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Abstract—A substrate integrated waveguide (SIW)-fed circu-

larly polarized (CP) antenna array with a broad bandwidth of
axial ratio (AR) is presented for 60-GHz wireless personal area

networks (WPAN) applications. The widened AR bandwidth of an

antenna element is achieved by positioning a slot-coupled rotated
strip above a slot cut onto the broadwall of an SIW. A 4 4

antenna array is designed and fabricated using low temperature

cofired ceramic (LTCC) technology. A metal-topped via fence
is introduced around the strip to reduce the mutual coupling

between the elements of the array. The measured results show

that the AR bandwidth is more than 7 GHz. A stable boresight
gain is greater than 12.5 dBic across the desired bandwidth of

57–64 GHz.

Index Terms—Antenna array, axial ratio, circular polarization,

low temperature cofired ceramic, substrate integrated waveguide.

I. INTRODUCTION

W ITH THE progress in high data rate wireless technolo-

gies, wireless personal area networks (WPAN) with

an available spectrum of 57–64 GHz have been proposed for

short-range communication applications [1]. Due to high oper-

ating frequencies and wide operating bandwidth, the design of

antennas at 60-GHz bands becomes challenging [2], [3]. Low

temperature cofired ceramic (LTCC) technology is an excellent

candidate for the millimeter wave (mmW) antenna design

because of its merits of multilayer configuration, flexible metal-

lization, and low fabrication tolerance [3]–[6]. Compared with

conventional multilayer print circuit board (PCB) technology,

the LTCC technology is easier in the realization of blind vias

and across-layer connection by vias.
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To compensate for the high path loss at mmW bands, an an-

tenna array with high gain is more preferable for mmW sys-

tems. However, the gain enhancement of the antenna array is

limited by the loss caused by its feeding network, such as a

microstrip-line feeding network. Therefore, substrate integrated

waveguide feeding network is widely used at the mmW bands

because of its low transmission loss [7].

Furthermore, the circularly polarized (CP) antenna arrays

have been used to improve the quality of the high-speed

wireless links at the 60-GHz bands [8], [9]. However, the

operating bandwidth of 7 GHz for both impedance matching

and axial ratio (AR) is really a challenge for antenna design.

Several methods were proposed to improve the AR bandwidth

of an antenna array [10]–[13]. For example, a 4 2 circularly

polarized slot array loaded by ellipse strip was proposed [10],

achieving a bandwidth of 34.6% for the AR lower than 3.3 dB

at 60 GHz with the gain greater than 8 dBi. A 2 2 circularly

polarized cavity-backed aperture antenna array was reported

with the AR bandwidth of 50% at 10 GHz with the gain greater

than 6 dBic [11]. It should be noted that the designs presented

in [10]–[13], the sequentially rotated feed technique was used

to achieve the AR bandwidth. Such feeding structures are easily

configured by a microstrip-line structure which may cause high

loss at mmW bands. The CP array designs achieved the 3-dB

AR bandwidth of 4% at the 60-GHz bands [8], [9]. Therefore,

the combined design considerations of the AR bandwidth, gain,

and feeding structure complexity become the unique design

challenge at the mmW bands.

In [14]–[17], a CP antenna was designed using a wave-

guide-fed structure, and also for the array applications at 12

GHz. The CP antenna consists of a slot-coupled rotated dipole

above the feeding slot cut onto the broadwall of a waveguide.

Such a dipole-slot antenna has the merits of simple feeding

structure and geometry, suitable for SIW-fed antenna array

design on LTCC. However, such an antenna element and array

suffer narrow AR bandwidth, typically of 4%.

In this paper, a slot-coupled rotated strip with a metal-topped

via fence is proposed as an element to widen the AR bandwidth

of an antenna array operating at the 60-GHz bands. A 4 4

SIW-fed CP antenna array is fabricated using LTCC technology

and tested.

II. ANTENNA ELEMENT DESIGN

Fig. 1 shows the proposed antenna element. It is composed of

a 10-layer LTCC substrate of Ferro A6-M with

0018-926X/$31.00 © 2012 IEEE
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Fig. 1. Geometry and dimensions of the proposed antenna element on LTCC
(unit: mm): (a) side view; (b) top view; (c) metal layer 1; (d) metal layer 2;
(e) middle layer.

TABLE I
DETAILED DIMENSIONS OF THE ELEMENT (UNIT: MM)

at 60 GHz. The thickness of the substrate layer

is mm and the metal layer mm. The

conductor used (in dark color) for the metallization and vias

is Au with the conductivity of S/m. The antenna

element comprises three parts: a rectangular strip rotated by an

angle of from -axis, a feeding slot cut onto the broadwall

of the SIW, and a cavity at the end of the SIW for impedance

matching. The SIW feeding structure is formed in Layers 6–10

and the strip is positioned five layers above the feeding slot. The

diameter and the pitch of the vias in the SIW are 0.1 and 0.25

mm, respectively.

The detailed optimized parameters are tabulated in Table I.

The optimization is conducted using the software package of

CST Microwave Studio that is based on a finite integration

method. Figs. 2 and 3 show the simulated reflection coeffi-

cient, AR bandwidth, and gain of the antenna element. The

bandwidths of the dB reflection coefficient and the 3 dB

AR cover the 60-GHz WPAN band of 57–64 GHz. Within the

operating bandwidth, the gain is greater than 4.59 dBic.

The dipole-slot antenna can be used to generate CP radiation

as shown in [14]–[17]. In order to widen the AR bandwidth of

dipole-slot structure, a rectangular patch is used to replace the

thin dipole as shown in Fig. 1. The patch element introduces

additional CP radiation because the additional one-wavelength

mode appears along the edge of the patch element where the

current is excited.

Fig. 2. Simulated reflection coefficient of the antenna element.

Fig. 3. Simulated AR and gain of the antenna element.

Fig. 4. Current distribution on a rotated patch at 60 GHz with different phase:
(a) 0 ; (b) 90 ; (c) 180 ; (d) 270 .

As shown in Fig. 4, two one-wavelength modes are at the

edges of patch. At the phase of 0 , 90 , 180 , and 270 , the

current appearing periodically along the broad or narrow edges

of the patch flows in a rotated direction, which generates a left-

hand CP radiation. Such additional CP radiation broadens the

overall AR bandwidth up to 7.16 GHz (56.91–64.07 GHz) as

shown in Fig. 3.

The AR bandwidth is sensitive to slot and patch-related pa-

rameters, namely the thickness of the substrate layer , the

rotated angle of the strip , as well as the dimensions of the



LI et al.: XIAL RATIO BANDWIDTH ENHANCEMENT OF 60-GHZ SUBSTRATE INTEGRATED WAVEGUIDE-FED 4621

Fig. 5. Two-element array.

Fig. 6. Simulated and AR with different .

strip ( and ). The spacing between the strip and slot de-

termines the phase difference of orthogonal modes. The rotated

angle of the strip is tuned to achieve the equal amplitudes for

the orthogonal modes. The center frequency of AR bandwidth

shifts down as increasing . The dimensions of the strip ( and

) affect the center frequency of the AR bandwidth. The di-

mensions of the feeding slot ( and ) have less effect to AR

bandwidth. However, the feeding slot is important for energy

coupling to the rotated strip. It is also found that the parameters

, and hardly affect the CP performance but impedance

matching. The cavity at the end of the SIW acts as an impedance

transformer between the feeding slot and the SIW.

III. ANTENNA ARRAY DESIGN

The mutual coupling between the two adjacent elements of

the array is examined. Fig. 5 shows the array configuration with

two proposed elements separated at a center distance . The

and AR response with different are simulated as shown

in Fig. 6. Clearly, the AR bandwidth reduces dramatically from

11.7% in Fig. 3 to 4.2% in Fig. 6 because of the interelement

mutual coupling.

A. Mutual Coupling Reduction

The mutual coupling is mainly caused by the surface wave

between the elements. The surface wave propagates along the

metal Layer 2, where the feeding slot is positioned. Due to

the surface wave, the phase difference between two orthogonal

modes in single element has been changed. To maintain the

AR bandwidth in the array environment, the mutual coupling

must be reduced. In [18], a metal-topped quarter-wavelength

type choke structure is designed to suppress the surface waves.

Fig. 7. Geometry of the proposed element with metal-topped via fence (Unit:
mm). (a) side view; (b) top view; (c) metal layer 1.

Fig. 8. Simulated and AR with mm.

To maintain the magnetic boundary condition to the radiating

aperture, the choke is positioned at a distance of approximately

a half wavelength from the radiating element. However, in the

array design, the distance between two adjacent elements is

restricted by other radiation performance, such as sidelobe

level and so on. Therefore, we propose a metal-topped via

fence around the element with a small distance to block the

surface waves as shown in Fig. 7. The uniform width of the

metal top is 0.2 mm. The distance and are optimized

for both the AR bandwidth and impedance matching with

mm ( at 60 GHz). Between two elements,

two rows of via-fence are positioned to block the surface

waves.

The effect of the via-fence on the AR of the two-element array

and the interelement mutual coupling is shown in Fig. 8. The

AR bandwidth is much wider than that without the via-fence as

shown in Fig. 6, and is even wider than the single element. The

isolation between the two adjacent elements is also improved

more than 25 dB using the metal-topped via-fence.

The single element with a metal-topped via-fence has also

been simulated. Figs. 9 and 10 show the simulated reflection co-

efficient, AR bandwidth, and gain. The via-fence operates as a

cavity load, which is helpful for impedance bandwidth improve-

ment [3]. The cavity loading also provides additional freedom
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Fig. 9. Simulated reflection coefficient of the single antenna element with
metal-topped via-fence.

Fig. 10. Simulated AR and gain of the single antenna element with metal-
topped via-fence.

Fig. 11. Side view of the 4 4-element array with feed transition.

in AR optimization by tuning and . The reflection of sur-

face wave can be utilized to tune the amplitudes in orthogonal

directions. Due to cavity effect, the gain of single element is also

increased as shown in Fig. 10.

B. Antenna Array With Feeding Structure

Fig. 11 shows the 4 4-element antenna array with the

feeding network on the left hand side and the stepped feeding

transition for measurement on the right hand side. The feeding

network and transition aremodified from the feeding structure of

[3]. A 20-layered LTCC substrate is used with the total thickness

of 2.02 mm (20 substrate layers and 8 metal layers). The arrow

with a dashed line indicates the RF signal trace. The antenna

array has three regions, which are shown in Figs. 12–14.

Region I includes five layers (Layers 1–5). The 16 elements

are positioned with a distance of 3.8 mm ( at 60 GHz)

Fig. 12. Top view of Region I.

Fig. 13. Top view of region II.

between two adjacent elements in both horizontal and vertical

directions. The rotated strip and metal top of the via-fence are

printed on the top layer (Layer 1), and the via-fence is formed

from Layer 1 to 5. As shown in Fig. 13, Region II also includes

five layers (Layers 6–10). The 4 2 2-element subarrays with

feeding cavities and feeding slots (solid line) are arranged to feed

the element. The feeding slots are etched onto the top of Layer 6,

and the cavity is formed from Layer 6 to 10. Each subarray cou-

ples from Region III by a coupling slot (dashed line). The cou-

pling slot is etched onto the top of Layer 11. The Region III in-

cludes 10 layers (Layers 11–20). As shown in Fig. 14, a 1-to-8

power divider is arranged from Layer 11 to 18 to couple the en-

ergy to the subarrays through the slots. The detailed dimensions

of the power divider are illustrated in Fig. 15.Another part of Re-

gion III is the SIW-RWG transition with 10 layers (layer 11–20).

The antenna array is fed through a WR-15 RWG. The stepped

transition serves as an impedance transformer between the RWG

and SIW in Layers 11–18 [3]. Fig. 16 shows the detailed dimen-

sions of the transition. The optimized dimensions of the elements

in the array are: mm, and the other

parameters are kept the same as the element design.
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Fig. 14. Top view of Region III.

Fig. 15. Geometry and dimensions of the 1-to-2 power divider.

IV. EXPERIMENTAL RESULTS

The proposed 4 4-element array with feeding transition was

fabricated using LTCC as shown in Fig. 17(a). The overall size

of the antenna area (white color) is 15.4 15.4 mm . The holes

in the feeding area are used for connecting and accurately posi-

tioning with the RWG flange. The antenna was measured using

a self-built mmW antenna measurement system at Institute for

Infocomm Research, Singapore, as shown in Fig. 17(b).

The measured results of the proposed antenna array are il-

lustrated in Figs. 18 and 19, and compared with simulated re-

sults. The bandwidth of reflection coefficient better than dB

is from 56.65 GHz to 65.75 GHz. The measured 3 dB AR band-

width ranges from 60.2 GHz, up to 67 GHz (due to the limita-

tion of vector network analyzer). The measured AR bandwidth

Fig. 16. Geometry and dimensions of the stepped feeding transition in
Region III.

Fig. 17. Photograph of (a) array prototype and (b) measurement system.

Fig. 18. Simulated and measured reflection coefficient of the antenna array.

of more than 7 GHz is as wide as the simulated while the band

shifts to the higher end, which is mainly from the shrinking of

LTCC fabrication.

The parametric study of the substrate layer thickness is il-

lustrated in Figs. 20 and 21. In Fig. 20, the decreasing degrades

the AR and shifts the resonant frequency upwards. And the
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Fig. 19. Simulated and measured axial ratio of the antenna array.

Fig. 20. Simulated AR of the antenna element with different .

Fig. 21. Simulated reflection coefficient of the antenna element with dif-
ferent .

impedance matching is also deteriorated as illustrated in Fig. 21.

The thicknesses difference of the antenna prototype is observed

as shown in Fig. 22. Compared with the designed thickness of

2.02 mm, the thickness of the antenna prototype is smaller and

varies over the area of the antenna array. As discussed above,

the reduction of the substrate thickness degrades the AR as well

as the impedance matching bandwidth, and shifts the operating

frequency upwards. The measurement validates the fact that the

proposed method is capable of enhancing the AR bandwidth in

array design with the SIW feeding structure in LTCC.

The normalized gain patterns of the proposed antenna array

were measured and simulated in the -plane and -plane at

Fig. 22. The thicknesses of the antenna prototype at different positions.

Fig. 23. Simulated and measured radiation patterns of the antenna array at
60 GHz. (a) -plane. (b) -plane.

60 GHz. Usually, the gain as well as the radiation patterns of

a CP antenna can be measured using the method of rotating a

linear source [19]. Limited to the measurement set-up at 60 GHz

bands, the gain with the horizontal and vertical polarizations in-

stead of the gain aligned with the major and minor axes of the

polarization ellipse are measured first and added together after-

wards. The measurement shows good agreement with the sim-

ulation. In each plane, we measured the CP gain of the antenna

at each angle and then normalized the results to the peak gain

as shown in Fig. 23. The simulated and the measured sidelobe

levels are lower than dB.
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Fig. 24. Simulated and measured gains of the antenna array.

Fig. 25. Simulated gain of the antenna array with different substrates and
metals.

Fig. 24 shows the measured gain of the proposed 4 4 an-

tenna array. In the band of 57–64 GHz, the average gain is 15

dBic. Compared with the simulated results, an average gain drop

of 2.5 dB comes from the deterioration of impedance matching

due to the fabrication, also the deviation of the dielectric loss

of the LTCC substrate and the conductivity of the metallization.

Fig. 25 shows approximately 0.5 dB loss caused by the dielec-

tric loss and metal conductivity.

V. CONCLUSION

In this paper, a 4 4-element SIW-fed CP antenna array on

LTCC has been proposed for 60-GHz applications. The AR

bandwidth has been widened by adopting a rotated strip be-

cause of the additional CP radiation from the strip. In order

to reduce the mutual coupling among elements in the array, a

metal-topped via fence has been used to suppress the surface

waves, also improve the AR bandwidth. A prototype of the

proposed array has been fabricated and characterized in terms

of impedance matching, AR bandwidth, radiation patterns, and

gain. The measured results have shown that the 3 dB AR band-

width covering 60.2–67 GHz has been achieved with the bore-

sight gain greater than 12.5 dBic.
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