

0.3770 0.125 0.788(25) 4.145(325)

(553) 0.180(1) 0.737(74) 3.092(453)

0.231(1) 0.648(211) 2.352(916)

0.280(1) 0.631(202) 1.860(687)

0.326(2) 0.329(292) 0.844(872)

0.0 1.111(34)

0.064 0.911(31) 5.947(626)

0.3032 0.122 0.753(33) 3.757(341)

(943) 0.175(1) 0.640(55) 2.486(370)

0.224(1) 0.480(63) 1.454(351)

0.270(2) 0.402(58) 1.090(223)

0.314(2) 0.248(67) 0.404(186)

β = 3.9, 323 × 64

0.00 1.103(32)

0.037 0.977(23) 8.040(660)

0.2978 0.072 0.884(23) 5.875(434)

(351) 0.105 0.779(25) 4.013(325)

0.136 0.700(42) 2.518(361)

0.166(1) 0.644(33) 2.208(222)

0.195(1) 0.582(42) 1.758(208)

0.249(1) 0.541(104) 0.977(314)

0.274(2) 0.449(96) 0.792(271)

0.299(2) 0.408(116) 0.791(330)

0.323(2) 0.326(91) 0.569(238)

0.0 1.156(47)

0.037 0.967(31) 6.579(980)

0.2600 0.072 0.887(30) 5.441(488)

(667) 0.104 0.790(36) 3.976(462)

0.135 0.628(46) 2.425(453)

0.164(1) 0.589(39) 1.850(269)

0.192(1) 0.507(42) 1.510(255)

0.245(1) 0.403(60) 0.925(307)

0.270(1) 0.335(62) 0.638(250)

TABLE VI: Results on the axial nucleon form factors at β = 3.9
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mπ (GeV) (aQ)2 GA Gp

(no. confs)

β = 4.05, 323 × 64

0.0 1.173(24)

0.037 0.971(19) 8.896(485)

0.4653 0.071 0.809(18) 5.063(269)

(419) 0.104 0.723(30) 3.735(269)

0.134 0.625(51) 2.463(309)

0.163 0.566(52) 2.064(229)

0.191(1) 0.481(83) 1.540(289)

0.243(1) 0.306(86) 0.879(283)

0.268(1) 0.181(173) 0.310(319)

0.0 1.175(31)

0.037 0.961(29) 8.213(645)

0.4032 0.071 0.842(32) 5.206(388)

(326) 0.103 0.792(56) 4.027(429)

0.133 0.643(77) 2.224(415)

0.161(1) 0.522(50) 1.499(215)

0.188(1) 0.516(146) 1.563(485)

0.238(1) 0.209(50) 0.584(188)

0.262(1) 0.168(73) 0.420(204)

0.0 1.194(66)

0.037 0.873(46) 7.165(1.089)

0.2925 0.070 0.735(47) 4.273(516)

(447) 0.101 0.557(73) 1.757(525)

0.130(1) 0.540(110) 1.726(559)

0.157(1) 0.509(194) 1.376(564)

0.182(1) 0.383(103) 1.061(358)

TABLE VII: Results on the axial nucleon form factors at β = 4.05
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mπ (GeV) (aQ)2 GA Gp

(no. confs)

β = 4.2, 323 × 64

0.0 1.130(26)

0.036 0.890(21) 6.348(422)

0.4698 0.069 0.786(270) 3.632(220)

(357) 0.099 0.659(61) 2.289(266)

0.126 0.573(123) 1.462(422)

0.152(1) 0.449(83) 1.073(221)

0.177(1) 0.262(50) 0.535(114)

0.222(1) 0.148(62) 0.225(123)

β = 4.2, 483 × 96

0.0 1.138(43)

0.016 0.997(33) 11.392(882)

0.2622 0.032 0.856(23) 5.860(473)

(245) 0.046 0.759(28) 3.845(417)

0.060 0.734(48) 3.212(358)

0.072 0.634(30) 2.295(224)

0.085 0.584(37) 1.604(188)

0.108(1) 0.440(48) 1.260(217)

0.119(1) 0.414(39) 0.946(151)

0.129(1) 0.364(65) 0.604(181)

0.139(1) 0.328(76) 0.452(201)

TABLE VIII: Results on the axial nucleon form factors at β = 4.2
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