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CHAPTER1
Introduction

1.1 Quantum Chromodynamics

Quantum Cromodynamics (QCD) has been established as the theory
behind the strong interactions. This is a Yang-Mills gauge theory
based on the SU(3) color symmetry group which has quark fields as
degrees of freedom and gluons as its gauge fields. The non-abelian
structure of the symmetry group is responsible for the two most no-
torious features of this theory:

• Confinement

• Asymptotic freedom
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14 INTRODUCTION

Those features come from the behavior of the coupling constant αg
of the theory with energy. As energy decreases the coupling constant
increases, this gives rise to confinement, quarks and gluons do not
exist free in space, they are always bound into color singlets which are
called hadrons. Asymptotic freedom is the result of the behavior of
the coupling constant at high energies, it decreases. In practice one
can only perform calculations perturbatively at high energies, but not
to study the interaction of hadrons at low energies.

These features of QCD make direct application of the QCD La-
grangian hardly feasible in order to solve strong interaction problems.
Perturbative calculations can be done just at high energies where the
strong coupling constant gets small, but for low energies, because of
the running of this coupling, direct use of the QCD Lagrangian can be
done just via lattice calculations which are extremely time and com-
puter resources consuming, but still give insights into the connections
between hadrons and the underlying QCD dynamics.

In view of the difficulties presented by QCD, hadron problems can
be tackled by different approaches, namely effective theories. The idea
is to use QCD Lagrangian‘s symmetries to construct Lagrangians for
the interaction of hadrons (color singlets) instead of quarks. One of the
most successful theories in this direction is chiral perturbation theory
(χPT ), that makes use of the approximate chiral symmetry of QCD.
In this approach the pseudoscalar mesons are interpreted as the Gold-
stone bosons coming from the spontaneous break of chiral symmetry
and in principle on can easily use the fields with the Goldstone bosons
in order to construct Lagrangians from the interaction of mesons to
any desired order in momentum.

Chiral theories make use of the approximate SU(2)A symmetry of
the QCD Lagrangian, known as chiral symmetry. A new Lagrangian
is built based on this symmetry, and expanded in a power series of
the boson‘s momenta [1, 2]. This theory has overwhelming success in
describing scattering of hadrons at low energies [3, 4, 5, 6, 7] or hadron
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production [8]. The application of this theory in the framework of
unitarization in coupled channels has extended the energy region of
its applicability [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

Chiral perturbation theory, as its name says, is a perturbation the-
ory, where the amplitudes are expanded in power series of the particle’s
momenta. It is possible to improve the results by going to higher or-
ders in the momentum expansion but, the price paid is the huge num-
ber of free parameters that appear in the higher order Lagrangians.
Therefore χPT has many limitations since the theory eventually breaks
down, once the energy is sufficiently large. The absolute limit of ap-
plicability in meson-meson interaction is the appearance of the first
singularity of the T-matrix which happens for the σ meson. This puts
a limit around 450 MeV for the applicability to ππ interactions.

The idea behind unitarization in coupled channels is to use the
chiral amplitudes as a kernel to solve a scattering equation respecting
the analytical properties of the scattering matrix (S-matrix), in par-
ticular that it should be unitary. This is a non-perturbative method
and hence has a wider energy range of applicability. It allows also
the study of the formation of resonances which is a non-perturbative
phenomenon and, moreover, the inclusion of coupled channels allows
one to study the inelasticity among the channels and the decays of
resonances.

The resonances that appear within this method are usually called
dynamically generated resonances, since they appear from the dynam-
ical interaction of the particles included explicitly as building blocks
of the framework. For instance by studying the interaction of the light
pseudoscalar mesons in s-wave or the interaction of pseudoscalars with
vector mesons, one obtains the low lying scalar and axial particles as
dynamically generated resonances [20, 21, 22, 23, 24]. In these works,
eventhough one includes only pseudoscalar and vector mesons as de-
grees of freedom in the Lagrangians, the unitary S-matrix has poles
that can be associated with the axial and scalar mesons. Also nucleon
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resonances can be studied within this framework [10, 11, 12, 13, 25, 26]

1.2 Hadrons

There are two basic ways of constructing color singlets out of quarks.
A quark-antiquark pair (q̄q) or a three quark combination (qqq). The
first one has an integer spin and is called a meson, the second one has
half integer spin and is called a baryon. Apart from coming in three
different colors, the quarks also come in different flavors but, while
the color symmetry is exact, the different quark flavors have different
masses, making the flavor symmetry not an exact one.

There are six known different quark flavors (u, d, s, c, b and t),
if their masses were the same, the QCD Lagrangian would also have
flavor symmetry, but this is not the case. The six quarks with their
quantum numbers are presented in Table 1.1. Since the mass difference
between the up and down quarks is much smaller than the hadron
masses, one can still consider a SU(2) symmetry, known as isospin
symmetry, in order to classify the hadrons. Strong interactions also
conserve flavor, so one can also define four new quantum numbers,
strangeness, charm, bottom and top. As a convention the quark has
the sign of this new quantum number equal to its electrical charge
sign, so the strange quark has S=-1 and the charm quark has C=1, S
referring to strangeness and C to the charm quantum number.

Although the quark’s flavor do not form a symmetry of the strong
interactions, one can still classify the hadrons within flavor multiplets.
For example, out of 3 quark flavors (u, d and s) and their respective
anti-quarks, one can construct nine qq̄ flavor states which will fit into
two SU(3) multiples, an octet and a singlet, according to their SU(3)
structure: 3⊗ 3̄ = 8⊕ 1. Out of 4 quarks one generates a 15-plet and
a singlet of the SU(4) symmetry.

Many models have been developed in order to construct bound
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Table 1.1: Data is from PDG [27]. Quark masses depend on definition,
since no free quark has been observed. The electric charge is given in
units of the absolut value of the electron charge. The column I refers
to isospin, I3 to the third component of isospin, S to strangeness, C
to charm quantum number, B to bottom quantum number and T to
top quantum number.

Quark Electric I I3 S C B T Mass (MeV)
name Charge

up (u) 2
3

1
2

1
2

0 0 0 0 1.5 to 3
down (d) -1

3
1
2

-1
2

0 0 0 0 3 to 7
strange (s) -1

3
0 0 -1 0 0 0 95± 25

charm (c) 2
3

0 0 0 1 0 0 1250±90
bottom (b) -1

3
0 0 0 0 -1 0 4200±70

top (t) 2
3

0 0 0 0 0 1 172500±2700

states out of quarks and to study their spectra. One of the first such
models was the MIT bag model which was based in the earliest nuclear
models. More recent quark potential models make use of phenomeno-
logical one gluon exchange potentials, with confinement, to construct
wave functions for quarks. These models successfully describe many
hadrons and resonances [28, 29], but they also have caveats. For in-
stance, quark models predict the first even nucleon excitation heavier
than the odd one [30], but those resonances are identified today, the
even one with a mass around 1440 MeV and the odd one with 1535
MeV. These models also tend to overestimate the masses of scalar and
axial mesons [31].

In order to explain the discrepancies in between the predictions
from quark models and the observed states, theoreticians started to
make new interpretations of hadrons. There are many more exotic
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possibilities to construct color singlets, like glueballs, which would
correspond to bound states of gluons (gg or ggg), one can also think
of hybrids, which are states made up of quarks and gluon (qq̄g) or mul-
tiple quark states like tetraquarks (qqq̄q̄) for mesons or pentaquarks
(qqqqq̄) for baryons.

There is though a less exotic picture. If the interaction between
two hadrons is attractive and strong enough, it could bound these
two particles in a new state, or generate resonances. This picture is
called molecular picture and it differentiates from the tetraquark or
pentaquark picture, since the quarks in this case are correlated inside
two different hadrons. These molecular states are also called dynami-
cally generated when they involve multiple channels or configurations,
since they are generated by the dynamical interaction of the hadrons
in these many channels.

Many models which use unitarization in coupled channels are able
to dynamically generate resonances. The Jülich model [32, 33], for
instance, has successfully described the first even nucleon resonance
(the Roper resonance) as dynamically generated by the interaction of
the nucleon with a pion, the ∆ with a pion and the nucleon with a
σ meson. The σ itself, and many other scalar resonances, are also
dynamically generated by chiral models [20, 22, 34, 35, 36]. Also the
spectrum of axial resonances can be described this way [23, 24, 37]
and many baryonic resonances like the Λ(1405) [25, 38, 39] and the
N(1535) [40] among others [38, 41, 42].

1.3 Charmed Resonances

Recent experimental developments have allowed the observation of
many hadrons with charm quarks. In this sector the predictions of
quark potential models [43] are in agreement with the properties ob-
served for the pseudoscalar charmed mesons (D and Ds) and for the
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vector charmed mesons (D∗ and D∗
s) but also states that do not fit

well the interpretation of baryons as qqq states or mesons as qq̄ states
have been found. In particular two charmed resonances discovered
by BaBar [44] and confirmed by other experiments [45, 46, 47], the
Ds0(2317) and Ds1(2460) have animated the debate about non qq̄
mesons. Also non-strange partners of these resonances have been ob-
served [48, 49].

The predictions for the masses of these states with quark model
potentials already existed [43] and turned out to be off by more than
100 MeV. The fact that the Ds0(2317) lies just below the DK thresh-
old and the Ds1(2460) just below the D∗K threshold made many
theoreticians speculate that these states could be meson molecules
[50, 51, 52, 53, 54, 55]. Others support a tetraquark assignment
[56, 57, 58], or usual qq̄ states with more sophisticated quark model
potentials or within QCD sum rules calculations [59, 60, 61, 62] and
there is also the possibility of admixture between these configurations
[63, 64, 65].

In the hidden charm sector (mesons with cc̄ quark pairs) also new
controversial resonances have been found. Among them the X(3872),
observed in four different experiments [66, 67, 68, 69], has attracted
much attention and is the one in which there is more data available.
The narrow width of this state makes its interpretation as a usual
charmonium (pure cc̄) state very difficult. For this resonance too,
many exotic theoretical interpretations have been investigated such
as tetraquarks, hybrids and molecules [70, 71, 72, 73, 74]. Nowadays
there are many observed states with hidden charm whose structures
are not yet established, like the Y (4260)1 [75], the X(3940) [76], the
Y (4160) [77], the Y (3940) [78, 79], the Y (4350) [80], the Y (4660) [81]
and even charged ones, the Z(4430) [82], the Z(4040) and the Z(4240)
[83]. For a good review on heavy meson spectroscopy one can refer to

1The Y particles cited here are identified in PDG [27] as X .
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[84, 85, 86, 87].
In this work we will study the dynamical generation of resonances

in the meson-meson interactions. First, Lagrangians will be con-
structed having as degrees of freedom all mesons from the 15-plet
of pseudoscalar mesons and the 15-plet of vector mesons. In a first
step, we will extrapolate the usual chiral Lagrangians used for SU(3)
to SU(4) flavor symmetry but, since this is not a good symmetry of
nature it will be explicitly broken down to SU(3) by identifying terms
in the Lagrangians where the interaction must be driven by a heavy
(charmed or hidden charm) meson. The SU(3) symmetry breaking
will be implicitly done just by taking into account the mass differ-
ences of the particles. In the resulting Lagrangians it is possible to
identify terms that correspond to the chiral Lagrangians already used
to study only the light sectors [20, 22] or only the charmed sector
[51, 52, 53, 54] in different works. Still these Lagrangians present the
possibility to make predictions in the hidden charm sector and in the
scattering of heavy pseudoscalars with light vector mesons, which had
not been studied before in the framework of unitarization in coupled
channels.

In the next chapter the construction of the Lagrangians will be
explained in detail. Chapter 3 is dedicated to present the mathemat-
ical framework used to solve the scattering equations in a unitarized
coupled channels basis. In the following chapter the results will be pre-
sented and uncertainties will be commented. In Chapter 5 we study
in more detail the hidden charm sector and analyze the available data
in this sector. Chapter 6 presents calculations of radiative decays of
mesons and in Chapter 7 we present our overview and conclusions.



CHAPTER2
Phenomenological Model

In this chapter we will present the Lagrangians used for the interaction
of pseudoscalar mesons, vector mesons and photons. The Lagrangians
come from chiral symmetry in the hidden gauge formalism, which in-
cludes interactions of pseudoscalar mesons among themselves, of vec-
tor mesons among themselves and with pseudoscalars and interactions
of the mesons with photons. Chiral symmetry has been successfully
used in the description of light mesons and the Lagrangians are, in
principle, written for SU(3) flavor symmetry. We extend them to
SU(4) symmetry, but latter we use the mass difference between light
and charmed mesons in order to break this symmetry back to SU(3).
In the end of the chapter we introduce also a different method to break
the SU(4) flavor symmetry.

21
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2.1 The Chiral Lagrangian

Neglecting the quark masses, the QCD Lagrangian is chiral symmetric
and it is possible to construct an effective field theory based in this
symmetry.

The SU(3) lowest order chiral Lagrangian, respecting the Lorentz
invariance, which is invariant under parity and charge conjugation
reads [3, 4, 6, 88]:

Lχ =
f 2
π

4
Tr (∂µU∂

µU) +
f 2
π

4
Tr

(

χ†U + U †χ
)

(2.1)

where U is the field containing the pseudoscalar mesons from the
SU(3) octet and Tr represents a trace in flavor space:

U = e
i
√

2φ8
fπ (2.2)

φ8 =







π0
√

2
+ η√

6
π+ K+

π− −π0
√

2
+ η√

6
K0

K− K̄0 −2η√
6







(2.3)

χ =






m2
π 0 0

0 m2
π 0

0 0 2m2
K −m2

π




 (2.4)

The first term in the Lagrangian of eq. (2.1) gives rise to the
kinetic term for the pseudoscalar mesons and to contact interaction
terms. The second term gives rise to mass terms for the mesons and
also constant contact interaction terms.

This Lagrangian has just one coupling parameter (fπ), the next to
leading order Lagrangian contains terms with more than two deriva-
tives in the field U and terms coupling more than two U fields, there
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are 10 new terms and therefore 10 new parameters. The next to next
to leading order has more than 100 parameters, making the predictiv-
ity of the theory very poor.

By expanding the exponential matrix U in eq. (2.3) one can write
the terms of the Lagrangian in eq. (2.1) until order φ4

8 and one gets
the following interaction Lagrangian for the pseudoscalar mesons:

LPPPP =
1

12f 2
Tr ((∂µφ8φ8 − φ8∂µφ8)(∂

µφ8φ8 − φ8∂
µφ8)

+ Mφ4
8

)

(2.5)

with M = χ of Eq. (2.4).

2.2 Phenomenological Lagrangian

Our aim is to study open and hidden charm resonances, therefore we
want to extend the Lagrangian in eq. (2.5) from SU(3) to SU(4).
In SU(3) the pseudoscalar mesons are represented by an octet of this
symmetry group, the adjoint representation of this group. In SU(4)
the adjoint representation of the symmetry group is a 15-plet. In figure
2.1 we show a pictorial representation of this multiplet together with
its pseudoscalar meson assignments.

The procedure we follow here in order to insert the heavy (charmed)
mesons in our framework is to use, instead of a field containing the
SU(3) octet, a field containing the SU(4) 15-plet in our Lagrangian.
The field containing the mesons from a 15-plet of SU(4) reads:

Φ =
15∑

i=1

ϕi√
2
λi =
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Figure 2.1: The 15-plet of pseudoscalar mesons
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=

















π0
√

2
+ η8√

6
+ η15√

12
π+ K+ D̄0

π− −π0
√

2
+ η8√

6
+ η15√

12
K0 D−

K− K̄0 −2η8√
6

+ η15√
12

D−
s

D0 D+ D+
s

−3η15√
12

















(2.6)

this field is constructed by means of the λi’s which are the SU(4)
generators. Note that adding anything proportional to a singlet (a
diagonal matrix) to the field Φ results in no extra contribution in the
derivative term of the Lagrangian of eq. (2.5). We will use this fact
to write the matrix Φ in the physical basis, considering the mixing of
the η8, η15 and a singlet η1 into the physical states η, η′ and ηc. To
construct the physical states we have to look into the quark content
of each state. Let’s consider the following orthonormal states:

η1 =
1

2
(uū+ dd̄+ ss̄+ cc̄) (2.7)

η8 =
1√
6
(uū+ dd̄− 2ss̄) (2.8)

η15 =
1√
12

(uū+ dd̄+ ss̄− 3cc̄) (2.9)

The states we work with are given by:

η =
1√
3
(uū+ dd̄− ss̄) (2.10)

η′ =
1√
6
(uū+ dd̄+ 2ss̄) (2.11)

ηc = cc̄ (2.12)
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So, if we sum to the field in eq. (2.6) a diagonal matrix proportional
to 1

2
η1 we can rewrite the matrix Φ in physical basis1:

Φ =

















η√
3

+ π0
√

2
+ η′√

6
π+ K+ D

0

π− η√
3
− π0

√
2

+ η′√
6

K0 D−

K− K
0

√
2
3
η′ − η√

3
Ds

−

D0 D+ Ds
+ ηc

















(2.13)

For this field we define the hadronic current:

Jµ = (∂µΦ)Φ − Φ∂µΦ, (2.14)

and we rewrite the Lagrangian of eq. (2.5) for the SU(4) symmetric
case:

LPPPP =
1

12f 2
Tr

(

JµJ
µ +MΦ4

)

. (2.15)

The interaction described by the Lagrangian in eq. (2.15) is SU(4)
flavor symmetric but, due to the much bigger mass of the charm quark,
we know that SU(4) is not a good symmetry in nature, and therefore
we would like to break this symmetry. In order to do that we first
note that a 15-plet of SU(4) breaks down into three multiplets of the
lower SU(3) symmetry, namely an octet, a triplet, an antitriplet and
a singlet:

1from now on, all fields (Φ, φ8, ...) refer only to the fields in the physical
basis and not to the mathematical basis of eqs. (2.3) and (2.6), unless it is said
otherwise.
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15SU(4) −→ (1 ⊕ 3 ⊕ 3̄ ⊕ 8)SU(3), (2.16)

the singlet and the octet have charm quantum number equal to zero,
while the antitriplet and the triplet have positive and negative charm
quantum number, respectively (see Fig. 2.1).

So, let’s decompose the field Φ into its heavy and light components:

Φ =

(

φ8 φ3

φ3̄ φ1

)

, (2.17)

where,

φ8 =








η√
3

+ π0
√

2
+ η′√

6
π+ K+

π− η√
3
− π0

√
2

+ η′√
6

K0

K− K
0

√
2
3
η′ − η√

3








(2.18)

φ3 =






D̄0

D−

D−
s




 (2.19)

φ3̄ =
(

D0 D+ D+
s

)

(2.20)

φ1 = ηc (2.21)

and we can write the hadronic current as:

Jµ =

(

Jµ88 + Jµ33̄ Jµ83 + Jµ31
Jµ3̄8 + Jµ13̄ Jµ3̄3 + Jµ11

)

, (2.22)

where the hadronic currents Jµij are given by:
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Jµij = (∂µφi)φj − φi∂
µφj, (2.23)

from where one verify that Jµ11 is zero.
We can now rewrite the Lagrangian in terms of the Jµij :

L =
1

12f 2
Tr

(

Jµ88J88µ + 2Jµ33̄J88µ + Jµ33̄J33̄µ +MΦ4
)

+
1

12f 2

(

2Jµ3̄8J83µ + 2Jµ13̄J83µ + 2Jµ3̄8J31µ + Jµ3̄3J3̄3µ

+ 2Jµ13̄J31µ

)

(2.24)

Now we should distinguish between two types of currents, namely,
currents carrying charm quantum number and currents that do not
carry charm. Each interaction term in the Lagrangian is the result of
the coupling of two hadronic currents. If two currents carrying charm
are coupled, it means that in the underlying interaction, a charmed
meson must be exchanged in between them, and hence a heavy me-
son, since it must contain the heavy charm quark which is exchanged.
In the underlying interaction this term would be proportional to the
propagator of the heavy meson, while currents that do not exchange
charm would be proportional to the propagator of a light meson. Fol-
lowing the principle of vector meson dominance through its efficient
implementation in the hidden gauge formalism [89], we assume that
the exchanged particle in the underlying interaction is a vector me-
son, and since the meson propagators are proportional to the inverse
squared of the meson mass, terms in the Lagrangian of eq. (2.24)
which couple hadronic currents carrying charm should be suppressed
by the factor

γ =
m2
L

m2
H

(2.25)
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in relation to the terms coupling currents that do not carry charm.
This philosofy was already adopted in the study of meson baryon
intercations in [90, 91]. In eq. (2.25) mL is the mass of a light vector
meson and mH is the mass of a heavy vector meson, we use for these
parameters the values

mL = 800 MeV (2.26)

mH = 2050 MeV, (2.27)

which are typical values for the masses of these particles. In figure 2.2
we show pictorial representations of such exchanges of mesons. This
approach is the same done elsewhere [92].

The terms in the Lagrangian with Jµ3̄3J3̄3µ and Jµ33̄J33̄µ also con-
tain the exchange of a heavy meson, but a hidden charm one, the
J/ψ. To suppress from these two terms the part of J/ψ exchange we
need the Lagrangian for the interaction of pseudoscalars with vector
mesons, that we introduce in the next section. Apart from the cor-
rection in these two terms, the final Lagrangian for the interaction of
pseudoscalar mesons reads:

L =
1

12f 2
Tr

(

Jµ88J88µ + 2Jµ33̄J88µ + Jµ33̄J33̄µ +MΦ4
)

+
1

12f 2

(

2γJµ3̄8J83µ + 2γJµ13̄J83µ + 2γJµ3̄8J31µ + Jµ3̄3J3̄3µ

+ 2γJµ13̄J31µ

)

(2.28)

The first term in this Lagrangian is the same obtained from the
lowest order chiral Lagrangian for SU(3), and the second term is 2

3

of the Lagrangian one obtains from heavy quark symmetry and chi-
ral symmetry for the interaction of the Goldstone bosons with heavy
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(φ3) (φ3)

D D

π π

(φ8) (φ8)

︸ ︷︷ ︸

Jµ88J33̄µ

(φ3)

(φ8)

(φ8)

(φ3)

D

π

π

D
︸ ︷︷ ︸

Jµ
3̄8
J83µ

VL VH

Figure 2.2: Same process coming from two different terms in the La-
grangian of eq. (2.24). The VL and VH indicate a light and a heavy
vector meson, respectively. The Φn indicates the SU(3) multiplet (n)
to which the meson belongs.
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mesons. This factor 2
3

will be explained latter on. Other terms are ei-
ther corrections resulting from the exchange of heavy mesons or terms
for the interaction of heavy pseudoscalars with themselves.

The parameter used to suppress the J/ψ exchange, analogously to
the γ parameter, has the form:

ψ =
m2
L

m2
J/ψ

(2.29)

Another possible source of SU(4) symmetry breaking can be the
coupling f appearing in the Lagrangian. In later chapters we present
results in two different schemes, in one we use f = fπ = 93 MeV and in
the other one we use fπ and fD = 165 MeV, depending on the mesons
appearing in the legs of the contact diagram in a way we explain in
more detail later on.

2.3 Hidden Gauge Formalism

We are also interested in the interaction of the mesons with photons,
and in including in our framework interactions with vector mesons. In
order to do that we will follow the hidden gauge formalism introduced
in [4, 89]. The interaction of the photons comes from substituting the
derivative in the Lagrangian (2.1) by a covariant derivative given by:

DµU = ∂µU − ieQAµU + iUeQAµ (2.30)

where Q is a matrix for the electric charge of the quarks:

Q =
1

3








2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 2







, (2.31)
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the photon field is represented by Aµ and e is the electric charge of

the electron ( e
2

4π
= α = 1

137
).

To introduce the interaction of the vector mesons one sums to the
chiral Lagrangian the following Lagrangian:

LV =−1

4
Tr

(

V̄µνV̄
µν
)

+
M2

V

2
Tr

(

(Vµ −
i

g
Γµ)(Vµ −

i

g
Γµ)

)

(2.32)

Γµ =
1

2

(

u†(∂µ − ieQAµ)u+ u(∂µ − ieQAµ)u
†
)

(2.33)

u2 = U (2.34)

V̄µν = ∂µVν − ∂νVµ − ig[Vµ,Vν ], (2.35)

in these equations Vµ is a field analog to Φ containing the a 15-plet
plus a singlet of fields representing the low lying vector mesons:

Vµ =

















ρ0µ√
2

+ ωµ√
2

ρ+
µ K∗+

µ D̄∗0
µ

ρ∗−µ
−ρ0µ√

2
+ ωµ√

2
K∗0
µ D∗−

µ

K∗−
µ K̄∗0

µ φµ D∗−
sµ

D∗0
µ D∗+

µ D∗+
sµ J/ψµ

















. (2.36)

This field is already in the physical basis, the quark contents of the
neutral vector mesons are given by:

ω =
1√
2
(uū− dd̄) (2.37)

φ = ss̄ (2.38)

J/ψ = cc̄ (2.39)
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From the chiral Lagrangian with the covariant derivative of eq.
(2.30) one obtains the following coupling of pseudoscalars to photons:

LγPP = ieT r (QJµ)A
µ, (2.40)

but from the Lagrangian (2.32) one also obtains a coupling given by:

L′
γPP = −ie M2

V

4g2f 2
Tr (QJµ)A

µ, (2.41)

so if we have

g =
MV

2f
, (2.42)

these two Lagrangians cancel each other and, as a result, the photons
do not couple directly to the pseudoscalar mesons. Still from the
Lagrangian (2.32) we obtain the following couplings:

LγV = −M
2
V e

g
Tr (VµQ)Aµ (2.43)

LPPV = i
M2

V

4gf 2
Tr (VµJµ) . (2.44)

We see that to obtain the coupling of a pseudoscalar to a photon we
must first couple the pseudoscalar to a neutral vector meson, through
the Lagrangian in eq. (2.44) and then the vector meson converts itself
into a photon through the Lagrangian in eq. (2.43). But the strength
of this coupling is the same that we had for on-shell photons coupling
directly to the meson current, since the product of the coupling of
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P

P

V

γ

Figure 2.3: The PPγ coupling through a neutral vector meson.

the Lagrangians in eqs. (2.43) and (2.44) is proportional to eM2
V and

the sum for this process for each possible intermediate neutral vector
meson is 1

M2
V

. We show in Figure 2.3 a diagram representing such

process. For virtual photons this mechanism provides the form factor
of the pseudoscalar mesons dominated by vector mesons propagators.

The Lagrangian (2.44) can also be used to weight the contribution
of the J/ψ exchange in the couplings Jµ3̄3J3̄3µ and Jµ33̄J33̄µ. These cor-
rections have been calculated for each process and are shown in the
appendix.

We also want a Lagrangian for the coupling of two vector mesons
to a pseudoscalar that we get from [93]:

LV V P =
3g2

PPV

4
√

2π2f
ǫµναβTr(∂µVν∂αVβΦ) (2.45)

The last Lagrangian we use refers to the scattering of pseudoscalars



SU(N) SYMMETRY BREAKING 35

with vector mesons. To build this Lagrangian we construct first a
current for the vector meson field:

Jµ = (∂µVν)Vν − Vν∂µVν ., (2.46)

and the Lagrangian is constructed by coupling this current to the
pseudoscalar one:

LPPV V = − 1

4f 2
Tr (JµJ µ) . (2.47)

The coupling strength ( 1
4f2 ) is chosen so that it coincides with the one

used in works considering chiral symmetry and heavy quark symmetry
[51, 53, 94].

With this Lagrangian we perform the same symmetry breaking
procedure described before in order to break the SU(4) flavor symme-
try by supressing exchanges of heavy mesons.

2.4 SU(N) Symmetry Breaking

One can introduce flavor symmetry breaking effects in the SU(3) La-
grangian with two new terms [95, 96]:

LSB =
f 2
Km

2
K − f 2

πm
2
π

6
Tr

(

(1̂ −
√

3λ8)(U + U † − 2)
)

− f 2
K − f 2

π

12
Tr

(

(1̂ −
√

3λ8)(Ulµl
µ + lµl

µU †)
)

(2.48)

lµ = U †∂µU (2.49)

where λ8 refers to the standard diagonal 8th SU(3) generator.
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In [97] these Lagrangians are extended to SU(N), so that one can
consider also the heavy mesons with charm or beauty. In this new
approach the symmetry breaking sector is written as:

LSB =
1

8

n∑

k=3

γkTr



(1̂ −
√

1

2
k(k − 1)λk2−1)(Ulµl

µ + lµl
µU †)





+
1

8

n∑

k=3

δkTr



(1̂ −
√

1

2
k(k − 1)λk2−1)(U + U † − 2)



 (2.50)

but now U belongs to a SU(N) representation.
By expanding the U matrix until fourth order in the meson fields,

one can identify the mass and kinetic terms for each field and fix the
symmetry breaking parameters for SU(4) and SU(3) as:

γ3 =
4

6
(f 2
K − f 2

π) (2.51)

δ3 =
4

3
(f 2
Km

2
K − f 2

πm
2
π) (2.52)

γ4 =
1

2
(f 2
D + f 2

K − 2f 2
π) (2.53)

δ4 = f 2
Dm

2
D − 1

3
f 2
Km

2
K − 1

3
f 2
πm

2
π (2.54)

In this work we will consider only the difference between fD and
fπ which is about 70% and we will make the approximation fK = fπ.

We also consider this type of symmetry breaking when calculat-
ing scalar resonances, in order to study the model dependency of the
results.



CHAPTER3
Meson-Meson Scattering

3.1 The Potential

Now we are interested in applying the Lagrangians derived in the pre-
vious chapter in order to solve the scattering problem of two mesons.
We study two possible interactions, namely, the scattering of two pseu-
doscalar mesons, and the scattering of a pseudoscalar with a vector
meson:

P1(p) + P2(k) → P ′
1(p

′) + P ′
2(k

′) (3.1)

P (p) + V (k) → P ′(p′) + V ′(k′) (3.2)

From the Lagrangians in eqs. (2.28) and (2.47) one can obtain tree
level transition amplitudes for such processes. For each set of possible

37
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Table 3.1: Channel content in each sector for the pseudoscalar pseu-
doscalar interaction

Charm Strangeness I Channels

1 1 1 πDs, KD

0 DK, ηDs, η
′Ds, ηcDs

0 1
2

πD, K̄Ds, ηD, η′D, ηcD

-1 0 DK̄

0 1 1
2

πK, ηK, η′K, D̄Ds, ηcK

0 1 K̄K, ππ, ηπ, η′π, D̄D, ηcπ

0 K̄K, ππ, ηη, η′η, ηcηc,
η′η′, D̄D, D̄sDs, ηcη, ηcη

′

charge (or isospin), strangeness and charm quantum numbers there
are many possible two meson states coupling to it, so that one needs
to work in a coupled channel formalism.

We show in tables 3.1 and 3.2 all two meson states for each set (C,
S, I) of possible quantum numbers spanning a coupled channel space.

The amplitude for the scattering of two pseudoscalar mesons ob-
tained from the Lagrangian in eq. (2.28) reads:

MC
ij = − 1

12f 2

(

αCij(s− u) + βCij (s− t) + γCij (t− u)
)

+ constant (3.3)
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Table 3.2: Channel content in each sector for the pseudoscalar vector
meson interaction

Charm Strangeness IG(JPC) Channels

1 1 1(1+) πD∗
s , Dsρ,

KD∗, DK∗

0(1+) DK∗, KD∗, ηD∗
s , η

′D∗
s ,

Dsω, Dsφ, ηcD
∗
s , DsJψ

0 1
2
(1+) πD∗, Dρ, K̄D∗

s , DsK̄
∗, ηD∗,

η′D∗, Dω, Dφ, ηcD
∗, DJψ

-1 0(1+) DK̄∗, K̄D∗,

0 1 1
2
(1+) πK∗, Kρ, ηK∗, η′K∗, Kω,

Kω, D̄D∗
s , DsD̄∗, KJψ, ηcK

∗

0 1+(1+−) 1√
2
(K̄K∗ + c.c.), πω, πφ, ηρ,

η′ρ, 1√
2
(D̄D∗ + c.c.), ηcρ, πJψ

1−(1++) πρ, 1√
2
(K̄K∗ − c.c.), 1√

2
(D̄D∗ − c.c.)

0+(1++) 1√
2
(K̄K∗ + c.c.), 1√

2
(D̄D∗ + c.c.),

0+(1++) 1√
2
(D̄sD

∗
s − c.c.)

0−(1+−) πρ, ηω, 1√
2
(D̄D∗ − c.c.), ηcω,

ηJψ, 1√
2
(D̄sD

∗
s + c.c.), ηcJψ,

η′ω, ηφ, η′φ, ηcφ,
1√
2
(K̄K∗ − c.c.), η′Jψ
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where i and j refer to the initial and final channels, the superindex
C refers to the charge basis and s, t and u are the usual Mandelstam
variables:

s = (p+ k)2 = (p′ + k′)2 (3.4)

t = (p− p′)2 = (k − k′)2 (3.5)

u = (p− k′)2 = (k − p′)2 (3.6)

the constant term comes from the M.Φ4 term in the Lagrangian in eq.
(2.28). All amplitudes for the scattering of two pseudoscalar mesons
are given in Appendix A.

The amplitude for the scattering of pseudoscalars with vector mesons
obtained is:

MC
ij(s, t, u) =

ξCij
4f 2

(s− u)ǫ.ǫ′. (3.7)

again the superindex C refers to the charge basis, the labels i and j to
the initial and final channels while s, t and u are the usual Mandelstam
variables, and ǫ and ǫ′ are the initial and final vector mesons polar-
izations. In appendix B we present the coefficient ξ for all possible
channels in each coupled channel space. When projecting the am-
plitude in s-wave the polarization vectors are actually left out of the
integral, as an approximation. In figure 3.1 we show an example of a
meson scattering process showing the diagrams that give contribution
to each of the coefficients α, β and γ in eq. (3.3).

We study the scattering of the mesons in s-wave, so we project
each amplitude in s-wave:

Vij(s) =
1

2

∫ 1

−1
d(cosθ)Mij

(

s, t(s, cosθ), u(s, cosθ)
)

(3.8)
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D(p) D(p‘)

π(Κ) π(Κ‘)
︸ ︷︷ ︸

α

D(p) D(p‘)

π(Κ) π(Κ‘)
︸ ︷︷ ︸

γ

D(p‘)

π(Κ‘)

π(Κ)

D(p)
︸ ︷︷ ︸

β

from from from
Jµ88J33̄µ Jµ3̄8J83µ Jµ3̄8J83µ

Figure 3.1: Diagrams contributing in the amplitude for pseudoscalar-
pseudoscalar scattering.

These potentials, for each possible initial and final channels for each
coupled channel space are collected in a matrix. This matrix, V is the
potential that we use as a kernel for solving the scattering equation.
Each one of these matrices can be written in charge, isospin or SU(3)
basis. In appendix C we give a list of isospin and SU(3) states used to
transform the potential for the pseudoscalar meson interaction from
one basis to another.

In the next section we comment on the SU(3) flavor structure of
the interaction and how it gives us insight on the possible resonances
that we generate.

3.2 The SU(3) structure

We have constructed Lagrangians for the interaction of 15-plets of
SU(4). In order to break SU(4) symmetry what was really done was
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actually to break (decompose) the SU(4) 15-plets. Once SU(4) sym-
metry is broken into SU(3), the 15-plet breaks down into four multi-
plets of the lower symmetry, an octet, a triplet, an antitriplet and a
singlet:

15 →






3̄C
1 ⊕ 8
3C̄




 (3.9)

the C and C̄ in the SU(3) multiplets indicate their charm content.
The octet and the singlet have null charm quantum number, the

triplet and the antitriplet have negative and positive charm quantum
number, respectively.

When studying the meson-meson interaction, one can decompose
the scattering of two 15-plets of SU(4) according to their SU(3) inner
structure. Table 3.3 shows this decomposition for the scalar sector,
while table 3.4 shows it for the axial sector. Note that the axial sector
is richer, since one can differentiate between the vector meson and the
pseudoscalar multiplets. For instance there is only one combination of
1⊗8 for the pseudoscalar mesons while there are two for the interaction
of pseudoscalars with vector mesons, namely 1∗ ⊗ 8 and 1 ⊗ 8∗ where
the asterisk refers to the vector meson multiplet.

15 ⊗ 15 = 1 ⊕ 15 ⊕ 15 ⊕ 20′′ ⊕ 45 ⊕ 4̄5 ⊕ 84 (3.10)

The SU(3) decomposition of each one of these multiplets reads:

20′′ →






6C
8
6̄C̄




 , 84 →











6̄CC
3̄C ⊕ 1̄5C
1 ⊕ 8 ⊕ 27
3C̄ ⊕ 15C̄

6C̄C̄










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Table 3.3: SU(3) decomposition of the meson-meson interaction for
the scalar sector in SU(4). The sectors not shown in the table corre-
spond to the C = −1,−2 states which are just charge conjugate states
(antiparticles) from the ones shown.

charm Interacting multiplets

2 3̄ ⊗ 3̄ → 3 ⊕ 6̄

1 3̄ ⊗ 8 → 1̄5 ⊕ 3̄ ⊕ 6
3̄ ⊗ 1 → 3̄

0 3̄ ⊗ 3 → 8 ⊕ 1
1 ⊗ 1 → 1
8 ⊗ 1 → 8
8 ⊗ 8 → 1 ⊕ 8S ⊕ 8A ⊕ 10 ⊕ 1̄0 ⊕ 27

45 →








1̄5C
8 ⊕ 10

3C̄ ⊕ 6̄C̄
3̄C̄C̄








, 4̄5 →








3CC
3̄C ⊕ 6C
8 ⊕ 10
15C̄








With help of the SU(3) isoscalar factors and isospin coefficients of
appendix C we can transform the amplitudes into SU(3) basis. Once
the potential is written in a SU(3) basis, it is possible to identify
in which multiplets the interaction is attractive, and therefore, may
generate resonances or bound states.

In the C=2 sector there is no attractive interaction in any multi-
plet. In the C=1 sector the antitriplets and the sextets coming from



44 MESON-MESON SCATTERING

Table 3.4: SU(3) decomposition of the interaction between pseu-
doscalar and vector mesons in SU(4). The irreps marked with an
∗ refer to the vector meson multiplet.

charm Interacting multiplets

2 3̄ ⊗ 3̄∗ → 3 ⊕ 6̄

1 3̄ ⊗ 8∗ → 1̄5 ⊕ 3̄ ⊕ 6
8 ⊗ 3̄∗ → 1̄5 ⊕ 3̄ ⊕ 6
3̄ ⊗ 1∗ → 3̄
1 ⊗ 3̄∗ → 3̄

0 3̄ ⊗ 3∗ → 8 ⊕ 1
3 ⊗ 3̄∗ → 8 ⊕ 1
1 ⊗ 1∗ → 1
8 ⊗ 1∗ → 8
1 ⊗ 8∗ → 8
8 ⊗ 8∗ → 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 1̄0 ⊕ 27
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the 3̄⊗ 8 are all attractive, note that this means two times more reso-
nances for the axial mesons than in the scalar case, since there are two
possibilities for the interaction in this sector. In the C=0 sector all
singlets are attractive, including the heavy ones coming from the 3⊗ 3̄
interaction. While in the axial sector the two light octets coming from
the 8 ⊗ 8 are attractive, in the scalar sector only one gives contribu-
tion in s-wave, the 8S; the other one, the 8A, because of its symmetry
properties (one is dealing with identical particles in the SU(3) limit),
has a p-wave structure.

From these first considerations one can expect a very rich spec-
trum for the scalars and axial mesons. As we will see, most of the
observed light scalar mesons fit this picture of dynamically generated
resonances. In the heavy sector, apart from describing known scalar
and axial resonances, this model makes predictions on new possible
states, including exotic ones. One should note that some members of
the sextets with C=1, S=1, I=1 and C=1, S=-1, I=0 are exotic states,
since no state with such quantum numbers can be constructed out of
a qq̄ pair.

3.3 T-matrix Calculation

We want to study the generation of resonances from the interaction.
The generation of resonances and bound states is a non-perturbative
feature of an interaction, and therefore we shall solve the scattering
problem in a non-perturbative way. The procedure we follow here
is to use the potential V that we have obtained in order to solve a
scattering equation in a unitarized way. We calculate the T-matrix
using the Bethe-Salpeter equation in an on-shell formalism.

For the interaction of two pseudoscalar mesons, the Bethe-Salpeter
equation, in the on-shell formalism of [13, 20], assumes an algebraic
form:
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T = V + V GT . (3.11)

In this equation V is the potential, a matrix constructed with the
tree level transition amplitudes for each one of the possible channels,
projected over s-wave. The matrix G is diagonal with each one of its
non-zero elements given by the loop function for the two particles in
each channel:

Gii = i
∫

dq4

(2π)4

1

q2 −m2
1 + iǫ

1

(P − q)2 −m2
2 + iǫ

(3.12)

=
1

16π2

(

αi + Log
m2

1

µ2
+
m2

2 −m2
1 + s

2s
Log

m2
2

m2
1

+
p√
s

(

Log
s−m2

2 +m2
1 + 2p

√
s

−s+m2
2 −m2

1 + 2p
√
s

+ Log
s+m2

2 −m2
1 + 2p

√
s

−s−m2
2 +m2

1 + 2p
√
s

))

. (3.13)

in equation (3.12), P is the total four-momentum of the two mesons
in channel i and m1 and m2 are the masses of the two mesons in this
channel. The expression in eq. (3.13) is calculated using dimensional
regularization. Over the real axis p is the three-momentum of the
mesons in the center of mass frame:

p =

√

(s− (m1 +m2)2)(s− (m1 −m2)2)

2
√
s

. (3.14)

In figure 3.2 we show a diagrammatic representation of the scat-
tering equation.

Equation (3.11) can be easily inverted:



T-MATRIX CALCULATION 47

TT +=

Figure 3.2: Diagrammatic representation of the Bathe-Salpeter scat-
tering equation.

T = (1̂ − V G)−1V. (3.15)

In the complex plane the momentum p is calculated using the ex-
pression in eq. (3.14). Eq. (3.11) with eqs. (3.12-3.13) makes implicit
use of dispersion relations in which only the right hand (physical) cut
is considered. It was proved in [21] that the left hand cut provides a
moderate contribution, and more important, very weakly energy de-
pendent, such that its contribution can be easily accommodated in
terms of the subtraction constant that we use, in the range of energies
of interest to us.

For the interaction of the pseudoscalars with the vector mesons,
one has to take into account the polarization of the vector mesons. In
this case the unitarized T-matrix assumes the form [21, 24]:

T = −(1̂ + V Ĝ)−1V−→ǫ .−→ǫ ′ (3.16)

In this equation Ĝ is a diagonal matrix with each element given by:

Ĝii = Gii

(

1 +
~p2

3m2
2

)

(3.17)
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here Gii is the usual loop function given by equation (3.13) with m1

the mass of the pseudoscalar meson and m2 the mass of the vector
meson. The factor

(

1 + ~p2

3m2
2

)

, where ~p is the meson on-shell three

momentum, is in fact small in the energy regions where we find poles
and so, it could very well be omitted, but we keep it in our calculation.

The loop function has the right imaginary part to ensure the uni-
tarity of the T-matrix [22]:

Im(Gii) = − p

8π
√
s
. (3.18)

When looking for poles in the complex plane one should be careful
because of the cuts of the loop function beyond each threshold. Bound
states appear as poles over the real axis and below threshold in the first
Riemann sheet. Resonances show themselves as poles above threshold
and in the second Riemann sheet for the channels which are open.

Over the real axis the discontinuity of the loop function is known
to be two times its imaginary part [11] so, knowing the value of the
imaginary part of the loop function over the axis, eq. (3.18), one can
do a proper analytic continuation of it for the whole complex plane:

GII
ii = GI

ii + i
p

4π
√
s
, Im(p) > 0. (3.19)

GII and GI refer to the loop function in the second and first Riemann
sheets, respectively.

Figure 3.3 shows some plots of the loop function in the complex
plane.

There are three kind of states that our model generates. A bound
state appears as a pole in the first Riemann sheet below threshold.
A resonance is associated with a pole in the second Riemann sheet
of the channels which are open. Some times a pole might appear
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Figure 3.3: Upper left: Imaginary part of the loop on the first and
second Riemann sheets superposed. Upper Right: Real part of the
loop in the first Riemann sheet. Bottom left, right are the imaginary
part of the loop in the first and second Riemann sheets, respectively
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for certain values of the subtraction constant, but while changing it
a bit the pole moves beyond a threshold and does not appear in the
appropriate Riemann sheet for this threshold. This situation generates
a cusp at threshold in the cross section and might generate a peak in
the cross section of lighter channels, but can not be associated with a
pole in the right Riemann sheet, we call this states virtual states or
cusps.

Until now our formalism worked only with stable particles, but in
some cases, in the scattering of pseudoscalars with vector mesons, one
has a ρ or aK∗ meson in the coupled channels, and these particles have
relatively large widths. The consideration of the mass distributions of
these particles can be relevant whenever thresholds are open thanks
to this mass distribution.

In order to take this into account we follow the procedure of [24,
26] and convolute the loop function with the spectral function of the
unstable particle, hence, using a new loop function:

G̃(
√
s,m,MR) =

1

N

∫ (MR+2ΓR)2

(MR−2ΓR)2
dM̃2

(−1

π

)

Im

(

1

M̃2 −M2
R + iMRΓR

)

× Ĝ(
√
s,m, M̃) (3.20)

N =
∫ (MR+2ΓR)2

(MR−2ΓR)2
dM̃2

(−1

π

)

× Im

(

1

M̃2 −M2
R + iMRΓR

)

(3.21)

In the following chapter we will comment further on this issue and
present results, for the heavy resonances, by taking into account the
finite width of the ρ, K∗ and other possible vector mesons in the cases
where the generated resonances have important coupling to channels
involving these mesons.
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Figure 3.4: Loop function convoluted with the spectral function of an
unstable vector meson. Real part on the left and imaginary part on
the right.

In figure 3.4 we show plots of the loop function convoluted with a
spectral function.
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CHAPTER4
Results

4.1 Parameters

The first parameters that we must set in our work are the meson decay
constants, fπ and fD. The fπ is a well known and measured parameter,
it is fixed by experiment and the most recent measurements fix it to√

2fπ+=130.7±0.1±0.36 MeV [27]. We will use in this work fπ=93
MeV.

The fD decay constant is known with much less precision, we use
for it the value 165 MeV. This value is in between the values measured
for the D and the Ds mesons.

Still one could in principle use also the meson decay constants for
the other pseudoscalar mesons, fK and fη, instead we want to keep the
model as simple as possible and with as few parameters as possible, so

53
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rather than introducing these other parameters we will do a statistical
study of the uncertainties in our results by varying the meson decay
constants along with some other parameters.

Other parameters which are, of course, fixed by experiment are
the meson masses. We will assume that isospin symmetry is exact
so, all particles belonging to a same isospin multiplet have the same
mass. For the pions we use mπ=137.5 MeV, for kaons mK=496 MeV
and for the etas mη=548 MeV and mη′=958 MeV. In the heavy sector
we use, for the pseudoscalars mD=1867.5 MeV, mDs=1968 MeV and
mηc=2980 MeV. The masses of the light vector mesons are: mρ=775
MeV, mK∗=894 MeV, mω=783 MeV and mφ=1019 MeV. While for
the heavy vector mesons we use: mD∗=2008.5 MeV, mD∗

s
=2112 MeV

and mJ/ψ=3097 MeV. When studying isospin breaking we introduce
the following quantities:

∆mπ=2.5 MeV, ∆mK=-2 MeV, ∆mD=2.5 MeV, ∆mK∗=-2 MeV
and ∆mD∗=1.5 MeV. In this way the masses of the members of a
multiplet split: for the charged members of a multiplet the mass will
be equal to m+∆m while for the neutral members it will be m−∆m.

Other parameters which are given by experiment are the vector
meson’s widths, in order to do the convolution of the loop function
with the spectral function of the unstable mesons. The vector mesons
which have widths larger than 1 MeV are the K∗, ρ, ω and φ. We use
for their widths the values:

Γρ= 149 MeV, ΓK∗= 50 MeV, Γω= 8.5 MeV and Γφ= 4.3 MeV.

In the next section we study the SU(3) symmetry limit of the
model, so we have to choose values for the masses of the multiplets in
this limit. We will use for the pseudoscalars:

m̄8=450 MeV, m̄3=1900 MeV and m̄1=mηc .

While for the vector mesons, we use:

m̄8∗=800 MeV, m̄3∗=2050 MeV and m̄1∗=mJ/ψ.

The parameter γ has already been introduced in the previous chap-
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ter, its value is γ =
(
m8∗
m3∗

)

, there is another SU(4) breaking parameter
that appears in the amplitudes listed in Appendix A and B that sup-
presses J/ψ exchanges in the 3 ⊗ 3̄ interaction. This parameter is

called ψ and its value is ψ =
(
m8∗
m1∗

)

. Varying these two parameters

over the whole physical allowed range has less than 5% effect over the
results.

The only parameters left to be fixed are the subtraction constants,
α, in the loops. In principle a different one could be chosen for each
channel, but instead we use for α the same value in all channels involv-
ing mesons with similar masses. We will separately fit the values of α
for the generation of the scalar and the axial resonances and, in each
case, we will use three values for α. For channels involving only light
mesons we use one (αL), another (αh) for channels with one heavy and
one light particle and a third one (αH) for channels with two heavy
particles. The use of different values for the subtraction constants, for
the heavy and for the light sectors is justified since the meson masses
in each sector set different scales.

First we fit the values of the subtraction constants so that one
known resonance in each sector is described. For fitting αh we chose
the C=1, S=1, I=0 sector. We adjusted the subtraction constant so
that the pole generated in this sector has a real part that matches
the mass of the known resonance with these quantum numbers, the
Ds0(2317) in the case of the scalar resonances and theDs1(2460) in the
case of the axial resonances. For fitting the αL we used the C=0, S=0,
I=1 sector for fitting the a0(980) in the case of the scalar resonances
and the b1(1235) in the case of the axial resonances. In the case of the
hidden charm resonances the only resonance know experimentally is
the X(3872) resonance. We obtain other two possible states which are
predictions, so we cannot be sure about their positions but we discuss
these cases in a future chapter and use experimental data in order to
analyze the hidden charm sector in more detail. We also analyze the
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Table 4.1: Values for the subtraction constants α in each model for
generating the scalar resonances.

Subtraction χ-model Model A Model B
constant

αL - -1.4 -
αh -1.15 -1.48 -1.16
αH - -1.4 -

effect that varying our free parameters has over these states.

For the scalar mesons we used two models, the chiral one of La-
grangian (2.5), extended to SU(4) and with flavor symmetry breaking
described by eq. (2.50), that we call χ-model and the phenomenologi-
cal model developed in this work by suppression of heavy vector meson
exchanges described by eq. (2.28). The χ-model we used just in the
sector C=1 to compare the results and study their model dependence.
For each one of these models the αh is fitted separately. Moreover,
for the phenomenological model we follow two prescriptions for the
coupling in front of the Lagrangian ( 1

12f2 ), in one of them we use for f
two possible values, fπ and fD depending on the mesons interacting,
and in another prescription we use only the pion decay constant, fπ.
These two prescriptions we call model A and model B, respectively.
Note, however, that model B is used in order to respect constrains
from chiral symmetry, where the interaction of pions with heavy par-
ticles (D-mesons in our case) should be governed by fπ only [1], so
this prescription is only important for the interaction of heavy mesons
with light ones (sector C=1) and thus we used this prescription only
in this sector.

The values used for the α parameters in each model and in each
sector are in Tables 4.1 and 4.2.
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Table 4.2: Values for the subtraction constants α in each model for
generating the axial resonances..

Subtraction Model A Model B
constant

αL -0.8 -
αh -1.55 -1.15
αH -1.34 -

4.2 SU(3) Symmetry Breaking

While we developed explicit SU(4) flavor symmetry breaking in our
models, the SU(3) flavor structure has been maintained and is only
implicitly broken by the different masses of the mesons with different
isospin or strangeness.

It is then possible to restore SU(3) symmetry by setting the masses
of all particles in a same SU(3) multiplet to a common value. For this
purpose we introduce the parameter x, x = 0 is the case when SU(3)
symmetry is restored and x = 1 the case we see in Nature with SU(3)
broken. The meson masses as a function of x are given by:

m(x) = m̄+ x(mphys. − m̄) (4.1)

where m̄ is the meson mass in the SU(3) symmetric limit.

All resonances belonging to the same multiplet will have the same
mass once SU(3) is restored, while its breaking removes this degener-
acy in the masses of the different isospin multiplets. So, when written
in the SU(3) basis, the non-diagonal elements of the matrix V (the
ones which represent mixing between different SU(3) multiplets) can
only be proportional to m2

π −m2
K or equal to zero.
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As we mentioned in the previous chapters, we can decompose the
interaction according to its SU(3) structure. From this decomposi-
tion we found that in the C=1 sector, for the scalars, the interaction
was attractive in the resulting antitriplet and sextet coming from the
3̄ ⊗ 8 → 1̄5 ⊕ 3̄ ⊕ 6, while for the axials, there are two attractive
antitriplets and two sextets, that come from the interaction of the
antitriplet of vector mesons with the octet of pseudoscalars and the
interaction of the antitriplet of pseudoscalars with the octet of vector
mesons. In the C=0 sector, for the scalars there are one attractive
octet and one singlet coming from the interaction of two octets and
one extra singlet coming from the interaction of an antitriplet with a
triplet. This extra singlet is a hidden charm resonance. There is also
an antisymmetric octet, but since here we are dealing with identical
particles (pseudoscalars interacting with pseudoscalars), the interac-
tion vanishes for s-wave. For the axials the situation is richer, we have
also a singlet coming from the interaction of the two octets, but now
there are two attractive octets coming from this sector, and we get
also two heavy hidden charm singlets coming from the interaction of
triplets with antitriplets.

For the scalars, in the C=0 sector, in the SU(3) limit, we generate
one bound state pole (first Riemann sheet and pole below threshold)
for a light singlet at

√
spole=835 MeV, this pole, when breaking the

SU(3) symmetry, becomes a resonance (moves to the second Riemann
sheet for the ππ channel), it can be found in the position

√
spole=(681-

144i) MeV and is identified with the σ resonance. Apart from this
pole, in the SU(3) limit we can identify a second light state that
appears as a narrow cusp at threshold (in the SU(3) limit the light
threshold is at 900 MeV). This state actually has three degenerate
members, since it is an octet. When breaking the SU(3) symmetry
the degeneracy is removed and three different states appear, for S=0,
I=0 at

√
spole=(966-10i) MeV, identified with the f0(980), for S=0,
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I=1 at
√
spole=(988-33i) MeV, identified with the a0(980) and for S=1,

I=1
2

at
√
spole=(844-124i) MeV, identified with the κ. Thus, here we

reproduce what is well known in the light sector from other works [7,
20, 22, 98]. In Figure 4.1 we show how the states move while breaking
SU(3) through the parameter x in steps of ∆x=0.2. It is interesting
to note that, although the dynamical terms in the Lagrangians are
SU(3) symmetric, the degenerate states coming from the octet have
very different paths in the complex plane only because of the different
physical masses of their constituents.

Still in the C=0 sector we obtain one more resonance that comes
from the interaction of the heavy triplet with the heavy antitriplet. In
the SU(3) limit this pole appears at

√
spole= (3750-20i) MeV while,

when using physical mases for the mesons the pole appears at
√
spole=

(3723-24i) MeV. There are no experimental claims for the observation
of a hidden charm scalar resonance in this energy region, so this state
is a prediction of our model.

For the sector C=1 we did the calculation with two different pre-
scriptions, models A and B, as mentioned before. In model A, in the
SU(3) symmetric limit, the antitriplet appears as a bound state at√
spole=2254 MeV and splits into two states, a bound state with S=1,

I=0 at
√
spole=2318 MeV, identified with the Ds0(2317) and a reso-

nance with S=0, I=1
2

at
√
spole=(2134-124i) MeV identified with the

D0(2400). The results for the antitriplet in model B are very similar:
in the SU(3) limit it appears as a bound state at

√
spole=2247 MeV

which, for mesons with physical masses, splits into a bound state with
S=1, I=0 at

√
spole=2318 and its companion, a resonance with S=0,

I=1
2

at
√
spole=(2104-108i) MeV. The sextets differ a little in the two

models. In model A the sextet appears at
√
spole=(2724-414i) MeV for

x=0 and splits into three resonances, one at
√
spole=(2717-431i) MeV

with S=1, I=1, a second one at
√
spole=(2707-434i) MeV with S=0,

I=1
2

and the third one at
√
spole=(2702-405i) MeV with S=-1, I=0. In
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Figure 4.1: Light Scalars. The octet starts from 900 MeV and the
singlet from 835 MeV. Each point is the result of varying x from 0 to
1 in steps of ∆x=0.2.
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model B the sextet is a bit lighter and therefore narrower, since it has
less phase-space for decaying, although in both models, A and B, it is
very broad. For model B the sextet is a resonance at

√
spole=(2600-

283i) MeV in the SU(3) symmetric limit, and it splits into three com-
ponents at

√
spole=(2589-300i) MeV for S=1, I=1,

√
spole=(2575-293i)

MeV for S=0, I=1
2

and
√
spole=(2579-273i) MeV for S=-1, I=0. We

show in Figure 4.2 the path of the poles while breaking the SU(3)
symmetry for the antitriplet and the sextet in model A.

We show in Tables 4.3 and 4.4 all the pole positions and their
identification. Moreover we show in Table 4.5 the results obtained
with the χ-model in order to compare the uncertainties from each
model for the SU(4) flavor symmetry breaking.

The case for the axial resonances is very similar except for the fact
that in the C=1 sector we have two antitriplets and two sextets, out
of which one state in each case appears narrow even in the case of
using physical masses. The reason for the narrow antitriplet and sex-
tet is because, as we show in more detail later when calculating the
residues of the poles, one antitriplet sextet pair is basically composed
by the interaction of light pseudoscalars with heavy vector mesons,
while the other pair is composed by the interaction of a light vector
with a heavy pseudoscalar. Although this second pair is usually heav-
ier than the first one, its couplings to the lighter channels that involve
light pseudoscalars with heavy vector mesons are usually suppressed
and therefore these resonances couple weakly to the open channels for
decaying.

We show in Figures 4.3 and 4.4 the path of the poles while breaking
the SU(3) symmetry for the antitriplets and the sextets in model A.
and in Tables 4.6 and 4.7 all pole positions and their identification for
models A and B.

In the next section we discuss the uncertainties in the results by
taking into account the uncertainties in the parameters and in the
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Figure 4.2: Charmed Scalars. The antitriplet starts from 2254 MeV
and the sextet from (2724-414i) MeV. Each point is the result of vary-
ing x from 0 to 1 in steps of ∆x=0.2.
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Table 4.3: Pole positions for the scalar resonances in model A. The
column Irrep shows the pole position in the SU(3) limit.

C Irrep S I(JP ) RE(
√
s) IM(

√
s) Resonance

Mass (MeV) [MeV] [MeV] ID

1 3̄ 1 0(0+) 2318 0 D∗
s0(2317)

2254 0 1
2
(0+) 2134 -124 D∗

0(2400)
6 1 1(0+) 2717 -431 (?)

2724 0 1
2
(0+) 2707 -434 (?)

-i414 -1 0(0+) 2702 -405 (?)

0 1 0 0(0+) 681 -144 σ
835

8 1 1
2
(0+) 844 -124 κ

900 (cusp) 0 1(0+) 988 -33 a0

narrow 0(0+) 966 -10 f0

1
3750 0 0(0+) 3723 -24 (?)
-i20
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Table 4.4: Pole positions for the scalar resonances in model B, only
used for light-heavy meson pairs. The column Irrep shows the pole
position in the SU(3) limit.

C Irrep S I(JP ) RE(
√
s) IM(

√
s) Resonance

Mass (MeV) [MeV] [MeV] ID

1 3̄ 1 0(0+) 2318 0 D∗
s0(2317)

2247 0 1
2
(0+) 2104 -108 D∗

0(2400)

6 1 1(0+) 2589 -300 (?)

2600 0 1
2
(0+) 2575 -293 (?)

-i283 -1 0(0+) 2579 -273 (?)
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Figure 4.3: Charmed axials. The antitriplet starts from 2444 MeV and
the sextet from (2536-189i) MeV. Each point is the result of varying
x from 0 to 1 in steps of ∆x=0.2.
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Figure 4.4: Charmed axials. The antitriplet starts from (2532-0.5i)
MeV and the sextet from (2700-0.5i) MeV. Each point is the result of
varying x from 0 to 1 in steps of ∆x=0.2.
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Table 4.5: Pole positions for the C=1 sector with the χ-model.
C Irrep S I(JP ) RE(

√
s) IM(

√
s) Resonance

[MeV] [MeV] ID

1 3̄ 1 0(0+) 2315 0 D∗
s0(2317)

0 1
2
(0+) 2148 -107 D∗

0(2400)
6 1 1(0+) 2428 -248 (?)

0 1
2
(0+) Cusp Broad (?)

-1 0(0+) 2410 -194 (?)

section that follows we discuss each resonance separately.

4.3 Theoretical Uncertainties

For the scalar resonances in our phenomenological model we have esti-
mated the theoretical uncertainties by allowing the parameters of the
model to vary within the physical allowed range. We do this analysis
only for the heavy mesons.

The true free parameters in our model are the α subtraction con-
stants in the loop functions, all other parameters are meson masses or
meson decay constants which are, in principle, fixed by experiment.
In chiral models, chiral symmetry is tied to the use of the function

U = e
i
√

2φ
f , which requires the use of just one f , usually fπ, in the

different amplitudes. Of course this symmetry is partially broken and
in practice one has different values of f for different mesons. For in-
stance fK and fη are about 20%-30% bigger than fπ. On the other
hand, fD = 1.7fπ and fDs = 2.24fπ. So far we have taken fπ for the
light mesons and one value for fD = 1.77fπ.

In view of this we shall vary these parameters in the calculation in
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Table 4.6: Pole positions for axial resonances in model A. The column
Irrep shows the results in the SU(3) limit. The results in brackets for
the Im

√
s are obtained taking into account the finite width of the ρ,

ω, φ and K∗ mesons.
C Irrep S IG(JPC) RE(

√
s) IM(

√
s) Resonance

Mass (MeV) [MeV] [MeV] ID

1 3̄ 1 0(1+) 2459 0 Ds1(2460)
2444 0 1

2(1+) 2311 -116 D1(2430)
6 1 1(1+) 2529 -238 (?)

2536 0 1
2(1+) 2608 (cusp) Broad (?)

-i189 -1 0(1+) 2504 (cusp) Broad (?)
1 0(1+) 2601 -0.1 Ds1(2536)

3̄ [2598] [-0.2]
2532 0 1

2(1+) 2532 -0.02 D1(2420)
-i0.5 [2517] [-13]

6 1 1(1+) 2760 -33 (?)
[-146]

2700 (cusp) 0 1
2(1+) 2830 -58 (?)

[2827] [-80]
Narrow -1 0(1+) 2760 -2 (?)

[2761] [-89]

0 1 0 0−(1+−) 915 -16 h1(1170)
1047

8 1 1
2(1+) 1119 -69 K1(1270)

1175 0 1+(1+−) 1259 -29 b1(1235)
0−(1+−) 1263 -6 h1(1380)

1 0 0+(1++) 3866 -0.003 X(3872)
3909

8 1 1
2(1+) 1225 -4 K1(1270)

1175 0 1−(1++) 1017 -90 a1(1260)
0+(1++) 1296 0 f1(1285)

1 0 0−(1+−) 3875 -25 (?)
3912
-i17
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Table 4.7: Pole positions for model B, only used for heavy-light pairs
of mesons. The column Irrep shows the results in the SU(3) limit.
The results in brackets for the Im

√
s are obtained taking into account

the finite width of the ρ, ω, φ and K∗ mesons.

C Irrep S IG(JPC) RE(
√
s) IM(

√
s) Resonance

Mass (MeV) [MeV] [MeV] ID

1 3̄ 1 0(1+) 2459 0 Ds1(2460)
2437 0 1

2
(1+) 2249 -101 D1(2430)

6 1 1(1+) 2504 -72 (?)
2500 (cusp) 0 1

2
(1+) 2599 -41 (?)

Narrow -1 0(1+) 2540 (cusp) Narrow (?)
1 0(1+) 2638 -0.2 Ds1(2536)

3̄ [2634] [-0.7]
2555 0 1

2
(1+) 2546 -0.01 D1(2420)

-i0.7 [2529] [-19]
6 1 1(1+) 2738 -2 (?)

[2740] [-67]
2690 0 1

2
(1+) 2798 -47 (?)

[2795] [-53]
-i3 -1 0(1+) 2744 -3 (?)

[2739] [-20]



70 RESULTS

order to estimate the uncertainties of the results.
Other parameters used in the model are mL and mH which appear

in the correction factors γ and ψ. These parameters should be fixed
by the masses of the vector mesons, the lowest possible value for the
light vectors being the ρ mass (775 MeV) and the highest one the K∗

mass (894 MeV), while for the heavy ones we have mD∗ = 2008.5 MeV
and mD∗

s
= 2112 MeV, but varying these parameters, in these ranges

has negligible effect over the results.
To study the theoretical errors in our model and the stability of

our results we will create random sets of values for the parameters
fD, fπ and αH in the proper physical allowed range. For each set of
parameters we look for the poles generated and calculate their residues
in the different channels. Some sets, in particular sectors, may not
generate poles in the appropriate Riemann sheet, producing instead
cusps close to some threshold, this will give us information about the
stability of the results.

We take a range for fD given by the average value between the
magnitude of this quantity for the different mesons, plus minus the
dispersion from the average, hence fD ∈ [146, 218] MeV and for fπ
values between 85 MeV and 115 MeV. For the values of the subtraction
constants, α we follow here the prescription from [99] where a natural
range for this parameter is presented, and we use this range. This
range is actually very small, less than 1% change in the absolute value
of α. The idea in [99] is to chose a scale µ and set the loop functions
of all channels in this energy scale to zero. Since the imaginary part
of a loop is different from zero if we are above the threshold, this
scale should be smaller than the smallest threshold. In this paper it is
shown that if a pole appears for values of α around this natural value
the pole generated corresponds to a truly dynamically generated state.
If, instead, on has a value of α very different from the natural value
one can show that this extra strength in the subtraction constant is
equivalent to adding to the amplitude a genuine qq̄ pole, and therefore
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the generated state would not be dominantly a dynamical state.
In the case of the resonance at C=1, S=1 we have slightly changed

this prescription in order to get better agreement with the data. Fol-
lowing the prescription in [99] we get the resonance with the mass
shifted about 50 MeV from its experimental value. So for this case
instead of using a different value of αh in each channel (that results
from the prescription in [99]) we have used one single value of αh=
-1.58, which is the approximate value obtained with the prescription
in [99] for the DK channel, in all channels. And we have used for it an
uncertainty of 3 × 10−2. Also in the case of the heavy hidden charm
resonance we have slightly changed the prescription in order to get
the pole very close to threshold. There is no known resonance with
this quantum numbers but, as we will see in chapter 5, a pole close to
threshold describes well the data for the DD̄ mass distribution in the
reaction e+e− → J/ψDD̄. In this case we have used αH=-1.3±0.15.

For each sector we generated random sets of parameters within the
ranges discussed above until there were 120 poles generated for each
resonance. Then we proceeded to calculate the average pole position
and the average residues in each channel, for these 120 sets where
a pole was generated, and we also calculated the standard deviation
from the average with:

σ2 =

∑N
i=1(X̄ −Xi)

2

N − 1
(4.2)

In equation (4.2), X̄ is the mean value of the resonance magnitude
we are calculating (pole position or residue), Xi is the value of this
magnitude for parameter set i and N is the number of sets used for the
average. This statistical study was done for the five C=1 resonances
and for the hidden charm one, since the study of these resonances is
one of the main purposes of interest in this work. The uncertainties in
the axial sector should be of the same order of magnitude. We show
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Table 4.8: Data from [27]
Resonance ID C S I Mass (MeV) Γ (MeV)

f0 0 0 0 980±10 40-100
σ 0 0 0 400-1200 600-1000
a0 0 0 1 984.7±1.2 50-100
κ 0 1 1

2
672±40 550±34

D∗
s0(2317) 1 1 0 2317.8±0.6 < 3.8

D∗
0(2400) 1 0 1

2
2403±14±35 283±24±34

2352±50 261±50

in Table 4.8 the experimental situation in the scalar sector from the
PDG [27] and in Table 4.9 the pole positions with uncertainties from
our model.

We should remark that in the C=1, S=1, I=0 sector there were 20
sets of parameters, out of 120, where there was no pole generated in
the appropriate Riemann sheet, instead we had a pronounced cusp at
the DK threshold. For the hidden charm scalar state this happened
in half of the sets generated and in all other sectors the poles were
stable for all sets generated.

In the next section we comment the results for the scalar resonances
in each sector separately and show the residues with uncertainties for
the resonances of Table 4.9, and in the section that follows we do the
same for the axial resonances.
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Table 4.9: Pole positions with uncertainties.
C Irrep S I(JP ) RE(

√
s) IM(

√
s) Resonance

[MeV] [MeV] ID

1 3̄ 1 0(0+) 2322±24 0 D∗
s0(2317)

0 1
2
(0+) 2093±43 -110±36 D∗

0(2400)
6 1 1(0+) 2766±36 -492±59 (?)

0 1
2
(0+) 2752±37 -496±61 (?)

-1 0(0+) 2751±39 -461±65 (?)
0 1 0 0(0+) 3718±10 -22±6 (?)

4.4 The Scalar Resonances

4.4.1 C=0, S=0, I=0

The model successfully generates poles which can be associated with
the known light scalar resonances. In this sector, in the low energy
region, two poles can be found in the T-matrix, one corresponding
to the f0, but with a lower mass than one expects and another one
for the σ. It is actually possible to adjust the mass of the f0 pole in
our model by increasing the αL parameter, but by doing that the a0

pole in the S = 0, I = 1 sector moves beyond the threshold at 992
MeV and becomes a virtual state, and moreover the width of a more
massive f0 decreases in our approach. One would expect that the
width of a more massive f0 increases, since more phase-space becomes
available, but one has to take into account the fact that, the closer a
pole is to a threshold, the smaller the couplings are. This is a conse-
quence of Quantum Mechanics and is a well known feature related to
the compositness condition [100, 101, 102, 103]. We will provide an
alternative and intuitive demonstration of this feature based on our
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model in Section 5.2.
Another pole is expected in this sector from the interaction of

the heavy triplet with the antitriplet, and it appears around 3.7 GeV.
One should notice that the width found for this new heavy resonance is
small if compared with the huge phase-space avaible to decay into light
hadrons. This happens because the couplings to the light channels (see
Table 4.12) are very suppressed by the dynamics of the interaction.

Close to the pole position the T-matrix can be expanded as:

Tij =
gigj

s− spole
(4.3)

where spole is the pole position and gk is the coupling of the resonance
to channel k. Therefore, calculating the residues of the pole to the
different channels it is possible to extract the values for the couplings
of the resonance to each channel. We show in Tables 4.10, 4.11 and
4.12 the couplings of the resonances to the channels in model A.

Figure 4.5 shows the absolute value of the square of the T-matrix
for this sector, as an illustration. One can clearly see in this figure the
poles of the σ and f0 resonances.

The relatively large coupling of these light resonances to the heavy
mesons, particulary to DD̄, is irrelevant since this channel is so far
away of the σ or f0 region that has no repercursion in any observable
of these resonances.

4.4.2 C=0, S=0, I=1

In this sector the model successfully generates the a0 resonance. Both
the mass and the width found for it in the model agree very well
with experimental values. Note, however that this sector was actually
used to fit αL, but fitting just this one parameter, both the width
and the mass for the a0 are in good agreement with experiment. As
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Figure 4.5: TT † for ππ-channel in C=0, S=0, I=0 sector. One can see
in this figure the poles for the σ and f0 resonances.
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Table 4.10: Residues for the pole at (641-144i) MeV in the C=0, S=0,
I=0 sector

Channel Model A
gi [MeV]

ππ 2098-2305i
KK̄ -53-635i
ηη 732-67i
ηη′ 283+18i
η′η′ 742+33i
DD̄ -4584+448i
DsD̄s -556+421i
ηcη 1766-33i
ηcη

′ 1563-295i
ηcηc 1163-178i

mentioned if we used the pole position of the f0 resonance to adjust the
parameter αL we would lose the a0 pole in the second Riemann sheet
and it would have become a virtual state. This relative instability
of the a0 resonance with respect to the parameters of the theory is
not new, it also occurs when using the inverse amplitude method for
unitarization and the potential of the lowest order chiral Lagrangian
where the a0 appears as a cusp and not a pole. The pole is, however,
regained when the information of the second order Lagrangian is used
as input in the potential [22].

Table 4.13 shows its couplings1 to the different channels.

1because of the identical particles, the ππ channel in I = 1 just contributes to
odd parity partial waves (indeed, the amplitude has a p-wave structure t− u).



THE SCALAR RESONANCES 77

Table 4.11: Residues for the pole at (966-10i) MeV in the C=0, S=0,
I=0 sector

Channel Model A
gi [MeV]

ππ 218-1006i
KK̄ -2327-161i
ηη 2132-81i
ηη′ -784-32i
η′η′ 815-74i
DD̄ 1388+610i
DsD̄s 3731+137i
ηcη 1187-215i
ηcη

′ -2051-229i
ηcηc -1003-165i

4.4.3 C=0, S=1, I=1
2

The pole generated here should be identified with the κ resonance.
This resonance, however, is a very broad one and although there is
debate on the existence of this state, there are many experiments to
support it [104, 105, 106, 107]. In Table 4.14 we show the residues
of the pole at (844-124i) MeV to the channels with the appropriate
quantum numbers.

4.4.4 C=1, S=1, I=0

The Ds0(2317) is reproduced in this work as a mixed bound state
of DK, Dsη and Dsη

′. Experimentally the observed decay channel
for this resonance is Dsπ which is, in principle, not allowed in our
approach since it is an isospin violating process, and we are not con-
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Table 4.12: Residues for the pole at (3723-24i) MeV in the C=0, S=0,
I=0 sector

Channel Model A with errors
gi [MeV] gi [MeV]

ππ -9-168i (-12±10)+i(-180±14)
KK̄ -5-48i (-5±3)+i(-49±2)
ηη 1119+308i (1078±130)+i(267±52)
ηη′ 1893+455i (1805±220)+i(401±74)
η′η′ 1389-401i (1222±210)+i(-376±161)
DD̄ 8610+2876i (8739±959)+i(2607±364)
DsD̄s 6021-768i (5904±650)+i(-813±541)
ηcη 572+767i (603±99)+i(686±148)
ηcη

′ 584+13i (561±58)+i(9±35)
ηcηc 2137+61i (2080±65)+i(56±131)

Table 4.13: Residues for the pole at (988-33i) MeV in the C=0, S=0,
I=1 sector

Channel Model A
gi [MeV]

ππ 0
KK̄ -2612-319i
πη 1701-384i
πη′ -491-1i
DD̄ -3058-563i
ηcπ -1398-267i
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Table 4.14: Residues for the pole at (844-124i) MeV in the C=0, S=1,
I=1

2
sector

Channel Model A
gi [MeV]

πK 2098-1646i
ηK 1132-595i
DsD̄ -3220+455i
ηcK 1660-202i
η′K -292+322i

sidering isospin violation until now. However if one considers isospin
violation by solving the Bethe-Salpeter equation for charge eigenstates
instead of isospin ones and considering the real masses of the mesons,
including the differences between different I3 components, one gets a
very narrow width of less than 1 keV for this resonance. Another pos-
sible source of contribution is to consider η − π0 mixing by means of
which in [54, 103, 108] one gets a width of the order of a few keV. The
width of this resonance is given as an upper bound of about 4 MeV in
[27].

The couplings of this pole to the channels are shown in Table 4.15
for the models considered in this work. Note that models A and B
differ very little from each other.

4.4.5 C=1, S=0, I=1
2

Two poles are found here, one is the antitriplet companion of the
Ds0(2317), also experimentally known and to be identified as the
D0(2400). Although the antitriplet pole generated by the model in
this sector has a width in agreement with the experimental value, the
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Table 4.15: Residues for the pole at 2318 MeV in the C=1, S=1, I=0
sector

Channel Model A Model B χ-Model with errors
gi [MeV] gi [MeV] |gi| [GeV] gi [MeV]

DK -7215 -7506 10.2 6771±898
Dsη 2945 2996 6.4 -2774±306
Dsη

′ -4103 -4137 - 3870±595
Dsηc -2053 -1244 0.5 2102±241

model fails in predicting its mass by around 150 MeV, which might
not be too serious considering that the experimental width is around
300 MeV.

Additionally another state is generated, belonging to a sextet. Here
the different models give different results. In the χ-model this reso-
nance has a smaller mass and width, but disappears as x reaches 1
because of thresholds effects, it becomes a virtual state and can be
seen as a cusp around 2410 MeV. In models A and B a pole is gen-
erated, but in slightly different positions, in model A it is around 100
MeV heavier and has a broader width accordingly.

Residues for the these two resonances are in Tables 4.16 and 4.17.

4.4.6 C=1, S=1, I=1 and C=1, S=-1, I=0

The other two states belonging to the sextet are to be found in these
sectors. However they differ in mass and width from one model to
the other. While with the χ-model these poles have mass around 2430
MeV and width about 0.5 GeV, within model B their mass is 150 MeV
larger and the widths are a little bigger, but similar, while in model
A the mass of these states are around 2700 MeV and the widths close
to 1 GeV, which would make these states completely irrelevant from
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Table 4.16: Residues for the pole at (2134-124i) MeV in model A,
(2104-108i) in model B and (2148-107i) in χ-model, in the C=1, S=0,
I=1

2
sector

Channel Model A Model B χ-Model with errors
gi [MeV] gi [MeV] |gi| [GeV] gi [MeV]

Dπ 6268-3505i 5873-3638i 8.9 (6549±90)+i(-3551±290)
Dη 3614-775i 4182-710i 1.4 (3771±226)+i(-1126±171)
Dη′ 3070-674i 3202-734i - (3344±241)+i(-961±202)
DsK̄ 4963-2528i 4698-2505i 5.7 (5323±43)+i(-2665±176)
Dηc 2836-797i 1791-494i 3.2 (5555±667)+i(-1874±338)

Table 4.17: Residues for the pole at (2707-434i) MeV in model A and
(2575-293i) in model B, in the C=1, S=0, I=1

2
sector

Channel Model A Model B with errors
gi [MeV] gi [MeV] gi [MeV]

Dπ -2370+4939i -2029+4481i (-2276±100)+i(5490±218)
Dη 3020-4312i 3012-3618i (3057±83)+i(-4419±303)
Dη′ -115+1491i 108+1277i (-122±33)+i(1584±101)
DsK̄ 2574-3388i 2680-2755i (2583±59)+i(-3340±268)
Dηc 540-108i 380-40i (1048±126)+i(-74±67)
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Table 4.18: Residues for the pole at (2717-431i) MeV in model A and
(2589-300i) in model B, in the C=1, S=1, I=1 sector

Channel Model A Model B with errors
gi [MeV] gi [MeV] gi [MeV]

Dsπ 3180-5332i 2983-4731i (3155±88)+i(-5657±295)
DK -3198+4990i -3089+4267i (-3187±89)+i(5265±316)

Table 4.19: Residues for the pole at (2702-405i) MeV in model A and
(2579-273i) in model B, in the C=1, S=-1, I=0 sector

Channel Model A Model B with errors
gi [MeV] gi [MeV] gi [MeV]

DK̄ 4613-7074i 4481-6066i (4633±144)+i(7454±499)

the experimental point of view. It is interesting to note, however, that
these are truly exotic states, since their quantum numbers cannot be
reached in the qq̄ picture. In a previous work [52] these states appear
as narrow resonances, though in [109, 110], using a similar approach
but with higher order chiral Lagrangians, these states become broader.

In Tables 4.18 and 4.19 we show the residues of these two states in
models A and B.

4.5 The Axial Resonances

4.5.1 C=1,S=1,I=1

In contrast with the scalar resonances where the sextet state becomes
very broad, the axial sextets are narrower, hence easier to be detected
experimentally. One should note also that these states are truly ex-
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Table 4.20: Residues for the pole at (2760-33i) MeV in model A and
(2739-2i) in model B, in the C=1, S=1, I=1 sector

Channel Model A Model B
gi [MeV] gi [MeV]

D∗
sπ 558+1693i 76+642i

ρDs 6482-889i 3879+346i
D∗K 566+1745i 17+601i
K∗D 7782+672i 4204+326i

Table 4.21: Residues for the pole at (2529-238i) MeV in model A, in
the C=1, S=1, I=1 sector

Channel Model A
gi [MeV]

D∗
sπ 4609-4525i

ρDs 1097-1080i
D∗K 4414-3755i
K∗D 980-954i

otics since quark models cannot generate qq̄ pairs with such quantum
numbers. We found two poles in this sector at positions (2529-238i)
MeV and (2760-33i) MeV, for model A. In model B the heavier pole is
narrower, but has similar mass, while the other pole becomes a cusp.

Tables 4.20 and 4.21 show the results of gi for the poles in this
sector.

The large coupling of the lighter state to πD∗
s and KD∗, or the

heavier one to Dsρ and DK∗ make these states qualify as roughly
quasi-bound states of these channels respectively. Note that they sep-
arate two basic configurations: heavy vector-light pseudoscalar and
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heavy pseudoscalar-light vector.
When taking into account the finite ρ and K∗ widths the resonance

at (2760-33i) MeV becomes broader, since it is very close to the K∗D
threshold, and once the K∗ acquires a width, this resonance is allowed
to decay through it. The position of this pole when considering the
vector meson width is (2761-145i) MeV in model A and (2740-67i) in
model B.

4.5.2 C=1,S=1,I=0

The two poles found in this sector have the proper quantum numbers
to be identified with the two Ds1 resonances. The first pole appears
as an exact bound state at 2459 MeV and we identified it with the
Ds1(2460) state. Experimentally the main hadronic decay channel for
this resonance is D∗

sπ which is an isospin violating decay and therefore
not taken into account by our model. Other decays for this resonance
are three body decays or electromagnetic ones, which are also not
included in our framework.

The other pole, in model A appears at (2601-0.2i) MeV and couples
mainly to the DK∗ and Dsω channels. The only open channel for it
to decay is the KD∗ channel but, because of the dynamics of the
interaction, this resonance barely couples to it. This explains the
small width of this resonance in the model, 220 KeV, despite the 70
MeV phase-space available for it to decay. We identify this pole with
the Ds1(2536) which is also observed in the decay channel KD∗ with
a small width (Γ < 2.3 MeV [27]).

Tables 4.22 and 4.23 show the values of the couplings gi for each
channel for the two poles in this sector.

Once more we see that the lighter state couples strongly to KD∗

and ηD∗
s while the second one couples strongly to DK∗ and Dsω.

Hence the decoupling into two families of heavy vector-light pseu-
doscalar and light vector-heavy pseudoscalar shows up in this sector
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Table 4.22: Residues for the pole at 2459 MeV in the C=1, S=1, I=0
sector

Channel Model A Model B
gi [MeV] gi [MeV]

K∗D -490 -263
D∗K 6871 7439
D∗
sη -4072 -4917

D∗
sη

′ 1366 1656
ωDs -756 -828
φDs 6 8
D∗
sηc 9 30

J/ψDs -308 -326

too.
The widths of the light vector mesons have no significant effects

over the resonances generated in this sector, because the mass of the
resonances are far away from the threshold of the DK∗ channel.

4.5.3 C=1,S=0,I=1
2

Here the companions of the two antitriplets and the two sextets should
be found. Note that when we refer to the SU(3) multiplet we are talk-
ing about the case when one has SU(3) symmetry. This correspond
to x = 0 in the pole trajectories. At x = 1, since SU(3) symmetry is
broken, the physical states mix the SU(3) multiplets. Yet, the study
of the trajectories allows us to trace back any pole to its origin in
the SU(3) symmetric case, and we have used this information for the
classification of states in Tables 4.6 and 4.7.

The antitriplet companion of the pole for the Ds1(2460) is the pole
located at (2311-116i) MeV that we identify with theD1(2430) because
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Table 4.23: Residues for the pole at (2601-0.2i) MeV in model A and
(2638-0.2i) in model B in the C=1, S=1, I=0 sector

Channel Model A Model B
gi [MeV] gi [MeV]

K∗D 9828-5i 10095-4i
D∗K 274+240i 193+225i
D∗
sη 74-118i 131-97i

D∗
sη

′ 618+41i 583+34i
ωDs 3574-14i 4133-9i
φDs -5012-10i -5779-11i
D∗
sηc -71-0.3i -127-0.3i

J/ψDs -3-2i 7-0.3i

of its naturally large width, since it is strongly coupled to the πD∗

channel into which it is free to decay. On the other hand the pole at
(2532-0.02i) MeV, companion of the one identified with the Ds1(2536),
has its coupling to the πD∗ channel strongly suppressed and therefore
has a very narrow width. Because of this unnatural narrow width we
are tempted to identify it with the D1(2420) although the mass of our
dynamically generated state is around 100 MeV off the experimental
value for this state. Moreover, when considering the finite widths of
the vector mesons, this pole gets a larger width, its imaginary part goes
to −13 MeV, implying a width of about 26 MeV, in fair agreement
with experiment.

As for the sextets, in model A one of the poles becomes a broad
cusp at the K̄D∗

s threshold as one gradually breaks SU(3) symmetry
through the parameter x, and the other pole emerges from a cusp into
a pole at (2830-58i) MeV. The channel to which it is most strongly
coupled is closed, the DsK̄

∗, but it also has sensitive couplings to all
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Table 4.24: Residues for the pole at (2311-116i) MeV in model A and
(2249-101i) in model B in the C=1, S=0, I=1

2
sector

Channel Model A Model B
gi [MeV] gi [MeV]

D∗π -6020+3505i -5761+3897i
ρD 573-254i 579-219i
D∗
sK 2966-2194i 2615-2255i

K∗Ds -6-46i 9+6i
D∗η 61-452i -218-60i
D∗η′ -43+146i -17-12i
ωD -820+200i -1004+290i
φD -51+106i 35+23i
D∗ηc 28+15i 116+31i
J/ψD -773-120i -1098-88i

channels into which it is allowed to decay. The consideration of the
finite width of the vector mesons increases the width of this resonance,
the pole goes to the position (2827-81i) MeV. In model B the pole
that becomes a cusp (virtual state, in model A has a lighter mass and
appears in the second Riemann sheet at (2599-41i), the other pole has
a similar mass and width to the one in model A.

The couplings of the poles in this sector to the channels are given
in Tables 4.24, 4.25, 4.26, and 4.27.

As in the former cases, the states are clearly separated into the
heavy vector-light pseudoscalar and light vector-heavy pseudoscalar
sectors.
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Table 4.25: Residues for the pole at (2532-0.02i) MeV in model A and
(2547-0.01i) in model B in the C=1, S=0, I=1

2
sector

Channel Model A Model B
gi [MeV] gi [MeV]

D∗π -34+79i -27+67i
ρD -8656-8i 9358-16i
D∗
sK 563-62i -1205-61i

K∗Ds -5401-6i 5250-11i
D∗η 662-25i -1143-26i
D∗η′ 413+9i -248+10i
ωD -684+6i 162+5i
φD 836+6i -40+6i
D∗ηc 7-3i 22-0.1i
J/ψD -19+2i 29+2i
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Table 4.26: Residues for the pole at (2599-41i) MeV in model B in the
C=1, S=0, I=1

2
sector

Channel Model B
gi [MeV]

D∗π 133-2450i
ρD 1067+1381i
D∗
sK 7527+1154i

K∗Ds 2162+442i
D∗η 4852-1491i
D∗η′ -1829+454i
ωD 121-437i
φD -1131+316i
D∗ηc 29-1i
J/ψD -86-59i
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Table 4.27: Residues for the pole at (2830-58i) MeV in model A and
(2798-47i) in model B in the C=1, S=0, I=1

2
sector

Channel Model A Model B
gi [MeV] gi [MeV]

D∗π 244+935i 72+607i
ρD -1850+2008i -1045+1618i
D∗
sK 205+1177i 189+724i

K∗Ds 6866+2012i 8340+1695i
D∗η 50+1103i -97+674
D∗η′ -402-711i -581-585i
ωD 3670-163i 3782-689i
φD -5075+130i -5287+846i
D∗ηc 206+144i 296+135i
J/ψD 7+16i 21+13i
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Table 4.28: Residues for the pole at (2760-2i) MeV in model A and
(2744-3i) in model B in the C=1, S=-1, I=0 sector

Channel Model A Model B
gi [MeV] gi [MeV]

D∗+K− -10+705i -24-727i
K∗−D+ 2737+779i 4725-202i
D∗0K̄0 10-705i 24+727i
K̄∗0D0 -2737-779i -4725+202i

4.5.4 C=1,S=-1,I=0

The two remaining exotic members of the sextet should be found in
this sector. In both approaches one of them becomes a broad cusp
at the K̄D∗ threshold when x = 1 while the other one is a narrow
resonance with pole position around (2750-i2) MeV. The couplings of
this pole are given in Table 4.28.

When taking into account the width of the vector mesons, this
resonance gets a much bigger width, of the order of 180 MeV. In this
case, and in all other sectors, when the effect of the finite width of the
vector mesons were taken into account, the only significant effect one
could observe was over the width of the resonance. The effect over the
mass of the resonances was of at most of the same order of magnitude
than the uncertainty, and the same is true for the couplings.

4.5.5 C=0,S=1,I=1
2

The light states studied in this and in the following subsections were
already investigated in other works [23, 24]. We corraborate the basic
findings of these works.

Two poles are found here coming from the two octets in the scat-
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Table 4.29: Residues for the pole at (1225-4i) MeV in model A in the
C=0, S=1, I=1

2
sector

Channel Model A
gi [MeV]

K∗π 226-724i
ρK 3661+220i
K∗η 2305-66i
K∗η′ -653+22i
ωK -684+274i
φK 737-294i
D∗
sD̄ -133+68i

D̄∗Ds 349+2i
J/ψK -11-7i
K∗ηc -15-3i

tering of the low lying pseudoscalars with the light vector mesons. In
principle one could be tempted to assign these two poles to the two
axial kaons from PDG [27], but the mass of one of these, the K1(1400)
is about 200-300 MeV off the pole positions we found and its width is
much smaller than that. With this in mind we followed the interpreta-
tion of Roca [24] that the K1(1270) should have a two pole structure.
The couplings of the two poles to the different channels are in Tables
4.29 and 4.30.

This sector is explained in more detail in [24]. The novelty here
is that, in spite of including now the heavy channels, the results are
basically unaltered compared to those of [24] where only the light
sector was used. This indicates a very weak mixing of the heavy and
light sectors.

Concerning the two K1 states it is also opportune to mention that
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Table 4.30: Residues for the pole at (1119-69i) MeV in model A in the
C=0, S=1, I=1

2
sector

Channel Model A
gi [MeV]

K∗π 2983-1545i
ρK -1069+838i
K∗η 15+101i
K∗η′ -21-25i
ωK -1337+477i
φK 1141-650i
D∗
sD̄ -573+12i

D̄∗Ds -37+37i
J/ψK 65+0.3i
K∗ηc 25-3i
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in [111] some experimental information was reanalyzed giving strong
support to the existence of these two states.

When taking into account the vector meson’s widths, the pole at
(1225-4i) MeV acquires a bigger width, it moves to the position (1220-
31i) MeV, and no important effect is seen in the other state.

4.5.6 C=0,S=0,I=1

In this sector there are also two poles coming from the two octets but,
since this is the non-strange sector, these two states have defined G-
parity and therefore cannot mix. In appendix C we define G-parity
and show the states that mix in order to form definite G-parity states.

The pole with positive G-parity we associate with the b1(1235)
resonance. The small discrepancy between the experimental width
and the value found from our theoretical model is explained since,
experimentally, some decay channels of this resonance are three or
four body decays while our model takes into account only two body
hadronic decays.

The negative G-parity pole should be identified with the a1(1260)
but here the model gives a worse description of the resonance, the mass
of the pole is smaller than expected although the huge width of the
resonance makes this a minor problem. Also the width found within
the model is very large, of the order of magnitude of the experimental
one which is estimated with large errors. Again one should note that
an important fraction of the width of this resonance could be due to
many body decays not included in the present model.

The couplings of the resonances to the channels are given in Tables
4.31 and 4.32 and they are very similar to those found in [24].

The consideration of the vector meson widths moves the pole to
the position (1253-33i) MeV, so no important effect is observed in this
case, since the pole is far away from thresholds involving the ρ or the
K∗ vector mesons.
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Table 4.31: Residues for the pole at (1017-90i) MeV in model A in the
C=0, S=0, I=1 sector and negative G-parity.

Channel Model A
gi [MeV]

K∗K̄ − c.c. 1330-1094i
ρπ -2688+1706i

D∗D̄ − c.c. 669-53i

Table 4.32: Residues for the pole at (1259-29i) MeV in model A in the
C=0, S=0, I=1 sector and positive G-parity.

Channel Model A
gi [MeV]

φπ -1521+285i
ρη 2065-347i
ρη′ -628+109i

K∗K̄ + c.c. 4375-13i
ωπ 1340-222i

D∗D̄ + c.c. -349-55i
ρηc 22+4i
J/ψπ 36+7i
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4.5.7 C=0,S=0,I=0

Five poles are found in this sector. Three have negative charge conju-
gation parity and two of them positive C-parity. In the light sector the
positive C-parity pole is associated with the f1(1285), it appears in our
model as a truly bound state, as it should, since none of its observed
decay channels is a pseudoscalar vector meson one, the possible decay
channels within the model. The results obtained here and in the other
two sectors for the light axial resonances are very similar to those ob-
tained in [24], showing that the inclusion of the heavy mesons does
not disturb the results for the spectrum in the light sector.

The heavy singlet with positive C-parity obtained at 3866 MeV is a
good candidate to be associated with the controversial state X(3872),
the fact that the mass is only 8 MeV lower than the experimental value
is not important since, as we discuss in a coming chapter, it is a matter
of tuning the subtraction constant in order to get the resonance in
the proper position. This state is interpreted as being mainly a mixed
molecule of DD̄∗+c.c. and DsD̄

∗
s−c.c., its only possible decay channel

within the model being the KK̄∗ + c.c. which is highly suppressed. In
Tables 4.33 and 4.34 the couplings of the two poles are presented. We
can see there the strong decoupling of the heavy and light sectors.

The low lying negative C-parity resonances can be associated with
the two h1 resonances. The singlet at (915-16i) MeV we identify with
the h1(1170) and, since we get it with a lower mass, our width is much
smaller than the experimental one, because our state has less phase-
space available for decay. With the octet pole at (1263-6i) MeV the
same thing happens, and we associate it with the h1(1380) despite the
smaller mass and width compared with experimental values. Apart
from these light poles we also find a heavy pole with negative C-
parity. Its position is (3875-25i) and the fact that it is a negative
C-parity state and that it has a considerable width, around 50 MeV,
makes its assignation as the X(3872) not possible. This state is a



THE AXIAL RESONANCES 97

Table 4.33: Residues for the pole at 1296 MeV in model A in the C=0,
S=0, I=0 sector and positive C-parity.

Channel Model A
gi [MeV]

K∗K̄ + c.c. 5067
D∗D̄ + c.c. 4
D∗
sD̄s − c.c. 500

Table 4.34: Residues for the pole at (3866-0.003i) MeV in model A in
the C=0, S=0, I=0 sector and positive C-parity.

Channel Model A
gi [MeV]

K∗K̄ + c.c. 5-17i
D∗D̄ + c.c. 7274-1i
D∗
sD̄s − c.c. 4857+0.3i

prediction of our model. We will talk about this state and theX(3872)
in more detail in Chapter 5. We show in Tables 4.35, 4.36 and 4.37
the couplings of these states to the possible channels.

The only pole which is sizable affected by the convolution of the
loop function with the vector meson widths is the one at (915-16i)
MeV. Taking into account the effects of the intermediate vector meson
widths in the loops moves this pole to the position (936-36i), but with
a negligible effect over the couplings.
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Table 4.35: Residues for the pole at (915-16i) MeV in model A in the
C=0, S=0, I=0 sector and negative C-parity.

Channel Model A
gi [MeV]

φη 45-23i
ωη′ -41+15i
φη′ -100+40i
ρπ 2484-1252i

D∗D̄ − c.c. 1816-828i
ωηc 111-52i
φηc 143-62i
J/ψη 30-19i
J/ψη′ 409-171i
ωη -77+45i

D∗
sD̄s + c.c. 1906-803i

K∗K̄ − c.c. -731+433i
J/ψηc -575+250i
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Table 4.36: Residues for the pole at (1263-6i) MeV in model A in the
C=0, S=0, I=0 sector and negative C-parity.

Channel Model A
gi [MeV]

φη 2194-52i
ωη′ 657-3i
φη′ -539+29i
ρπ -393+646i

D∗D̄ − c.c. -3027-425i
ωηc -189-27i
φηc -197-24i
J/ψη -79-15i
J/ψη′ -451-60i
ωη -1974+36i

D∗
sD̄s + c.c. -2556-307i

K∗K̄ − c.c. -4149-79i
J/ψηc 770+104i
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Table 4.37: Residues for the pole at (3875-25i) MeV in model A in the
C=0, S=0, I=0 sector and negative C-parity.

Channel Model A
gi [MeV]

φη -589-36i
ωη′ -1013-24i
φη′ 366+34i
ρπ 4+16i

D∗D̄ − c.c. 8312+3624i
ωηc 1310+24i
φηc -154-20i
J/ψη 1117+29i
J/ψη′ 592-3i
ωη -990-19i

D∗
sD̄s + c.c. 6210-1410i

K∗K̄ − c.c. -1-7i
J/ψηc -856+1i
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4.6 Comparison With Other Works

The light scalar resonances reproduced in this work have been thor-
oughly investigated in more sophisticated approaches and with higher
orders of the chiral Lagrangian [20, 22, 24, 34, 35, 36]. In our study
of the hidden charm states we have now used coupled channels in-
volving light and heavy pseudoscalar mesons and we find that the low
energy spectrum is not disturbed by the heavy channels and the heavy
resonances generated have small couplings to the light sector.

The open charm sector has been studied in [51, 52, 53, 54] in a
very similar framework but with different Lagrangians from ours; both
have used the same Lagrangian, and very similar parameters. The
Lagrangian in these works is based in chiral symmetry plus heavy
quark symmetry and therefore neglects the exchange of heavy vector
mesons, while the present work includes it although suppressed in a
proper way. In [52] higher order chiral Lagrangians are used in this
sector. The most important term of the Lagrangian in eq. (2.28)
for the interaction of the heavy mesons with the light ones can be
identified with the lowest order chiral Lagrangian used in [51] and
[53, 54] except that in the present work this term of the Lagrangian is
a factor 3

2
smaller. The origin of the factor 3

2
can be easily visualized

in the hidden gauge approach. The interaction of pseudoscalar mesons
comes from eq. (2.5) and from the square of Γµ in eq. (2.32), in both
cases one gets contact Lagrangians. The square of Γµ leads to the
same Lagrangian as eq. (2.5) but with a coefficient - 1

8f2 instead of 1
12f2 .

However this is not all because the explicit consideration of two VµΓµ
terms from eq. (2.32) accounting for V → PP , with an intermediate
V propagator, leads to a cancellation of the ΓµΓ

µ term in the limit of
q2

m2
V

→ 0 in the intermediate propagator [112]. Incidentally, keeping
q2

m2
V

induces the most important terms of the second order Lagrangian

of [4] tied to vector meson exchange. The approach of [51, 52, 53, 54]
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is implicitly using the vector exchange terms in the t-channel, and
hence using a Lagrangian equivalent to eq. (2.5) but with a factor

1
8f2 rather than 1

12f2 , the one which we use in the SU(3) and also

SU(4) formalisms. Another difference between this present work and
previous ones is the meson decay constant, f . In previous works it
was always set to the pion decay constant, while in the present one,
inspired by experimental measurements and lattice calculations [113]
we use a different value for the decay constant of the charmed mesons
in model A, but we used also in model B only the fπ.

In the S=1, I=0 sector the results of all works coincide and the
Ds0(2317) is well reproduced. Its antitriplet companion, theD0(2400),
is also well reproduced in the S=0, I=1

2
sector. However, in this sector

the present work differs from previous ones: while within our model,
the sextet state is extremely broad, in the works of Kolomeitsev and
Guo [51, 53, 54] a narrow state is predicted in this sector. The χ-
model we used seems to give an intermediate situation between our
work and these previous ones, it generates for the sextet states a broad
resonance although not as broad as in model A. The huge width of
these resonances within our model is also a consequence of its much
bigger mass which causes a much bigger phase space for decay into the
open channels. As mentioned, there is also a work [110] where these
states also appear as broad resonances.

Another novelty in the present work is the study of the hidden
charm sector. Here we mixed light with heavy meson pairs and con-
cluded that the heavy and light spectra have little influence in each
other. This result supports the findings for the light resonances, using
only light pseudoscalar and vector mesons as building blocks. On the
other hand we find heavy resonances, the scalar one with mass around
3.7 GeV corresponding mostly to a DD̄ state, an axial one with posi-
tive C-parity which we associated with the X(3872) and another axial
with negative C-parity to which there is no experimental counter part.
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We should also note that with a different formalism using the
Schrödinger equation with one vector-meson exchange potential, DD̄
states also appear for some choices of a cut off parameter in [55].
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CHAPTER5
The Hidden Charm Dynamically Generated

States

As we saw, the interaction of the heavy charmed mesons among them-
selves is attractive and we obtain three hidden charm resonances, one
scalar and two axials with opposite C-parity. Experimentally there
is one well established hidden charm axial resonance with positive C-
parity, the X(3872). The other two resonances our model generates
are predictions that must be confronted with experiment.

In this chapter we want to analyze the experimental data available
in order to scan for possible evidence for the observation of these
predicted states. We also want to analyze the avaible data on the
X(3872) to see whether its known properties are compatible with the
ones of our dynamically generated state.

We first analyze two reactions of Belle [77], producing DD̄ and

105
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DD̄∗ states that have an enhancement of the invariant DD̄, DD̄∗ mass
distribution above threshold. In the experimental paper by Belle these
enhancements were claimed as evidence for the existence of new states
above the threshold. We want to study this data from the point of
view that they might be indicative of the existence of a hidden charm
scalar and an axial vector meson state below DD̄ or DD̄∗ thresholds,
respectively. For that we reproduce the mass spectra from the dy-
namically generated resonances from our model and compare with the
data.

Next we study the effects of isospin breaking in the dynamical gen-
eration of the X(3872) state, since there is experimental evidence for
large isospin breaking effects in the decays of this resonance. We also
calculate the ratio of the branching fractions of the X(3872) decaying
into J/ψ with two and three pions, which has been measured experi-
mentally to be close to unity. Together with the X(3872), of positive
C-parity, we predict the existence of a negative C-parity state, for
which there seems to be no experimental evidence, but we comment
on which decay channel is more promising to observe this state.

5.1 The DD̄ and DD̄∗ mass distributions

The reactions e+e− → J/ψD(∗)D̄(∗), with different charmed meson
pairs, have been recently observed by the Belle collaboration [77]. We
study here the cases with DD̄ and DD̄∗ + c.c. pairs in the final state.
The invariant mass distributions for D pair production in these two
cases presents an important enhancement above the two meson thresh-
old, which have led to the claim of two new resonance states [77].

We should not confuse the peak presented in [77] in theDD̄∗ invari-
ant mass, peaking around 3940 MeV (∼70 MeV above threshold) with
the enhancement of the DD̄∗ mass distribution very close to thresh-
old (around 5 MeV) measured at Belle in the B → KDD̄∗ decay
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Figure 5.1: Feynman diagram for the process e+e− → J/ψDD̄

[114, 115]. This latter experiment was analyzed in [116] concluding
that this enhancement could be made compatible with the existence
of the X(3872) resonance observed in the B → Kπ+π−J/ψ decay, if
the X(3872) resonance corresponded to a virtual state. A subsequent
study in [117] realized that the conclusion of [116] could be changed
if the width of the D∗ mesons was explicitly taken into account, as a
consequence of which a scenario with the X(3872) as a bound state
was preferred. These other experimental data will be analyzed latter
on.

The reaction e+e− → J/ψDD̄ can be described by the diagram in
fig. 5.1, if one assumes that the DD̄ pair comes from a resonance.

Close to threshold the only part of this amplitude which is strongly
energy dependent is the X propagator and all other parts can be
factorized, so that we can write

T = C
1

M2
inv(DD̄) −M2

X + iΓXMX

(5.1)

if we describe the X resonance as a Breit-Wigner type resonance.

The cross section would then be given by an integral over the phase
space of the three particles in the final state:
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σ =
1

Vrel(e+e−)

me−

Ee−

me+

Ee+

∫
d3p

(2π)3

1

2EJ/ψ(p)

×
∫

d3k

(2π)3

1

2ED(k)

∫
d3k′

(2π)3

1

2ED̄(k′)

× (2π)4δ(pe+ + pe− − p− k − k′)|T |2 (5.2)

Assuming that T depends only on the DD̄ invariant mass, one can
evaluate from eq. (5.2) the differential cross section:

dσ

dMinv(DD̄)
=

1

(2π)3

m2
e

s
√
s
|−→k ||−→p ||T |2 (5.3)

where s is the center of mass energy of the electron positron pair
squared and |−→k | and |−→p | are given by:

|−→p | =
λ1/2(s,MJ/ψ,Minv(DD̄))

2
√
s

(5.4)

|−→k | =
λ1/2(M2

inv(DD̄),MD,MD̄)

2Minv(DD̄)
(5.5)

λ1/2(s,m,M) =
√

(s− (m+M)2)(s− (m−M)2) (5.6)

Where λ1/2(s,m,M) is the usual Källen function.
Since the dynamically generated states from our model are char-

acterized by poles appearing in the unitary T-matrices, the dynamics
of our approach is incorporated in the e+e− → J/ψDD̄ process by
substituting the Breit-Wigner amplitude of (5.1) by the DD̄ T-matrix
calculated from eq. (3.11). For the reaction e+e− → J/ψDD̄∗ every-
thing is done analogously using eq. (3.16) for the T-matrix.
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Belle has measured the differential cross section for J/ψDD̄, J/ψDD̄∗

and J/ψD∗D̄∗ production from electron positron collision at center of
mass energy

√
s=10.6 GeV [77]. We are going to study the first two

cases, where the hidden charm states generated by our phenomeno-
logical model could be related to. The Belle’s measurement produces
invariant mass distributions for the DD̄ and DD̄∗ that range from
threshold up to 5.0 GeV. Our model is, in principle, reliable for ener-
gies within few hundreds of MeV from the thresholds, so we are going
to compare numerically our results with the data up to 4.2 GeV.

The experiment measures counts per bin. In the case of a DD̄
pair, the bins have 50 MeV width, while for the DD̄∗ pair they have
25 MeV. To compare the shape of our theoretical calculation with
the experimental data we integrate our theoretical curve in bins of the
same size as the experiment and normalize our results so that the total
integral of our curve matches the total number of events measured in
the invariant mass range up to 4.2 GeV.

The comparison is made by the standard χ2 test. The value of χ2

divided by the number of degrees of freedom is given by:

χ2

d.o.f.
=

1

(N − 2)

N∑

1

(Ytheo − Yexp)
2

(∆Yexp)2
(5.7)

where Y is the number of counts in each bin, ∆Y is the experimental
uncertainty in each measurement and N is the total number of points.
We take N−2 for the number of degrees of freedom since we are using
two free parameters to fit the data. One is the overall normalization
and the other one is the αH parameter. Later on we shall make a fit
with a Breit Wigner form in which case we have three free parameters:
the normalization, the mass and the width, and thus N−2 in eq. (5.7)
will be replaced by N − 3.

As described in previous chapters, in the heavy sector the model to
evaluate the scattering T-matrix has one free parameter, αH which is
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the subtraction constant in the loop for channels with heavy particles
only. In the case of the scalar resonances, since there is no resonance
claimed in this energy region with these quantum numbers, we had
no data to use in order to fit this parameter, but now we are going
to vary this parameter in order to achieve the better fit possible to
the experimental data. Since we are working with the C=0 sector, we
have also channels involving only light mesons. These have negligible
influence in the pole position of the hidden charm poles, as shown in
[118] and in the previous chapter, so we leave αL constant. The values
chosen for αH correspond to the natural size [88]. In terms of an
equivalent cut off to regularize the loop functions, the value αH = −1.3
corresponds to qmax ∼850 MeV, for two D mesons in a loop. We have
taken a range of αH roughly around the values αH = −1.3 chosen for
the scalar mesons [118] and for the axial vector mesons we have taken
values slightly below αH = −1.55 which was the value taken in [119],
with these values the X(3872) is better fitted by our model as we show
below..

In table 5.1 we show results, for different values of αH , of the pole
position of the hidden charm resonance in the scalar sector, and the
value of χ2 calculated with the data from Belle, with combinatorial
background already subtracted, for all points below 4.2 GeV in the
J/ψDD̄ production. Fig. 5.2 shows plots of our theoretical histograms
compared with experimental data [77]. Note that although we are
plotting all points until 5.0 GeV, only the ones below 4.2 have been
used in the calculation of χ2 and in the normalization of the theoretical
curves.

The χ2 values obtained in table 5.1 are around 1, indicating a
good fit to the data in all curves. This is in part due to the large
experimental errors, but the clear message is that the presence of a pole
below the DD̄ threshold or a DD̄ virtual state is enough to reproduce
the observed enhancement of the cross section for this reaction in the
DD̄ invariant mass distribution above threshold. The results of table
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Table 5.1: Results of MX and χ2 for different values of αH .

αH MX(MeV) χ2

d.o.f

-1.4 3723-24i 1.21
-1.3 3735-16i 1.13
-1.2 Cusp 1.12
-1.1 Cusp 1.18
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Figure 5.2: Theoretical histograms compared with data from [77] for
DD̄ invariant mass distribution.
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Table 5.2: Results of MX and χ2 for different values of αH .

αH MX(MeV) χ2

d.o.f

-1.40 3865 3.36
-1.35 3870 4.54
-1.30 3873 5.96
-1.25 Cusp 5.92

5.1 and inspection of fig. 5.2 show some preference for values of αH=-
1.3, -1.2, the latter case corresponding to the hidden charm scalar as
a virtual state.

For the production of J/ψDD̄∗ we use the model for generating
axial resonances. In this case the resonance X in fig. 5.1 should
be identified with the X(3872) generated by our model. Note that
our predicted state with negative C-parity does not fit here, since
this experiment selects a positive C-parity state for the X. Table 5.2
shows results for MX and χ2 for different values of αH . Since the state
X(3872) is known and has a rather precise mass, we have chosen a
smaller range to vary the parameter α in order to get the mass of the
X closer to its experimental value. Fig. 5.3 compares our theoretical
results with the experimental data from Belle [77].

In this case the χ2 obtained is in all cases bigger than 3, clearly
indicating a poor fit to the data.

The peaks seen in the experiment have been fitted with Breit-
Wigner like resonances in [77], suggesting two new resonances. In order
to make the results obtained here more meaningful, we also perform
such a fit and compare the results. We take the same Breit-Wigner
parameters suggested in the experimental paper. The scalar resonance
with MX=3878 MeV and ΓX=347 MeV and the axial one with MX=
3942 MeV and ΓX= 37 MeV. We show the results obtained by fitting
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Figure 5.3: Theoretical histograms compared with data from [77] for
DD̄∗ invariant mass distribution.
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a Breit-Wigner form from eq. (5.1) in T of eq. (5.3) in figs. 5.4 and
5.5. Additionally we calculate χ2 and find χ2/d.o.f=2.10 for the DD̄
distribution and χ2/d.o.f=1.34 for the DD̄∗ distribution. The value
of χ2 for the DD̄ distribution can be improved if we take different pa-
rameters for the Breit-Wigner resonance. Taking for the fit MX=3750
MeV and ΓX=250 MeV we obtain a value of χ2/d.o.f=1.12, the same
order of magnitude than those obtained in our previous analysis as-
suming the mechanism of fig. 5.1 driven by the X(3700) scalar state.
The value of χ2 for the DD̄∗ distribution is undoubtedly better in the
case of a Breit-Wigner fit that in our analysis assuming the X(3872)
resonance as the X in the mechanism of fig. 5.1.

As a consequence of the discussion, our conclusions would be a
support for a new resonance around 3940 MeV as suggested in [77],
while for the case of the broad peak seen in DD̄, the weak case in favor
of a new state around 3880 MeV discussed in [77] is further weakened
by the analysis done here, showing that the results are compatible
with the presence of a scalar hidden charm state with mass around
3730 MeV.

5.2 Isospin breaking effects in the X(3872)

decays

The X(3872) was discovered at Belle [66] and then later was also
observed at CDFII and D0 collaborations and BaBar [67, 68, 69]. In
all these experiments the X has been discovered and observed in the
decay channel J/ψπ+π−. There is strong evidence that the dipion
generated in this decay channel comes from a ρ meson [120]. Later
on also the decays of the X into J/ψπ+π−π0 and J/ψγ have been
observed [121], this latter decay channel indicating that the C-parity
of the X is positive. The quantum numbers of the X(3872) have been
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Figure 5.4: Histograms calculated with Breit-Wigner resonance with
mass MX=3880 MeV compared to data.
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mass MX=3940 MeV compared to data.
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investigated in [122], concluding that it must correspond to JP = 1++

or JP = 2−+. Observed only on a neutral charge state it is assumed to
have isospin I = 0. Its decay into J/ψη has been investigated in [123]
but only an upper bound has been found. The non observation of the
decay J/ψη is a further evidence of the positive C-parity of the X. It
could also mean that in the particular reaction of [123] the X(3872)
was necessarily produced with positive C-parity, without ruling out
the possibility of a nearby state with negative C-parity. The existence
of two nearly degenerate X(3872) states appears in some theoretical
models [119, 124]. The most popular view about the nature of this
resonance is that it is made of DD̄∗ [74, 119, 125, 126, 127, 128], a
recent review can be seen in [129]. One of the problems faced by these
models is the ratio for

B(X → J/ψπ+π−π0)

B(X → J/ψπ+π−)
= 1.0 ± 0.4 ± 0.3 . (5.8)

Indeed, since the resonance has positive C-parity the denominator
can go via J/ψρ as supported by the experiment [120]. However, the
X(3872) state has I = 0 and then isospin is violated. On the contrary
the numerator can go through J/ψω as supported by experiment [121],
in which case there is no violation of isospin. The fact that the ratio
is around 1 in spite of the violation of isospin found a plausible expla-
nation in [74, 126], where the state was supposed to be largely D0D̄∗0

but with some coupling to both J/ψω and J/ψρ. Even if the coupling
to J/ψρ is small, as expected from isospin symmetry breaking, the
larger phase space for J/ψρ decay than for J/ψω, because of the large
width of the ρ, can account for the ratio. Although other charged
DD̄∗ components can appear in the wave function, the neutral charge
component is preferred since it is the one closest to threshold and
hence should have the largest weight. The idea is intuitive and widely
accepted, see [117]. The idea on the dominance of the neutral compo-
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nent is worth pursuing. Indeed, in [119], where a dynamical theory for
the generation of the X(3872) resonance based on the hidden gauge
approach for the vector-meson interaction was done, isospin symmetry
was kept and the masses of the charged and neutral D mesons were
taken equal. The fact that the binding energy for the D0D̄∗0 is so
small advises to revise the model to account for the mass differences
with the charged DD̄∗, which can induce isospin breaking and a dom-
inance of the D0D̄∗0 in the wave function. We address these issues
here and discuss qualitatively as well as quantitatively, the limit of
zero binding energy. We also analyze the reaction production of DD̄∗

[115].
Until now we set the masses of all mesons belonging to a same

isospin multiplet to a common value, and as a consequence our results
are always isospin symmetric. Moreover we can consider the transfor-
mation under C-parity of pseudoscalar and vector-mesons in order to
construct C-parity symmetric states:

ĈP = P̄ (5.9)

ĈV = −V̄ (5.10)

States like DD̄∗ and D̄D∗ mix up to form a positive and a negative
C-parity state. The same happens for the kaons and the Ds mesons,
as has been discussed in the previous chapter. The coupled channel
space for C=S=Q=0 splits in two, once one writes the ξij coefficients
that appear in the amplitude of eq. (3.7) in C-parity basis.

In charge basis, for positive C-parity one has the following chan-
nels: K̄∗0K0−c.c., ρ+π−−c.c., D̄∗0D0−c.c.,D∗+D−−c.c., D∗+

s D−
s −c.c.

and K∗+K− − c.c.. While for negative C-parity the channels are:
ρ+π− + c.c., K∗+K− + c.c., ρ0π0, ωπ0, φπ0, ρ0η, ρ0η′, K̄∗0K0 + c.c.,
D∗+D− + c.c., D̄∗0D0 + c.c., ρ0ηc, J/ψπ

0, ωη, φη, ωη′, φη′, ωηc, φηc,
J/ψη, J/ψη′, D∗+

s D−
s + c.c. and J/ψηc.
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If we set αH=-1.34, which is equivalent to a cut-off of 830 MeV
in the three momentum, we get two poles with opposite C-parity, the
positive one at 3866 MeV with a width smaller than 1 MeV and the
negative one at (3875-25i) MeV, which means a width around 50 MeV.
The poles appear in isospin I=0, as we determine from combining the
charge states into definite isospin states. Now while increasing the
value of αH (lowering the cut-off) the poles approach the threshold
(at 3876 MeV in the isospin symmetric case). The negative C-parity
pole touches the threshold for αH values bigger than -1.33 (cut-off of
820 MeV), while the positive C-parity one reaches the threshold for αH
around -1.185 (cut-off equivalent to 660 MeV). Once the pole crosses
the threshold it does not appear in the second Riemann sheet, it is no
longer a resonance, but becomes a virtual state. Yet a peak can be
seen in the square of the T-matrix of some channels, but can not be
identified as a pole in the second Riemann sheet of the T-matrix.

In order to investigate the isospin breaking we have defined the
following quantities:

∆mπ=2.5 MeV, ∆mK=-2 MeV, ∆mD=2.5 MeV, ∆mK∗=-2 MeV
and ∆mD∗=1.5 MeV. In this way the masses of the members of a
multiplet split: for the charged members of a multiplet the mass will
be equal to m+∆m while for the neutral members it will be m−∆m.

Now there are two D̄D∗ thresholds nearby, the neutral one at 3872
MeV and the charged one at 3880 MeV. The X(3872) state is a very
weakly D0D̄∗0 bound state and the fact that the binding energy is
much smaller than the difference between these two thresholds could
reflect itself in a large isospin violation in observables.

For simplicity let us consider, for the moment, a toy model with
only two channels, with neutral and charged D and D∗ mesons. In
this model we assume the potential V to be a 2x2 matrix:
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V =

(

v v
v v

)

, (5.11)

with v constant, which indeed is very close to the case we had before,
since the coefficients ξ for these channels are equal and close to the
threshold, in a limited energy region we may take v as constant.

In this case the solution of the scattering equation (3.11) is:

T =
V

1 − vG11 − vG22

(5.12)

where G11 and G22 are the loop function calculated for channels 1 and
2 respectively. If there is a pole at s=sR we can expand T close to
this pole as:

Tij =
gigj
s− sR

(5.13)

where gi is the coupling of the pole to the channel i. The product gigj
is the residue at the pole and can be calculated with:

lim
s→sR

(s− sR)Tij = lim
s→sR

(s− sR)
Vij

1 − vG11 − vG22
(5.14)

We can apply the l’Hôpital rule to this expression and we get:

lim
s→sR

(s− sR)Tij =
Vij

−v(dG11

ds
+ dG22

ds
)

(5.15)

If one has a resonance lying right at the threshold of channel 1 the
couplings gi will be zero, since the derivative of the loop function G11,
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in the denominator of eq. (5.15) is infinity at threshold. This is a
general property which has its roots in basic Quantum Mechanics as
shown in [101]. In figure 5.6 we show plots of the real part of the loop
function for the neutral and charged D meson channels.

It is interesting to note that eq. (5.15) for just one channel is
the method used to get couplings of bound states to their building
blocks in studies [102, 126] of dynamically generated states following
the method of the compositness condition of Weinberg [100, 130]:

g2

(

dG11

ds

)

= 1

We will come back to this issue again with the realistic model. Now,
in what follows, the arguments used do not require the toy model any
longer.

5.3 X(3872) decay to J/ψ with two and

three pions.

Suppose that the X(3872) decays through the diagram in figure 5.7.
In this figure the D mesons can be either charged or neutral. For the
isospin I=1 state with the ρ meson in the final state, the diagrams with
neutral D mesons interfere destructively with those with charged D
mesons, while in the ω case they sum up. If the vertices have the same
strength for ρ and ω production (this is the case in the framework of
the hidden gauge formalism [131, 132, 133]) the ratio of the amplitudes
will be given by the ratio of the difference between the charged and
neutral loops divided by the sum of the loops:

Rρ/ω =
(
G11 −G22

G11 +G22

)2

(5.16)
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Figure 5.7: X decay

In the isospin symmetric case, the charged and neutral loops are
equal, because these loops depend only on the masses, and therefore
this ratio would be zero because the ρ contribution would vanish (no
isospin violation).

Actually the decays X → J/ψρ and X → J/ψω are not allowed
because of phase-space, for ρ and ω with fixed masses, but can occur
when their mass distribution is considered and will be seen in the
decays X → J/ψππ and X → J/ψπππ respectively, where the two
and three pion states are the result of the decays of the ρ and ω. Hence
to measure the ratio of the X decaying to two and three pions plus a
J/ψ one has to multiply the expression in (5.16) by the ratio of the
phase-space available for the decay of a ρ to two pions divided by the
phase-space for the decay of a ω into three pions:

B(X → J/ψππ)

B(X → J/ψπππ)
=

(
G11 −G22

G11 +G22

)2

×
∫∞
0 qSθ

(

mX −mJ/ψ −√
s
)

ds
∫∞
0 qSθ

(

mX −mJ/ψ −√
s
)

ds

Bρ
Bω

(5.17)
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where Bρ and Bρ are the branching fractions of ρ decaying into two
pions (∼ 100 %) and ω decaying into three pions (∼ 89 %), θ(y) is the
Heaviside theta function and S = S (s,m,Γ) is the spectral function
of the mesons given by:

S (s,m,Γ) = −1

π
Im

(
1

s−m2 + iΓm

)

(5.18)

From the expression in eq. (5.16) one observes that the isospin
violation in the decay of the X will be proportional to the square of
the difference between the loops with charged and neutral D mesons.
Moreover, if one looks at figure 5.6 one sees that this difference is max-
imal at the threshold of the D0D̄∗0, such that the closer the resonance
is to that threshold (the smaller the binding energy) the bigger is the
isospin violation in the decay of the X. If the X is right over the
threshold, the value of Rρ/ω, with the loops calculated with dimen-
sional regularization for ρ and ω fixed masses, is:

Rρ/ω = 0.032 (5.19)

This is a measure of the isospin violation in the decay of the X,
which is only about 3% in spite of the fact that we have chosen the
conditions to maximize it. This ratio is of the same order of magnitude
as the one obtained in [128] (see eq. (36) of this paper). However, even
this small isospin breaking can lead to sizable values of the ratio of eq.
(5.17) when one takes into account the mass distributions of the ρ and
ω, which provide different effective phase spaces in this two possible
X decays. Thus, using eq. (5.17), which considers explicitly the ρ and
ω mass distributions, we find the branching ratio:

B(X → J/ψπ+π−π0)

B(X → J/ψπ+π−)
= 1.4 (5.20)
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Table 5.3: Couplings of the pole at (3871.6-i0.001) MeV to the chan-
nels (αH=-1.27 here).

Channel |gR→PV | [MeV]

π−ρ+ − c.c. 1.4

K−K̄∗+ − c.c. 8.7

K0K̄∗0 − c.c. 7.4

D−D̄∗+ − c.c. 2982

D0D̄∗0 − c.c. 3005

D−
s D̄

∗+
s − c.c. 2818

which is compatible with the value 1.0 ± 0.4 from experiment [121].

5.3.1 Couplings of the X(3872) to its constituents.

There are six channels with charm and strangeness equal to zero and
positive C-parity. We show in table 5.3 the couplings of the pole
obtained solving the scattering equation for these channels.

One can see in table 5.3 that, although there is some isospin vi-
olation in the couplings, it is very small, less than 1 %. One might
think that if the binding energy is much smaller than the difference
between the neutral and charged thresholds (8 MeV), the resonance
will be mostly dominated by the neutral channel, the one closest to
the threshold. The binding energy in the case of the pole in Table 5.3
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is 0.4 MeV. As we mentioned, in the limit that the binding energy goes
to zero, the couplings should all vanish. We show in figure 5.8 that,
indeed, the coupling of the X to D0D̄∗0goes to zero for small binding
energies, and in figure 5.9 we show that even though the difference
between the neutral and charged couplings grows for small binding
energies, they are of the same order of magnitude. The wave func-
tion of the X(3872) is, thus, very close to the isospin I=0 combination
of D0D̄∗0 − c.c. and D−D̄∗+ − c.c. and has a sizable fraction of the
D−
s D

∗+
s − c.c. state.

From figure 5.9 we notice that indeed the isospin violation in the
couplings of the X to the DD̄∗ channels is bigger for small binding
energies, but it reaches a maximum of about 1.4% which is a very
small value. We can go back to the argument that lead to eq. (5.16)
and the only difference would be that the G11 and G22 functions would
be multiplied by the D0D̄∗0 − c.c. and D+D̄∗− couplings from table
5.3, which barely affect the results obtained in eq. (5.20), since the
differences in the couplings are much smaller than those between G11

and G22. Although a D0D̄∗0 + c.c. state is proposed for the X(3872)
in [117], a formalism accounting for the charged component of this
resonance is also presented in [134]. Our results would correspond to
taking a value of the parameter γ1 much bigger than κ1(0) in size in
eq. (39b) of [134]. However, no claims for any particular value of γ1

are made in [134], where only the formalism is presented.

5.3.2 The negative C-parity state

As we already mentioned, we find a second state with negative C-
parity. Some of the 22 channels with negative C-parity have isospin
I=0 to which the resonance can decay. There are also pure isospin I=1
channels but, although the generated resonance is an isospin I=0 state,
these isospin I=1 channels will couple to it since we are considering
here some amount of isospin violation coming from the different masses
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of charged and neutral members of a same isospin multiplet.
For values of αH similar to those used in the generation of the

X(3872) (αH=-1.27), the state with negative C-parity does not appear
as a pole in the second Riemann sheet, it is a virtual state, but its
effects can still be seen in the cross sections of some channels. We
show in figure 5.10 the |T |2 plots of some channels. By taking smaller
values of αH (around -1.36) one can recover a pole below threshold
with

√
s=(3871.4-i26.2) MeV. In our previous work of [119] this state

was narrower. The reason for its relative big width in the present
work is the inclusion of the η-η′ mixing. As was explained previously
and in [135] the hidden charm dynamically generated states that we
obtain are SU(3) singlets and if one considers only the mathematical η8

without its mixing with a SU(3) singlet state η1, the open channels for
the resonance to decay are SU(3) octets and are therefore suppressed.
Only when considering also this singlet and hence the physical η and η′
states the open channels acquire a SU(3) singlet component to which
the resonance strongly couples.

The channels shown in figure 5.10 are those where there is phase-
space available for the resonance to decay and to which it couples most
strongly.

5.3.3 Lineshape of the X(3872)

Next we want to compare the results obtained from our approach with
the experiment data from [115] for B → KD0D̄∗0. For this we follow
the approach of [116, 119] where one shows that the experimental data
for dΓ/dMinv(DD̄

∗) are proportional to p|TDD̄∗→DD̄∗|2 where p is the
center of mass momentum of the D meson with Minv invariant mass.

We show in figure 5.11 plots of the dΓ/dMinv for the channels
D0D̄∗0 ± c.c. and the pure D0D̄∗0 and compare it with experimental
data from [115].

In the plots of figure 5.11 the theoretical curves have been nor-
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malized to fit the experimental data. One can clearly see that the
positive C-parity state alone describes the data while the negative C-
parity state alone does not describe it. However this experiment can
not determine whether the D0D̄∗0 (together with the D̄0D∗0 summed
incoherently) comes from a given C-parity. In the lower plot of fig-
ure 5.11 we evaluate the differential cross section for the state D0D̄∗0,
which has contribution from both C-parity states. As we can see in
the figure, the results obtained are also in agreement with the data
and, hence, in spite of the results in the middle plot of figure 5.11,
the experimental data does not rule out the existence of the negative
C-parity state.

The former discussions put the two states that we predict in a
perspective concerning the D0D̄∗0 production experiment. In what
follows we are going to do a more subtle exercise to bring some light
into a current discussion on whether the combination of the data on
X → J/ψππ andX → D0D̄∗0 reactions determine if the stateX(3872)
is a bound state or a virtual one. In what follows we are going to
consider only the contribution from the positive C-parity state. In
[117] a slightly bound state is preferred, although a virtual state is not
ruled out, while in [116] a virtual state is claimed. With our detailed
description of coupled channels, our approach is in a favorable position
to get into the debate and bring new information. Yet, to do so one
needs to introduce two new elements into consideration: the width
of the D∗0 meson and the smearing of the results with experimental
resolution. This was claimed to be relevant in [117] and [127]. We have
considered this by taking for the D∗0 width ΓD∗0=65 KeV as in [117]
and the experimental resolution ∆E=2.5 MeV. The consideration of
the width of the D∗0 is taken into account by folding the D0D̄∗0 loop
function G with the spectral function of the D∗ meson,

S(M̃) =
(−1

π

)

Im
1

M̃2 −M2
D∗ + iMD∗ΓD∗

, (5.21)
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in the calculation of the T-matrix, as done in eq. (20) of [119] and eq.
(3.20) in Chapter 3. On the other hand the result for dΓ

dMinv
is folded

with the mass distribution of the D∗ of eq. (5.21), since in the phase
space the three momentum p of the D0D̄∗0 system appears as a factor
and this three momentum depends on the mass of the D∗. The final
result is folded by a Gaussian distribution with a width of 2.5 MeV
to simulate the experimental resolution. In this way one gets strength
below the nominal threshold of D0D̄∗0 for the decay of the X(3872)
into D0D̄∗0.

With these considerations we change slightly the α parameter which
governs whether we obtain a bound state or a slightly unbound, vir-
tual state. We normalize the two invariant mass distributions to the
experimental data. The shapes alone tell us which option is preferable.

In figures 5.12 and 5.13 we show the results for the different values
of α. To the left we have the results for X → J/ψππ and to the right
those for X → D0D̄∗0. What we see is that the effect of the convolu-
tion with the D∗ width and the experimental resolution is important,
as claimed in [117, 127] and help us make a choice of the preferred sit-
uation. At simple eye view, corroborated by a χ2 evaluation, see table
5.4, the preferred combined solution corresponds to α = −1.23 for
which we have a slightly unbound, virtual state. This is the preferred
solution in [116], also not ruled out in [117].

For both reactions, producing J/ψππ and D0D̄∗0 there is more
recent data from Belle [136, 137] and BaBar [138, 139]. We have
also compared this data with our theoretical model using two cases, a
virtual state αH=-1,23 and a bound state with αH=-1.27. The plots
are in figures 5.14 and 5.15.

In the new data in the reaction producing J/ψππ the bump is
broader than in the old data, and the theoretical model do not fit well
this broader peak. To achieve a better agreement we have smeared
the theoretical curve with a broader gaussian obtaining the results in
figures 5.16. In this figure we have made plots for one virtual state and
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Figure 5.13: Theoretical results compared to data from [66, 115].
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Table 5.4: χ2 values for the fits of J/ψππ and D0D̄∗0 production. The
column to the right show the average value between the two.

χ2 χ2

α for for χ̄2

J/ψππ D0D̄∗0

-1.22 1.83 0.49 1.16
-1.23 1.26 0.50 0.88
-1.24 0.87 0.93 0.90
-1.25 0.72 2.77 1.74
-1.26 0.92 17.96 9.44
-1.27 0.92 20.31 10.61
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Figure 5.14: Theoretical results compared to data from [136, 137].
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Figure 5.15: Theoretical results compared to data from [138, 139].
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Figure 5.16: Theoretical results, convoluted with a σ= 15 MeV gaus-
sian, compared to data from [138, 139].

three possible mass values for a bound state. The better fit is the one
for the virtual state. The needed convolution with the broad gaussian
distribution (σ= 15 MeV) seems to indicate a width for the resonance
of this order of magnitude, in contrast with previous measurements
that indicated an upper bound for the width of this resonance around
3 MeV.
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CHAPTER6
Radiative Decays

In this chapter we calculate radiative decays of various vector mesons
and of some resonances and compare the results with experiment.
In the same way as in Chapter 4 we do some calculations with two
different models in order to evaluate the differences between using
different sets of parameters with fD and fπ or only with fπ.

6.1 The V → γP Decay

First we calculate the radiative decay of vector mesons into pseu-
doscalars.

As already mentioned in chapter 2, the photon couplings go through
vector mesons and the tree level diagram for the radiative decay of a
vector meson can be represented by the diagram in figure 6.1.

139
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V

P

γ

ρ, ω, φ,  J/ψ
Figure 6.1: The radiative decay of a vector meson into a pseudoscalar.

For calculating this radiative decay we need the Lagrangians in
eqs. (2.43) and (2.45). The couplings in these Lagrangians are given
by:

gV γ = −M2
V e

gPPV
(6.1)

gV V P =
3g2

PPV

4π2f
(6.2)

gPPV =
MV

2f
(6.3)

We calculate the following V → γP radiative decays:

K∗0 → K0γ (6.4)

K∗± → K±γ (6.5)
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φ → ηγ (6.6)

φ → η′γ (6.7)

φ → π0γ (6.8)

ω → π0γ (6.9)

ω → ηγ (6.10)

ρ± → π±γ (6.11)

ρ0 → π0γ (6.12)

D∗0 → D0γ (6.13)

D∗± → D±γ (6.14)

D∗±
s → D±

s γ (6.15)

J/ψ → ηcγ (6.16)

For the heavy mesons we will follow two different procedures for
the calculations first, in the V V P and V γ vertex where heavy mesons
appear we use in the couplings of eqs. (6.1)-(6.3) f = fD and MV =
mD∗ . In all other vertices we use f = fπ and MV = mρ, we call this
procedure model A. In the other procedure we use only fπ and mρ for
all couplings, this procedure is called model B. This is in analogy to
the prescriptions used in the calculation of the resonance parameters
in Chapter 4.

The amplitude for the process

V (p, ǫV ) → P (q) + γ(k, ǫγ), (6.17)

calculated from the diagram in figure 6.1, is given by:

M = −gV γP ǫµναβpµǫνV (p)kαǫβγ(k) (6.18)

where the coupling gV γP is the product of the couplings gV γgV V P times
the term,
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Table 6.1: The λV γ factors.

V λV γ

ρ0 1√
2

ω 1
3
√

2

φ −1
3

J/ψ 2
3

∑

V̂

λV V̂ PλV̂ γ
m2
V̂

the sum over V̂ is done for all possible intermediate neutral vector
mesons (V̂ = ρ0, ω, φ and J/ψ) and the λ factors depend on the
particular mesons in each vertex.

For the V γ vertex the λV γ are shown in table 6.1. The λV V̂ P factors
are shown in table 6.2.

To obtain the radiative decay width one first has to sum the am-
plitude squared over the photon polarizations and average over the
vector meson polarizations:

∑

|M|2 =
1

6
g2
V γP (m2

V −m2
P )2 (6.19)

after integrating over the two particles phase-space one obtains the
radiative decay width:

ΓV→Pγ =
1

48πm2
V

|~k|g2
V γP (m2

V −m2
P )2 (6.20)
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Table 6.2: The λV V̂ P factors.

V → V̂ P λV ρ0P λV ωP λV φP λV J/ψP

K∗0 → K0V̂ − 1√
2

1√
2

1 0

K∗± → K±V̂ 1√
2

1√
2

1 0

φ→ ηV̂ 0 0 − 2√
3

0

φ→ η′V̂ 0 0 2
√

2
3

0

φ→ π0V̂ 0 0 0 0

ω → π0V̂
√

2 0 0 0

ω → ηV̂ 0 0 − 2√
3

0

ρ± → π±V̂ 0
√

2 0 0

ρ0 → π0V̂ 0
√

2 0 0

D∗0 → D0V̂ 1√
2

1√
2

0 1

D∗± → D±V̂ − 1√
2

1√
2

0 1

D∗±
s → D±

s V̂ 0 0 1 1

J/ψ → ηcV̂ 0 0 0 2
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In this section, for the masses of the mesons, we use the exact
values from the particle data group [27]:

mπ±= 139.57 MeV, mπ0= 134.98 MeV, mρ= 775.49 MeV, mD±=
1869.62 MeV, mD0= 1864.84 MeV, mω= 782.65 MeV, mφ= 1019.45
MeV, mη= 547.85 MeV, mD∗±= 2010.27 MeV, mD∗0= 2006.97 MeV,
mDs= 1968.49 MeV, mη′= 957.66 MeV, mK±= 493.68 MeV, mK0=
497.61 MeV, mD∗

s
= 2112.3 MeV, mK∗0= 896.0 MeV, mK∗±= 891.66

MeV, mJ/ψ= 3096.92 MeV and mηc= 2980.3 MeV.

6.1.1 Results

With eqs. (6.18), (6.19) and (6.20) and tables 6.1 and 6.2, the calcu-
lation of the radiative decays of vector mesons is straight forward and
we note that in this tree level calculation there are no free parameters.

We present our results in Table 6.3 together with the experimental
value from [27] and in Table 6.4 we show results from works with quark
models [140, 141, 142], heavy quark effective theory [143] and QCD
sum rules [144] for comparison.

In the case of the radiative decay of the light mesons there is good
agreement between our results and the experimental data, except for
the case of the decay of φ to πγ which is forbidden in our approach at
tree level.

On the other hand the situation with the heavy mesons is harder
to evaluate because of the lack of experimental data. The width of
some of the charmed mesons is only estimated as an upper limit. The
width of the D∗0 meson, for example, is given as an upper limit of 2.1
MeV. In [117] using arguments of isospin and the data on the width
of the charged D∗ mesons, the radiative decay width of the D∗0 into
D0γ is calculated as equal to 25.0±6.2 KeV, which is right in between
our values evaluated with models A and B, and the same happens for
the radiative decay of the J/ψ, where model A seems to overestimate
it while model B underestimates the experimental value. In any case
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Table 6.3: Results for the radiative decays in models A and B.
V → Pγ Model A Model B Exp. [27]

[KeV] [KeV] [KeV]
K∗0 → K0γ 117 117 116.2
K∗± → K±γ 92 92 50.3
φ→ ηγ 32 32 55
φ→ η′γ 0.14 0.14 0.27
φ→ π0γ 0 0 53
ω → π0γ 764 764 757
ω → ηγ 7.7 7.7 3.9
ρ± → π±γ 77 77 67
ρ0 → π0γ 78 78 90
D∗0 → D0γ 38 18 <800
D∗± → D±γ 1.06 3.06 1.54
D∗±
s → D±

s γ ∼ 10−5 0.86 <1800
J/ψ → ηcγ 4.5 0.14 1.21
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Table 6.4: Results for the radiative decays in other works.
V → Pγ [140] [141] [142] [143] [144]

[KeV] [KeV] [KeV] [KeV] [KeV]
φ→ ηγ - - 32.8 - -
ω → π0γ - - 121 - -
ω → ηγ - - 1.77 - -
ρ± → π±γ - - 13 - -
ρ0 → π0γ - - 13 - -
D∗0 → D0γ 7.5-23.5 11.5 - 16.0±7.5 14.4
D∗± → D±γ 2 × 10−4-0.95 1.04 - 0.51±0.18 1.5
D∗±
s → D±

s γ 0.08-0.44 0.19 - 0.24±0.24 -
J/ψ → ηcγ - - 2.11 - -

our approach is the simplest one and the qualitatively agreement when
looking to the whole picture is fairly good, even more, if one realizes
that more elaborated models using sofisticated quark potentials have
very similar results to ours.

The exercise done here also shows that the uncertainties produced
by the use of fD instead of only fπ are in anyway within the intrinsic
uncertainties of our Lagrangians in general. We mean by this state-
ment that the qualitative agreement of our results when looking only
to the light mesons is comparable with the agreement in the heavy
sector using either models A or B.

6.2 The S → V γ decay

We want to study now the following reaction:

S(p) → V (q, ǫV )γ(k, ǫγ) (6.21)
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where S is a dynamically generated scalar state, V is a vector meson
and γ is a photon. The momenta of the particles are p, q and k and
they are related by energy conservation: p = q + k, moreover ǫV and
ǫγ are the polarization vectors of the vector particles and the fulfill the
Lorentz condition:

ǫV µq
µ = 0 (6.22)

ǫγµk
µ = 0 (6.23)

In a picture of the scalar mesons as dynamically generated reso-
nances one has to couple the photon to each meson component in the
coupled channel space. One has, thus, to consider the diagrams in
figure 6.2.

The two last diagrams d) and e), that only appear for the decay of
charged particles, give actually no contribution for the amplitude in
the process S → V γ, for they vanish if the scalar and vector mesons
are on-shell.

To prove this we first evaluate the loop function in these diagrams:

J(p2)pµǫV µ = i
∫

d4l

(2π)4

gPPV
(p+ l)2 −m2

1 + iǫ

× gSPP
l2 −m2

2 + iǫ
(p + 2l)µǫV µ (6.24)

Both diagrams d) and e) imply vector-scalar mixing, which ap-
pears through the longitudinal part of the vector meson propagator.
Indeed, let us consider the diagrams of figure 6.3 for the vector meson
propagator.

We have:

iD(a)(P ) = i
∑

λ

ǫµV ǫ
ν
V

p2 −M2 + iǫ
(6.25)
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Figure 6.2: The radiative decay of a scalar resonance into a vector
meson.
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µ

+µ ν
a)

b)

+     ...

γ νω

V

V S

p

p

.

Figure 6.3: Diagrams for the renormalization of the vector meson
propagator.
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D(a)(P ) =

(

−gµν +
pµpν

p2

)

1

p2 −M2 + iǫ

+
pµpν

p2M2
(6.26)

Where in eq. (6.26) we separated explicitly the propagator into its
transverse (first) and longitudinal (second) components. Analogously,
figure 6.3b provides a contribution to the vector propagator given by:

iD(b)(p) = i
∑

λ

ǫµV ǫ
γ
V

p2 −M2 + iǫ
(−i)J(p2)pγiD̃S(p)

× (−i)J(p2)pωi
∑

λ‘

ǫωV ǫ
ν
V

p2 −M2 + iǫ
(6.27)

where D̃S(p) is the propagator of the scalar particle.
One can see that the presence of pγpω in eq. (6.27) eliminates the

contribution of the transverse part of the vector meson propagator,
hence, only the longitudinal part contributes, and we obtain:

D(b)(p) =
pµpν

M4
J(p2)2 1

p2 −m2
S

(6.28)

The iteration of the last diagram of figure 6.3 and the sum of
all these terms leads to a geometrical series which renormalizes the
longitudinal part of the vector propagator and leads to:

pµpν

p2M2
→ pµpν

p2M2




1

1 − p2

M2J(p2)2 1
p2−m2

S





=
pµpν

p2M2

p2 −m2
S

p2 −m2
S − p2

M2J(p2)2
(6.29)



THE S → V γ DECAY 151

Now comes an important renormalization condition which is the
physical requirement that the longitudinal part of the vector meson
propagator does not contain a pole of the scalar meson [145, 146]. This
condition is only fulfilled if

J(p2 = m2
S) = 0. (6.30)

Next we evaluate the two terms in the amplitudes d) and e) of
figure 6.2.

−iT (d) = −ie(2q + k)µǫγµiD̃S(q)

× (−i)J(q2)qνǫV ν (6.31)

This term is zero because of the Lorentz condition on the vector
meson, qνǫV ν = 0. This was already realized and used in [103].

Next we look at the diagram which contributes to the amplitude
e) in figure 6.2:

−iT (e) = −iJ(m2
S)p

µǫV µ... (6.32)

As we can see, independently of the γV V coupling, the term T (e)

is proportional to J(q2 = m2
S), which we have shown before to be zero

due to the renormalization condition of the longitudinal part of the
vector meson propagator.

The two diagrams discussed above, together with the other dia-
grams in figure 6.2, provide a set of gauge invariant terms, as shown
explicitly in [103]. The two terms with the photon coupling to the ex-
ternal particles in the loop diagram play a role in the gauge invariant
test of the theory, as shown in [103], but they vanish in the radiative
decay amplitude, as shown above.
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The procedure to evaluate the radiative decay followed here for the
dynamically generated scalar resonances has been tested with success
in the decays φ→ f0(980)γ and φ→ a0(980)γ [147, 148, 149] with the
f0 and a0 resonances dynamically generated from the interaction of the
lowest order meson-meson chiral Lagrangian [20]. The present reaction
is the time reversal reaction, in the charmed sector, of the radiative φ
decay into a scalar and a photon. The same ideas presented here are
used in the study of the radiative decay of the f0(980) and a0(980), as
dynamically generated resonances, into γρ and γω in [150].

We shall demonstrate that, using arguments of gauge invariance,
we can overcome the evaluation of the diagram c) of Fig 6.2 and, as a
consequence, we must only evaluate the diagrams a) and b).

Let us proceed to the explicit evaluation of the diagrams. The
amplitude of the diagram a) or b) of Fig 6.2 is readily evaluated as:

−iT =
∫

d4l

(2π)4
(−i)gSPP

× i

(l + k)2 −m2
1 + iǫ

i

l2 −m2
1 + iǫ

× i

(q − l)2 −m2
2 + iǫ

(−i)eQ1ǫγν(l + l + k)ν

× (+i)gPPV ǫV µ(l − q + l)µλV (6.33)

where m1 and m2 are the masses of the upper and lower pseudoscalar
mesons in the loop diagram, eQ1 is the charge (e > 0) of the upper
pseudoscalar meson, gSPP is the coupling of the scalar resonance to
its pseudoscalar components calculated via residues in Chapter 4 and
λV gPPV is the coupling of the vector meson to the two pseudoscalars.

By using the Lorentz condition for the photon and the vector me-
son, the amplitude of eq. (6.33) is simplified and we obtain:



THE S → V γ DECAY 153

T = −igSPPeQ1λV 4gPPV ǫV µǫγν

×
∫

d4l

(2π)4

1

(l + k)2 −m2
1 + iǫ

1

l2 −m2
1 + iǫ

× 1

(q − l)2 −m2
2 + iǫ

lµlν (6.34)

Upon integration of the l variable one has the expression:

T = T µνǫV µǫγν (6.35)

and Lorentz covariance provides the most general form for T µν as:

T µν = agµν + bqµqν + cqµkν + dkµqν

+ ekµkν (6.36)

The Lorentz condition of eqs. (6.22) and (6.23) removes the con-
tributions of the b, c and e terms, such that only the a and d terms
contribute to the amplitude (note that the coefficients a, b, ... here do
not refer to the labels a,b,... of the diagrams in Fig. 6.2). In addition,
gauge invariance (which is guaranteed when all the terms in fig. 6.2
are accounted for) T µνkν=0, implies b = 0 and a+ dQ.K = 0 so,

a = −dq.k (6.37)

such that only one term, a or d is needed in the evaluation of the full
amplitude. We choose to evaluate the d term because it is finite and
only comes from the diagrams a) and b) of fig. 6.2. The procedure
outlined here has been used before in the evaluation of the φ→ γK0K̄0

decay [151, 152].
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The amplitude T is now easily written as:

T = −d(q.kgµν − kµqν)ǫV µǫγν (6.38)

The evaluation of d is straightforward following the Feynman for-
malism. We write:

1

abc
= 2

∫ 1

0
dx
∫ x

0
dy

1

(a+ (b− a)x+ (c− b)y)3
(6.39)

with

a = (q − l)2 −m2
2 (6.40)

b = l2 −m2
1 (6.41)

c = (l + k)2 −m2
1 (6.42)

Upon a transformation l = l′ + q(1 − x) − ky we are left with the
integral:

∫
d4l′

(2π)4

(

l′ + q(1 − x) − ky
)µ

(l′2 + s+ iǫ)3

×
(

l′ + q(1 − x) − ky
)ν

(6.43)

with s = q2x(1 − x) + 2q.k(1 − x)y −m2
2 + (m2

2 −m2
1)x, which shows

that the contribution to the d term comes from:

∫
d4l′

(2π)4

kµqν(1 − x)y

(l′2 + s+ iǫ)3
(6.44)
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where two powers of l′ have disappeared from the integral and hence
it is convergent. The l′ integral is also readily done following the
Feynman formalism:

∫
d4l′

(2π)4

1

(l′2 + s+ iǫ)3
=

iπ2

(2π)4

1

2

1

s+ iǫ
(6.45)

and the d coefficient is readily obtained as:

d = −gSPPeQ1λV gPPV
1

4π2

×
∫ 1

0
dx
∫ x

0
dy

(1 − x)y

s+ iǫ
(6.46)

As mentioned above, one can see, following the same procedure,
that the diagram c) in fig. 6.2 only contributes to the agµν term of eq.
(6.36) and thus we do not need to calculate it.

The finiteness of the results is also noted in [103] where the wave
function is governed by a range parameter Λ, and the results remain
finite in the limit of Λ → ∞.

One must sum coherently the contribution from the diagrams a)
and b) of figure 6.2 for all possible meson pairs to which a resonance
couples in order to obtain the d coefficient for the full radiative decay
width. Summing over the polarizations of the vector particles and
integrating the amplitude in phase space one obtains:

Γ =
1

8π

1

m2
S

|~k|2(k.q)2|d|2 (6.47)

where |~k| is photon three momentum in the rest frame of the scalar
resonance.
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Table 6.5: Coefficients λV for the coupling of the vector meson to the
pseudoscalars.

Vector Meson Channel λV

D∗
s D+K0 1

K+D0 -1

D+
s η −1/

√
3

D+
s η

′
√

2/3

D+
s ηc -1

J/ψ D+D− 1
D−D+ -1
D+
s D

−
s 1

D−
s D

+
s -1

In the decay of the Ds0(2317) the possible intermediate states are:
D+K0, K+D0, D+

s η, D
+
s η

′ and D+
s ηc. While in the decay of the

hidden charm scalar state they are: D+D− andD+
s D

−
s with the photon

coupled to any charge meson in the intermediate state. The couplings
gSPP are given in Tables 4.15 and 4.12 of chapter 4, here they have
to be used in the charge basis. The values of λV , evaluated from the
Lagrangian 2.44 are given in Table 6.5.

In Table 6.6 we show the results for the d coefficient for each in-
termediate state in the decay of the Ds0(2317).

As we can see, the largest contribution comes from theK+D0 inter-
mediate state. The D+K0 is smaller than the K+D0 since it involves
two heavy pseudoscalar propagators instead of two light ones. Next
and weaker than these two is the contribution of the D+

s η and D+
s η

′

channels, and finally the D+
s ηc channel provides a negligible contribu-

tion.

Note that the contribution from the two charged partners in the
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Table 6.6: Results
Diagram d [fm] Γ [KeV]

K+D0 0.01855 5.328
D+K0 -0.00767 0.912
D+
s η -0.00145 0.033

D+
s η

′ -0.00170 0.045
D+
s ηc 0.0003 0.001

Total 0.00802 0.996

isospin I=0 DK channel is destructive. Had the D∗
s0(2317) been an

isospin I=1 resonance, the relative couplings to the two channels would
have been opposite, making thus a constructive interference and we
would have obtained a width of 8 KeV instead of 1 KeV, a factor eight
times bigger. Furthermore, because of the destructive interference, the
effect of the D+

s η channel, which is quite small by itself, becomes rele-
vant. Indeed, if we neglect the channels with the D+

s meson, the width
obtained is Γ =1.83 KeV a factor 1.8 times bigger than when one takes
them into account. Then, one can see that the consideration of all the
coupled channels of the approach is quite relevant, which introduces
one novel element with respect to the ordinary molecular picture [103]
where only the dominant KD channel is taken into account.

The results for the X(3700) radiative decay are shown in Table
6.7. We see that this radiative decay is considerably larger than for
the Ds0(2317). In this case all the terms add constructively.

Next we perform an analysis of the uncertainties in the results. The
fact that we have obtained a very small width, because of strong can-
cellations, indicates that it should be rather sensitive to uncertainties
in the input used for the evaluation.

To evaluate the uncertainties we will follow the same procedure
used in [118]. We take a randomly generated ensemble of sets for
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Table 6.7: Results
Diagram d [fm] Γ [KeV]

D+D− -0.00466-0.00156i 9.204
D−D+ -0.00466-0.00156i 9.204
D+
s D

−
s -0.0015+0.00019i 0.871

D−
s D

+
s -0.0015+0.00019i 0.871

Total -0.01232-0.00273i 60.707

the input parameters within a physical allowed range and calculate
the radiative decay for each set of parameters in the ensemble. The
uncertainties in the results are then given by the standard deviation
from the mean value calculated:

σ2 =

∑N
i=1(Γ̄ − Γi)

2

N − 1
(6.48)

Γ̄ =
1

N

N∑

i=1

Γi (6.49)

Since the radiative decay of the Ds0(2317) is very small and the
uncertainties are of the same order of magnitude, we will separately
calculate the standard deviation above and under the mean value. The
parameters will be generated within the ranges discussed in chapter
4:

MV = 2050 ± 50 MeV

fD = 182 ± 36 MeV

fπ = 100 ± 15 MeV

mDs0(2317) = 2322 ± 24 MeV
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gDs0(2317)→DK = −4788 ± 635 MeV

gDs0(2317)→Dsη = 2774 ± 306 MeV

gDs0(2317)→Dsη′ = −3870 ± 595 MeV

gDs0(2317)→Dsηc = −2102 ± 241 MeV

mX(3700) = 3718 ± 10 MeV

gX(3700)→D+D− = 6179 ± 678 + i(1843 ± 257) MeV

gX(3700)→D+
s D

−
s

= 4175 ± 460 − i(575 ± 382) MeV

When we do the exercise forN=120 randomly generated parameter
sets, we obtain for the decay of the Ds0(2317):

ΓDs0(2317) = 1.041+0.742
−0.407 KeV (6.50)

This value has more uncertainties but within errors it is compatible
with the one found in [153] of Γ= 0.475+0.831

−0.290. The main difference
between this published paper and the present one is the use of the
physical states η, η′ and ηc instead of the mathematical ones. So in
the structure of the resonance there is one extra channel, the Dsη

′.

For the decay of the X(3700) into J/ψγ we obtain:

ΓX(3700) = 49.4+15.7
−11.2 KeV (6.51)

Here the result differs even more from the one published in [153]. The
reasons are the inclusion of extra channels that slightly changes the
structure of the resonance and therefore the couplings and the mass
of the resonance that has been taken closer to threshold in the present
calculation and increases the available phase-space for the decay.
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6.3 The radiative decay of ψ(3770) into

the predicted scalar state X(3700)

The radiative decay ψ(3770) → γX(3700) may be a possible and ac-
cessible way to observe the predicted state X(3700). This radiative
decay is the time reversal reaction from the S → γV discussed above.
We are following here the same steps as before for the evaluation of the
radiative decay width, but here we are also going to consider diagrams
with anomalous couplings, following our approach in [135].

We are going to consider the following radiative decay:

ψ(P, ǫ(P )) → X(Q) + γ(K, ǫ(K)) (6.52)

where ψ is the ψ(3770) and X is the dynamically generated resonance
X(3700).

In the reaction (6.52) one has two independent four momenta since
P = Q+K. We chose to work with P and K. Moreover both vector
particles fulfill the Lorentz condition:

Pµǫ(P )µ = 0 (6.53)

Kµǫ(K)µ = 0 (6.54)

The amplitude for the decay in (6.52) will be given by

iM = iǫ(P )µǫ(K)νTµν , (6.55)

and since the problem has two independent four momenta, by Lorentz
invariance one may write

Tµν = agµν + bPµPν + cPµKν + dPνKµ + eKµKν . (6.56)
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Now one can realize, as in the previous reaction, that by means of the
Lorentz condition (6.53),(6.54) the terms with coefficients b, c and e
will not contribute to the radiative decay amplitude.

Applying the gauge condition (KνTµν = 0) to the expression in
(6.56) one obtains that the two remaining coefficients are related: a =
−dK.P , so one needs to calculate only one of them in order to obtain
the full gauge invariant amplitude for the process. We are going to
calculate the d term, which comes from only one diagram, illustrated
in figure 6.4. From the propagator structure of the loops it is easy to
see that other diagrams, required by gauge invariance, like those with
two intermediate pseudoscalar mesons and the photon coupled to the
vertices, do not have a term in KµPν [152, 154]. In the figure m1 and
m2 are the masses of the charged mesons to which the X(3700) can
couple, we will consider only the D+D− and D+

s D
−
s channels, since the

other charged channels to which it couples have negligible couplings
compared to these ones, see table 4.12.

Given the basic couplings of ψ(P ) → D+(q)D−(P − q):

iMψ→D+D− = −igψǫ(P )µ(q − P + q)µ, (6.57)

of X(3700) to PP :

iMX→PP = igX , (6.58)

and of the photon to PP :

iMγ→PP = −ieǫ(K)ν(q + q −K)ν , (6.59)

for a positive charge pseudoscalar meson, with e the modulus of the
electric charge, the amplitude for this process is given by:
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P, εψ

K, εγ

m1

m1

m2
gx

gψ

X(3700)

ψ(3770)

γ

Q

q−K

P−q

q

e

Figure 6.4: Diagram that contains the d term.
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iM = −4gψgXeǫ(P )µǫ(K)ν
∫

d4q

(2π)4
qµqν

× 1

(P − q)2 −m2
2

1

q2 −m2
1

1

(q −K)2 −m2
1

(6.60)

Using Feynman parameterization one gets:

1

abc
= 2

∫ 1

0
dx
∫ x

0
dy

1

(a+ (b− a)x+ (c− b)y)3
(6.61)

a = (P − q)2 −m2
2 (6.62)

b = q2 −m2
1 (6.63)

c = (q −K)2 −m2
1 (6.64)

T (fig6.4)

µν = i8gψgXe
∫ 1

0
dx
∫ x

0
dy
∫

d4q′

(2π)4

× (q′ + yK)µ(q
′ + (1 − x)P )ν

(q′2 + s+ iǫ)3
, (6.65)

where in the last equation we have made a change of variables q =
q′ + (1 − x)P + yK and we have defined s:

s = (1 − x)(xm2
ψ −m2

2 − 2yP.K) − xm2
1 (6.66)

Now we can identify the d term in the expression of equation (6.65)
and perform the q′ integral.

∫ d4q′

(q′2 + s+ iǫ)3
=

iπ2

2

1

s+ iǫ
(6.67)

The coupling of the photon to the other particle (m2 in figure 6.4)
gives, in the present case, an identical contribution since D+ and D−
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have opposite signs and equal mass and the same occurs for D+
s D

−
s .

Hence for each of these two channels we obtain:

d = −gψgXe
2π2

∫ 1

0
dx
∫ x

0
dy
y(1− x)

s + iǫ
(6.68)

and we must sum this expression for the two channels D+D− and
D+
s D

−
s using the coupling gψ to each channel that we evaluate below,

and gX which appears in Table 4.12.
With the d term one can calculate the a term and with these two

terms the full gauge invariant amplitude M for the radiative decay.
Making an average over the possible polarizations of the ψ(3770) state
of the absolute value squared of this amplitude, summing over the
possible photon polarizations and integrating over phase space, one
obtains the radiative decay width:

Γψ→Xγ =
|~k|

12πm2
ψ

(P.K)2|d|2, (6.69)

where |~k| is the three momentum of the photon in the rest frame of
the ψ(3770).

There is still one parameter to be calculated which is the coupling
of the vector ψ(3770) to the two possible channels.

At tree level the decay width of a vector meson into two pseu-
doscalars is given by:

ΓV→PP =
1

8πM2
V

4

3
g2p3, (6.70)

where g is the V PP coupling and p is the momentum of either pseu-
doscalar in the final state for the vector at rest. The total decay width
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of the ψ(3770) is 25 MeV where 36% of this width is coming from the
D+D− final state, according to [27]. Using 9 MeV for Γ in eq. (6.70)
one obtains 11.7 for the value of g.

The ψ(3770) is mostly regarded as a 1D excitation of the cc̄ quarks
[155] (see also quark model review section of [27]), although its S-
D mixing nature is still under debate. In this work we determine
empirically the coupling of ψ(3770) toDD̄ from its partial decay width
and we assume the flavor dynamics of its coupling to DD̄ and DsD̄s to
be the same as for the J/ψ. Yet, the dominance of the DD̄ loop in the
evaluation render this latter point not too relevant. This guarantees
that the coupling of ψ(3770) toD+D− and toD+

s D
−
s , which are needed

in the loop of figure 6.4, are equal, like in the case of J/ψ.
With the expressions in eqs. (6.68) and (6.69) it is straightforward

to evaluate the radiative decay width of the ψ(3770) into the X(3700)
resonance.

Applying the expressions in (6.68) and (6.69) one obtains for the
radiative decay width of the ψ(3770) into the X(3700):

Γψ→Xγ = 0.65 KeV. (6.71)

Taking into account the finite width of the ψ(3770) in the evalua-
tion of this radiative decay has less than 10% effect in the result, as
will be shown latter on.

The value in (6.71) corresponds to a branching fraction of:

B(ψ(3770) → X(3700) + γ)

B(ψ(3770) → anything)
= 2.6 × 10−5 (6.72)

The branching ratio is of the order of magnitude of the φ →
a0(980)γ or φ→ f0(980)γ decays [156, 157], which proceed with sim-
ilar loops but involving kaons instead of D mesons [147, 149].
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P, εψ

m2
gx

gψ

m1

K, εγ
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Figure 6.5: Diagram with anomalous coupling.

In the study of the radiative decay of scalar mesons into vector
mesons, and a photon of [154], similar to the present case exchanging
the vector and the scalar, the contribution of intermediate channels
with vector mesons, involving anomalous couplings was found non
negligible. In what follows we take these terms into consideration.

We want to evaluate the diagrams of figure 6.5 where we need
the couplings V V P and V γ that we obtain from the Lagrangians in
[93, 154] extending them to SU(4), as discussed in Chapter 2:

LV γ = −gV γAµTr(QV µ) (6.73)

LV V P = gV V P ǫ
µναβTr(∂µVν∂αVβΦ) (6.74)

where the couplings are given by:
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gV γ = 4f 2egPPV (6.75)

gV V P =
3g2

PPV

4
√

2π2f
(6.76)

gPPV =
MVGV√

2f 2
(6.77)

For obtaining the ψD∗D̄ coupling once again we make use of the
argument that the ψ has the same flavor dynamics of the J/ψ and
assume that the following relation holds:

gψD∗D̄

gψDD̄
=

gJ/ψD∗D̄

gJ/ψDD̄
(6.78)

with this input the expression for the amplitude of the diagram of
figure 6.5 is given by:

iM = gXgV V P g
′
V V P

gvγ
M2

V

∫
d4q

(2π)4
ǫµναβǫργδβ

× Pµǫ(P )νqαqρKγǫ(K)δ
1

q2 −m2
1

× 1

(P − q)2 −m2
2

1

(q −K)2 −m2
3

(6.79)

the numerator can be written in the form:

ǫ(P )µǫ(K)ν(P.qKµqν +K.qqµPν − q2KµPν

−P.Kqµqν) (6.80)

where in eq. (6.80) we have dropped terms proportional to gµν since
they will not contribute to the d term. The first three terms in eq.
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(6.80) give a divergent contribution proportional to 1
2
q2KµPν . We

will isolate this divergence and add and subtract some terms to the
expression in order to work out this divergent term. The numerator
can be written as:

ǫ(P )µǫ(K)ν

(

P.qKµqν − P.Kqµqν +K.qqµPν

− 1

2
q2KµPν − q.KKµPν −

1

2
m2

3KµPν

− 1

2
KµPν

(

(q −K)2 −m2
3

)
)

(6.81)

the divergences in the first six terms cancel among them and the di-
vergent term (last term in eq. (6.81)) can now cancel one of the three
propagators in the amplitude and will be proportional to the loop
function, G(P 2) of [118], while the convergent part can be calculated
following the same steps as before, doing the Feynman parameteriza-
tion and evaluating the d4q′ integral. This type of separation of terms
was done in [154] and is rather intuitive. It is not a unique prescrip-
tion, but it was shown in [154] that other methods of regularization
give practically the same result. The resulting amplitude is:

iM = iǫ(P ).Kǫ(K).P (dconv + ddiv) (6.82)

dconv = −gXgV V P g′V V P
gvγ
M2

V

1

32π2

∫ 1

0
dx
∫ x

0
dy

× (1 − x)2P 2 − 2(1 − x)P.K −m2
3

s+ iǫ
(6.83)

s = (1 − x)(xP 2 −m2
2 − 2yP.K) + (m2

1 −m2
3)y

− xm2
1 (6.84)

ddiv = −gXgV V P g′V V P
gvγ
M2

V

1

2
G(P 2, m1, m2) (6.85)
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the explicit expression for G(P 2, m1, m2) can be found in equation
3.13, it is calculated with dimensional regularization, and for the sub-
traction constant we use the value of αH .

We can also take into account the fact that the X(3700) is not a
resonance of the Breit-Wigner type and has a finite width. To take
this fact into account we will convolute the radiative decay width with
the imaginary part of the T-matrix that generates the X(3700):

Γψ→Xγ =

∫ ΓX
−ΓX

dM2
X( − Im(TDD̄))Γ(MX)

∫ ΓX
−ΓX

dM2
X( − Im(TDD̄))

(6.86)

where ΓX is the width of the X resonance and TDD̄ is the T-matrix
for the scattering of two pseudoscalars in s-wave in the channel DD̄.

From the expression in (6.86) it is possible to calculate the photon
spectrum:

dΓ

dEγ
= 2

√
s

( − Im(TDD̄))Γ(MX)
∫ ΓX
−ΓX

dM2
X( − Im(TDD̄))

(6.87)

We show in figure 6.6 some plots of the spectrum plotted against
the photon energy and against MX . The peak is more clearly seen if
the spectrum is divided by the photon energy since, as one can see from
eq. (6.69), the photon momentum appears linearly in the phase-space
of the radiative decay width.

Now let‘s discuss the results. In table 6.8 we show results for
the diagram in figure 6.4 only, for different values of the subtraction
constant α.

Next we discuss the effects of the anomalous terms and width of
the X(3700) in the results. In table 6.9 we compare results for the
radiative decay obtained previously with results where the anomalous
diagrams are taken into account and by convoluting the radiative de-
cay width with the X(3700) width.
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Figure 6.6: Spectra of X masses (upper panel) and of photon energy
(lower panel). The figures on the right are obtained by dividing the
spectrum by the photon momentum to correct for phase-space.
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Table 6.8: Results for different pole positions of the X(3700) reso-
nance. The value in the Eγ column corresponds to the photon mo-
mentum.

αH
√
spole [MeV] gD [GeV] gDs [GeV] Eγ [MeV] Γ [KeV]

-1.40 3702-i27 8.06+i1.29 7.83-i1.34 69.35 1.93
-1.35 3713-i21 6.52+i1.54 6.39-i1.06 58.54 0.99
-1.30 3722-i18 5.96+i1.69 5.90-i0.87 49.67 0.65
-1.25 3730-i15 5.39+i1.91 5.42-i0.60 41.77 0.43

Table 6.9: Results for different pole positions of the X(3700) reso-
nance. The column ΓPP shows the previous results. The column
ΓPP+anom shows results taking into account the anomalous diagrams
and the last column shows results by convoluting the radiative decay
with the width of the X resonance.
αH

√
spole [MeV] ΓPP [KeV] ΓPP+anom [KeV] Γconvo [KeV]

-1.40 3702-i27 1.93 1.99 1.97
-1.35 3713-i21 0.99 1.01 1.09
-1.30 3722-i18 0.65 0.67 0.79
-1.25 3730-i15 0.43 0.43 0.55
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We should note that the relative contribution obtained now for the
anomalous terms is much smaller than in the case of [154]. In [154] in
the case of f0(980) → ργ, ωγ the anomalous terms proceeded mostly
via intermediate PP states, ππ, πη rather than KK̄ to which the f0

couples most strongly (see table V of [154]). In this work the role of the
f0 is played by the X(3700) and the role of KK̄ by DD̄. By analogy
one might expect the anomalous terms to proceed mostly via PP terms
with light mesons to which the resonance couples very weakly, which
would explain why the anomalous terms are so unimportant here.

The results including a vector meson and a pseudoscalar in the
loops give us some confidence that other possible intermediate states
like D∗D̄∗ or D∗

sD̄
∗
s will give a small contribution. Another fact sup-

porting this is that in a recent paper dealing with the interaction of
vector mesons within the hidden gauge formalism [132, 158] one finds
that the V V states are rather decoupled from PP states.

We have also calculated the uncertainty in the radiative decay by
taking into account the uncertainty in the parameters of the calcu-
lation. To do that we have followed the same procedure as in the
previous Chapters and in [118, 153]. We produce sets of randomly
generated parameters within a reasonable range and for each set we
calculate the radiative decay width. Using the results for each set we
calculate the mean value and the standard deviation:

Γ̄ =
1

N

N∑

i=1

Γi (6.88)

σ2 =
1

N − 1

N∑

i=1

(Γ̄ − Γi)
2 (6.89)

where N is number of sets generated.
In this statistical study we have calculated the contributions com-

ing from the loops in figures 6.4 and 6.5. We used 50000 sets of
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randomly generated parameters in the ranges given below:

fD = (182 ± 36) MeV (6.90)

fπ = (100 ± 15) MeV (6.91)

gψDD̄ = 11.7 ± 2.0 (6.92)

αH = −1.3 ± 0.15 (6.93)

MX = (3715 ± 15) MeV (6.94)

gXDD̄ = ((6.7 ± 1.5) + i(1.6 ± 0.3)) GeV (6.95)

gXDsD̄s = ((6.5 ± 1.3) − i(1.0 ± 0.4)) GeV (6.96)

The final result obtained, with its uncertainty from the uncertain-
ties of all these parameters, given by eq. (6.89), is:

Γψ→Xγ = (1.05 ± 0.41) KeV (6.97)

The fact that this range seems a bit smaller than that of tables 6.8
and 6.9 is a consequence of the definition of σ in a Gaussian distribu-
tion. There is a possibility to obtain a value for Γ outside the range
given by eq. (6.97) but with low probability.

The feasibility of the experiment relies upon the statistics of ψ(3770)
production. For example, according to [159, 160] BEPC-II, in Bei-
jing, is expected to have 3.8 × 107 ψ(3770) events in one year of run,
which would correspond to more than 1000 events into X(3700)γ for
Γψ→Xγ=1.00 KeV, with the photon energy peaking around 50 MeV.
For different values of the X(3700) mass the photon peak position
changes and so does the rate, but in all cases disregarding technical
problems that are beyond our reach, the statistics of one year is far
more than sufficient to determine this peak with the required preci-
sion. The photon energy in this reaction is rather low, and there may
be much background in the experiment making the identification of
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the peak difficult. To help identifying this peak it could be advanta-
geous to look for events where η or η′, or better a pair of them, are
produced with high momentum, since the X resonance should decay
mainly through these channels (see table 4.12).

To further support our claim we would like to quote that CLEO
[45] has reported the observation of the ψ(3770) decay into γχc0(1P )
which has a decay width of 172 KeV, about two orders of magnitude
bigger than our results for γX(3700). Since BEPC-II will have two
orders of magnitude more statistics than CLEO, the measurement that
we suggest seems to be at reach.



CHAPTER7
Overview and Conclusions

We studied the dynamical generation of scalar and axial resonances
by looking for the poles in the scattering T-matrix of pseudoscalars
with pseudoscalars and pseudoscalars with vector mesons. For the in-
teraction Lagrangian we first constructed a SU(4) flavor symmetrical
Lagrangian for the interaction of the 15-plet of pseudoscalar mesons
among themselves and with the 15-plet of vector mesons. The sym-
metry was broken down to SU(3) by suppressing exchanges of heavy
vector mesons in the implicit Weinberg-Tomozawa term. The suppres-
sion of these terms is justified in the vector meson dominance picture,
where the interactions are seen as driven by vector meson exchanges.
From the Lagrangian, tree level amplitudes were evaluated, projected
in s-wave and collected in a matrix for the various sectors and channels.
This matrix, transformed to an isospin basis, was used as kernel to
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solve the scattering equation, which provides the unitarized T-matrix
for the different channels in the coupled channel space.

The SU(3) structure of the potentials was investigated. For each
two interacting multiplets of SU(3) it was possible to know whether
the interaction was attractive, so that it could generate a pole, or re-
pulsive. In some cases the interaction could even vanish. The different
sectors (scalar and axial) show a similar structure, but the axial sec-
tor is doubled in relation to the scalar one, because of the possibility
to differentiate between the pseudoscalar and vector multiplet in the
irrep products.

In the C=2 sector there was no attractive interaction. For C=1 the
interaction was attractive in the antitriplets and in the sextets coming
from the 3̄ ⊗ 8 interactions. So five resonances were expected for the
scalars while ten could in principle be generated in the axial sector,
the ones coming from the antitriplet could be associated with known
experimental states, like the Ds0(2317) or the Ds1(2460) and their
non-strange companions, while the sextet resonances are predictions
of the model. As for the resonances without explicit charm quantum
number one had two attractive singlets for the scalars, the light one
identified with the σ meson and the heavy one being a prediction of
the model for the existence of a heavy hidden charm scalar resonance.
In the axial sector there were three singlets, a light one identified with
the h1(1170) and two heavy ones with opposite C-parity, the positive
one associated with the X(3872) and the negative one being another
prediction of the model. Finally the model generates one scalar octet
and two axial ones, all of them identified with the experimentally
known low lying scalar and axial meson resonances.

Resonances were identified as represented by poles in the complex
T-matrix. For the scalars four light resonances were dynamically gen-
erated, three coming from an octet and another one from a singlet.
These resonances are naturally identified with the light scalar mesons,
κ, a0(980), f0(980) and σ, the first three coming from the octet and
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the σ from the singlet. These resonances have been thoroughly inves-
tigated in more sophisticated approaches and with higher orders of the
chiral Lagrangian [20, 22, 34, 35, 36], but in our study of the hidden
charm states we have now used coupled channels involving light and
heavy pseudoscalar mesons and we find that the inclusion of the heavy
channels do not disturb the spectrum of the light resonances, which is
by itself an interesting result.

In the open-charm sector we found five poles. The two poles com-
ing from the antitriplet we identified with the two scalar charmed res-
onances already observed experimentally [44, 46, 47], the Ds0(2317)
and the D0(2400). As for the other three poles, coming from the sex-
tet, their widths within our framework are too large, making them
irrelevant from the experimental point of view. This sector has been
studied by other authors [51, 52, 54] in a very similar framework but
with slightly different Lagrangians from ours; both have used the same
Lagrangian, and very similar parameters. The Lagrangian in these
works, based on heavy quark symmetry, neglects exchange of heavy
vector mesons while the present work includes it although suppressed
in a proper way. In [52] higher order chiral Lagrangians are used in
this sector. The term of our Lagrangian in eq. (2.28), containing the
interaction of light and heavy mesons and not suppressed by the fac-
tor γ can be identified with the lowest order chiral Lagrangian based
on heavy quark symmetry used in [51] and [54] except that in the
present work this term of the Lagrangian is a factor 3

2
smaller, we

could clarify this difference within the hidden gauge framework. An-
other difference between this present work and previous ones is the
meson decay constant, f . In previous works it was always set to the
pion decay constant, while in the present one, inspired by experimen-
tal measurements and lattice calculations we use a different value for
the decay constant of the charmed mesons, in our model A, while
in model B we stick to the approach of other authors and use only
fπ. In the S=1, I=0 sector the results of all works coincide and the
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Ds0(2317) is well reproduced. Its antitriplet companion, theD0(2400),
is also well reproduced in the S=0, I=1

2
sector. However, in this sector

the present work differs from previous ones: while within our model,
the sextet state is extremely broad, in the works of [51, 52, 54] narrow
states are predicted in this sector though following a similar framework
broader states are also found in [110]. The Lagrangian we used in our
χ-model seems to give an intermediate situation between the results
from our model A and the results in these previous works, it generates
for the sextet states a broad resonance although not as broad as in
model A. The huge width of these resonances within our model is also
a consequence of its much bigger mass which causes a much bigger
phase-space for decay into the open channels, but the main cause of
the larger width are the use of different meson decay constants for
light and heavy mesons, and to a smaller extend the constant contact
mass term included in our Lagrangian.

Another novelty of our work in comparison to previous ones, is the
inclusion of the hidden charm sector, where our model also generates
a pole. This resonance is a prediction and its observation should be
possible either as a bound DD̄ state or as a cusp in the cross sections.
Another important aspect to note is that this resonance is narrow in
spite of its large phase space for decaying into the light resonances.
The dynamics that prevent the mixing of the heavy and light sectors
is responsible for the suppression of such decays. A molecular DD̄
state had also been predicted in the work of Zhang [55].

For the light axial resonances our model generates seven poles. All
of them can be identified with well known axial resonances from the
particle data book [27]. For some of them there is a bigger discrepancy
between our results and experiment than in the light scalar sector.
This can be explained by the fact that the axials are usually heavier,
have more decay channels and many of them do not have two body
hadronic decays, which are the only ones taken into account by our
model. These discrepancies should be used to give an idea of the
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uncertainties of our model for the axial resonances. Again we call the
attention to the fact that these light resonances have been already
investigated before [23, 24, 37], the results are very similar in the
couplings, masses and widths found by the resonances, showing again
that the inclusion of the heavy channels has small influence in the
results for the light sector.

For the charmed resonances, the model could generate, in principle,
ten poles, but some of them appear in the wrong Riemann sheet and
are interpreted as virtual states. The poles that come from the two
antitriplets can be identified with known charmed axial resonances,
the Ds1(2460), D1(2430), Ds1(2536) and D1(2420) these last two be-
ing reported as dynamically generated for the first time in our work.
Most of the members of one sextet appear as broad cusps, while the
other sextet members appear as narrower resonances, which could be
observed in the proper decay channels. The poles found for the light-
est antitriplet coincide with the results found in [51, 53]. As already
happened for the scalar resonances, the poles found within our model
for the sextets states in this sector have broader widths because of
the use, in our model, of a different meson decay constant for heavy
mesons. Besides, our model allows also for the inclusion of channels
with heavy pseudoscalar mesons interacting with light vector ones, as
a result of which our model generates a richer spectrum, with poles
for an extra antitriplet and an extra sextet.

Moreover our Lagrangian incorporates the hidden charm sector and
an attractive interaction in the 3 ⊗ 3̄∗ and 3̄ ⊗ 3∗ charmed mesons is
responsible for the generation of two resonances. One of them can be
associated with the X(3872) state. The other one is a bit heavier and
appears usually as a cusp for the parameters we use to fit the mass of
the other pole associated to the X(3872).

We also made an error analysis of the results in the scalar sector,
from where uncertainties in these results were estimated. It also served
to test the stability of the results, observing if the poles disappear for
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some values of the parameters within the allowed range. We concluded
that the uncertainties were moderate and all states were basically sta-
ble, with exception of the hidden charm state which appeared in half
of the cases as a pole in the DD̄ bound region. In the other half of the
cases this pole disappeared and was replaced by a cusp. Since both
poles and pronounced cusps are a consequence of a strong attraction,
the observation of a bound state or a strong cusp in DD̄ would be an
important finding.

A very rich spectrum is generated by our framework. Most of the
poles in the T-matrix can be associated with known scalar or axial
resonances. These positive identifications give us confidence that the
new predicted states by our model could be observed if the proper
reactions are analyzed. An important result of this work is also the
fact that the light and heavy sectors have a small influence among
them.

For the heavy hidden charm states that our model generates we
have also used experimental data onDD̄ and DD̄∗ production in order
to look for evidence of their existence. For the scalar state that we find
with mass close to the DD̄ threshold we found that the data on DD̄
production in the reaction e+e− → J/ψDD̄ can be explained assuming
that the DD̄ meson pair comes from a slightly bound or virtual state.
The combined study of DD̄∗ and J/ψππ production reactions comes
to similar conclusion about the nature of the X(3872) state that is
reproduced in our model as a positive parity axial resonance. Our
model also predicts another axial resonance with negative C-parity.
For this state there seems to be no data available and we could only
speculate about what would be the preferred channels to look for it.

Finally we have studied radiative decays of mesons. The first re-
actions we analyzed were tree level decays of vector mesons into pseu-
doscalars plus a photon. This was done in order to investigate the
uncertainties of our extension to SU(4) of chiral Lagrangians. The
results obtained show that the overall agreement between experiment
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and the theory in the light sector is as good as in the heavy one and
moreover the lack of precise data on these decays for the heavy mesons
do not help us to decide whether we should use in the heavy sector
the same parameters in the couplings as in the light sector (fπ) or if
we should substitute this by the heavy meson decay constant (fD).

Another calculation done was the radiative decay of the resonance
Ds0(2317). We hope that the precise measurement of this radiative
decay width will help us to understand the nature of this resonance,
which is interpreted within our model as a dynamically generated state
mainly composed by DK but with non-negligible admixture of Dsη
and Dsη

′. Within the same frame work we could predict also the
radiative decay of our predicted hidden charm scalar state into J/ψ.
In order to stimulate the experimental search for this predicted state
we have also calculated the radiative decay width of the ψ(3770) into
the scalar X state. Our results show that the plans to produce the
ψ(3770) in the upgraded BEPC facility will have enough statistics to
observe and thus confirm this new scalar state.
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CHAPTER8
Resumen Español

8.1 Introdución

El interés de la comunidad cient́ıfica por estados con encanto (charm)
y encanto oculto (hidden charm) viene creciendo en los últimos años
ya que el desarrollo de nuevas técnicas experimentales ha posibilitado
el descubrimiento de nuevas resonancias por encima del umbral para
la produción de charm. Muchas de las nuevas resonancias descubiertas
en experimentos como BaBar, Belle, BES, etc, presentan un desaf́ıo a
la idea tradicional respecto de la estructura de los hadrones: mesones
formados por pares quark-antiquark (qq̄) y bariones formados por tres
quarks (qqq). Esa situación ya era conocida en el sector ligero (sin
charm) donde muchas de las resonancias mesónicas y bariónicas no
tienen sus propiedades bien descritas por los modelos tradicionales de
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quarks.
Entre esos estados se encuentran, por ejemplo, el meson escalar

Ds0(2317) y los axiales Ds1(2460) y la X(3872). En el caso de los
mesones Ds0(2317) y Ds1(2460) los modelos de potenciales de quarks
los predicen con masa mucho mayor y, por lo tanto, anchuras mayores,
ya que en esos modelos la masa está por encima del umbral para desin-
tegración en D(∗)K, mientras que la masa de los estados observados
está por debajo de ese umbral y los posibles canales de desintegración
de esos estados o son electromagnéticos o violan simetŕıa isospin, lo que
en cualquiera de los casos resulta en anchuras muy pequeñas. Igual-
mente laX(3872) no ha podido ser asociada con ninguno de los estados
del charmonium aún no observados (1+−, 2−+ ó 2−−). La desinte-
gración de la X en γJ/ψ fija su C-paridad como positiva, descartando
ya dos de esas asignaciones y la restante debeŕıa de tener mayor masa.
Los números cuánticos que mejor se ajustan a la X son 1++.

Sin embargo, las propiedades de las resonancias en el sector ligero
se encajan con las predicciones de modelos que utilizan simetŕıa quiral,
conjuntamente con técnicas de unitarización en canales acoplados para
describir las interacciones de pares de hadrones. En esos modelos las
resonancias son dinámicamente generadas y interpretadas como esta-
dos ligados de dos hadrones (estados ”moleculares”) y no simplemente
como estados excitados de qq̄ o qqq. Si la teoŕıa de perturbaciones
quirales ha permitido el estudio con gran éxito de una amplia var-
iedad de fenómenos que involucran interaciones fuertes a bajas en-
erǵıas, la aplicación de esa teoŕıa en canales acoplados se ha extendido
a energias intermediarias y, en particular, ha tenido éxito en describir
muchas resonancias hadrónicas como dinámicamente generadas. Den-
tro de éstas se encuentran las resonancias escalares ligeras y tambien
las axiales, además de muchos bariones como la Λ(1405).

Nuestro trabajo ha extendido modelos quirales en canales acopla-
dos con el objetivo de incluir mesones con charm y hidden charm y,
de esa manera, estudiar la posibilidad de que muchos de los nuevos
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estados con charm o hidden charm descubiertos en los ultimos años
por BaBar, Belle, CDF, ..., sean estados dinámicamente generados por
la interacción de los mesones pseudoescalares y vectoriales. Para estu-
diar las resonancias con charm es necesario extender los Lagrangianos
chirales para incluir los campos pesados de los mesones encantados.
Una manera formal de hacer eso es combinar la simetŕıa quiral con
la simetŕıa de quarks pesados (heavy quark symmetry). Ese método
describe muchas resonancias como dinámicamente generadas, pero no
permite estudiar algunos de los posibles sectores de interés, como el
que tiene hidden charm. El objetivo de nuestro trabajo es desarrol-
lar un modelo nuevo que nos permita estudiar la interacción entre
cualquier par de mesones pseudoescalares o vectoriales, que puedan
ser los constituyentes de un estado escalar o axial.

8.2 Modelo y Resultados

Para desarrollar nuestro modelo, primero construimos campos con-
teniendo los mesones pseudoescalares y vectoriales que son descritos
por un 15-plet de la simetŕıa SU(4) más un singlete. A partir de
esos campos definimos corrientes hadrónicas y construimos un La-
grangiano para la interacción de mesones pseudoescalares acoplando
la corriente pseudoescalar con ella misma y un Lagrangiano para la
interacción de mesones pseudoescalares con mesones vectoriales acop-
lando la corriente pseudoescalar con la vectorial. El acoplamiento en
ambos Lagrangianos es proporcional a 1/f 2, donde f es la constante
de desintegración mesónica.

Los Lagrangianos constrúıdos de esa manera son invariantes SU(4)
de sabor, pero es un hecho que la simetŕıa SU(4) es una mala simetŕıa
para describir la naturaleza. Para tener en cuenta ese hecho, suprim-
imos términos del Lagrangiano que representan procesos donde se in-
tercambia un mesón pesado entre las corrientes hadrónicas teniendo
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en cuenta el prinćıpio de dominio de mesones vectoriales, donde la
interacción en los términos de contacto es interpretada através del in-
tercambio de mesones vectoriales. Otra fuente de rotura de simetŕıa
es la utilización de una constante de desintegración mesónica diferente
para mesones ligeros (fπ=93 MeV) y mesones pesados (fD=165 MeV),
en nuestro modelo.

A partir de los Lagrangianos es posible obtener amplitudes de
transición a nivel árbol entre cualesquiera parejas de mesones pseu-
doescalares y vectoriales que expanden un espacio de canales acopla-
dos. Esas amplitudes son proyectadas en onda-s y esa información
es utilizada en la matriz V que entra como núcleo para resolver la
ecuación de dispersión que calcula la matriz de transición T . La matriz
de transición T es calculada através de la ecuación de dispersión que,
en un formalismo on-shell asume la forma de una ecuación algébrica:

T = V + V GT , (8.1)

donde T es la matriz de transición, V es la matriz con el potencial para
las transiciones a nivel árbol entre dos canales y G es una matriz diag-
onal donde cada uno de sus elementos no nulos es el propagador de dos
part́ıculas para cada uno de los canales. Conociendo las propiedades
anaĺıticas de las matrices G y T , es posible calcularlas en todo el plano
complejo y en todas sus hojas de Riemann. Polos de la matriz T en la
segunda hoja de Riemann de canales abiertos son identificados como
resonancias.

Un polo nos da información de la masa de la resonancia (parte real
de la posición del polo), de su anchura (parte imaginaria de la posición
del polo) y los acoplamientos de la resonancia a todos los canales del
espacio de canales acoplados (reśıduos del polo en cada canal). Todas
esas propiedades de las resonancias calculadas con nuestro modelo nos
permiten testear el modelo contra el experimento, calculando desinte-
graciones radiativas de esas resonancias, o calcular espectros de masa
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de los productos de desintegración de las resonancias. Nuestro modelo
también ha sido capaz de explicar la importante violación de isosṕın
en las desintegraciones del X(3872).

El modelo que desarollamos reproduce, en el sector ligero, los resul-
tados de los trabajos anteriores que utilizan simetŕıa quiral en canales
acoplados. En el sector ligero son generados dinámicamente el octete
y el singlete de mesones escalares (f0(980), a0(980), κ y σ) y también
los dos octetes y el singlete de mesones axiales (a1(1260), b1(1235),
h1(1170), h1(1380) y el f1(1285), aśı como los dos polos del K1(1270)).
En el sector con charm se generan un antitriplete y un sextete de res-
onancias escalares y dos antitripletes y dos sextetes de resonancias
axiales. Las resonancias escalares generadas y uno de los antitripletes
y uno de los sextetes axiales reproducen los resultados obtenidos con
la simetŕıa de quarks pesados, donde son generados dinámicamente el
Ds0(2317) y el Ds1(2460) y sus respectivos compañeros no extraños,
como miembros de los antitripletes. Los sextetes generados son predic-
ciones y aqúı nuestro modelo presenta diferencias con relación a los
modelos que utilizan simetŕıa de quarks pesados. Mientras en esos
modelos las resonancias exóticas pertenecientes a los sextetes tienen
una anchura muy pequeña, en nuestro modelo esas resonancias tienen
una importante anchura, que hace con que tales estados sean muy
dificiles de identificar experimentalmente. Además, nuestro modelo
describe la X(3872) y otras resonancias axiales que no pod́ıan ser
estudiadas en el formalismo de quarks pesados, por estar en el sec-
tor de hidden charm o bien por ser constitúıdas por la interacción de
un mesón vectorial ligero con un pseudoescalar pesado. Aparte de
describir casi todas las resonancias escalares y axiales experimental-
mente conocidas que tengan charm o hidden charm, nuestro modelo
también hace predicciones de un posible estado escalar compuesto de
DD̄ y un estado axial con C-paridad negativa, y masa muy próxima
de la X(3872).

Otros de los objetivos del trabajo han sido estudiar las propiedades
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de desintegración de esos mesones, buscando una posible manera de
confirmar o descartar la existencia de esos estados. En el caso del
meson escalar con hidden charm, se ha hecho un estudio del espectro
de masas de los mesones DD̄ provenientes de la desintegración de
ese estado y se ha comparado los calculos teóricos con una medición
de Belle de ese espectro en ese rango de energias. Los resultados
demuestran que el experimento es compatible con la existencia de
ese estado estrecho por debajo del umbral para producción de DD̄
aunque no es posible descartar otras posibilidades como la existencia
de una resonancia muy ancha por encima del umbral. También se ha
calculado la anchura de desintegración radiativa de la ψ(3770) en ese
nuevo estado escalar y los resultados enseñan que la estad́ıstica de un
año de producción de la ψ(3770) en el experimento BES es suficiente
para que se observe el pico experimental en el espectro de fotones
resultante de esa desintegración, confirmando aśı su existencia.

8.3 Conclusiones

En este trabajo se ha estudiado la generación dinámica de estados con
charm y hidden charm por medio de la interacción de pares de mesones
en canales acoplados. Como punto de partida para la construcción
del Lagrangiano se ha utilizado el Lagrangiano quiral de más bajo
orden en SU(3), ya que el éxito de ese Lagrangiano para describir las
resonancias ligeras es conocido. Para introducir los mesones con charm

y hidden charm en el formalismo se ha extendido el Lagrangiano de
SU(3) para SU(4) y se han suprimido términos convenientemente para
tener en cuenta la masa pesada de los mesones vectoriales encantados
cuando esos son responsables por la interacción. Aśı la simetŕıa SU(4)
queda rota de una manera sistemática y realista.

La comparación de nuestros resultados con resultados obtenidos
por medio de simetŕıa de quarks pesados, posibilita estudiar cuales
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de las resonancias obtenidas son resultados fiables y robustos y cuales
son más dependientes del modelo utilizado. De hecho los resultados
obtenidos para las resonancias pertenecientes al antitriplete escalar y
a uno de los axiales obtenidos coinciden entre los diferentes modelos y
las masas, anchuras y residuos obtenidos con nuestro modelo son con-
sistentes con los obtenidos con los Lagragianos basados en simetŕıa
de quarks pesados. Sin embargo los resultados para los sextetes di-
fieren en los diferentes modelos. Mientras en nuestro trabajo esos
estados tienen anchuras importantes, en los trabajos anteriores esos
estados aparecian como resonancias estrechas. Los resultados en el
sector ligero coinciden con trabajos anteriores basados en la simetŕıa
SU(3) ya que nuestro Lagrangiano, en ese sector, coincide con el La-
grangiano quiral de más bajo orden. Se podria esperar que la mezcla
de ese sector con canales pesados con hidden charm pudiera tener al-
guna influencia en las resonancias ligeras, pero ese no es el caso, ya que
la dinámica de la interacción suprime esa mezcla para canales mucho
más pesados que la masa de la resonancia.

A parte de contrastar el modelo con los resultados obtenidos por
medio de simetŕıa de quarks pesados, nuestro formalismo nos permite
estudiar resonancias con hidden charm y axiales formados por la in-
teracćıon de mesones pseudoescalares pesados con mesones vectoriales
ligeros. En el sector axial con charm se obtienen resonancias estrechas,
algunas que pueden ser identificadas con estados conocidos experimen-
talmente. De hecho asociamos el antitriplete extra generado con los
estados Ds1(2536) y D1(2430), mientras que para los estados exóticos
pertenecientes al sextete no hemos encontrado ninguna asignación ex-
perimental posible y son tan solo predicciones de nuestro modelo. En
el sector axial con hidden charm es posible reproducir el controversial
estado X(3872) que en nuestro modelo debe ser interpretado como un
estado con C-paridad positiva, isospin 0 y compuesto por DD̄∗ + c.c..
Tambien se obtiene un estado axial con C-paridad negativa y anchura
pequeña, pero no despreciable, que es una nueva predicción del mod-
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elo. Ese nuevo estado tiene desintegraciones a ηω, ηφ, η′ω y η′φ,
principalmente. En el sector escalar con hidden charm se obtiene un
estado compuesto por DD̄, que es también una predicción. Sim em-
bargo, investigamos datos experimentales del espectro de masas de
DD̄ en el rango de enerǵıas donde se espera que esté esa nueva reso-
nancia y encontramos indicios de su existencia.

Hemos hecho un estudio más detenido respecto al estado X(3872)
generado en nuestro modelo. Hemos demontrado que la aparente vi-
olación de isospin de ese estado en las desintegraciones X(3872) →
J/ψπ+π− y X(3872) → J/ψπ+π−π0 es un efecto del espacio fásico
en las desintegraciones intermedias ρ0 → π+π− y ω → π+π−π0 y no
un efecto de violación de isospin en la estructura de la X(3872) que
es un estado casi exacto de isospin 0 y, por lo tanto, las componentes
DD̄∗ + c.c. con D’s tanto neutras como cargadas son igualmente im-
portantes en la estructura del estado.

Estudiando las desintegraciones radiativas de mesones vectoriales
en mesones pseudoescalares pudimos comprobar que las incertitum-
bres experimentales son del mismo orden de magnitud que el ”model

dependence” en la elección de parametros como fπ o fD y la man-
era como se rompe la simetŕıa SU(4). Hemos calculado tambien la
desintegración radiativa de algunos de los estados escalares genera-
dos dinámicamente en estados vectoriales y esperamos estimular la
obtención de esas medidas experimentales que ayudarán a compreen-
der la estructura de esas resonancias. Por último se ha calculado la
desintegración radiativa de la ψ(3770) en el estado escalar con hidden

charm que nuestro modelo predice. Los resutados sugieren que los
planes para producción de la ψ(3770) en BEPC-II en Beijing produci-
ran alredor de 1000 eventos ψ(3770) → γX lo que seŕıa suficiente para
producir un pico observable en el espectro de fotones.



APPENDIXA
Amplitudes for Scalars

This appendix shows the amplitudes obtained from the Lagrangian
in eq. (2.28). In the column of the states, the following momenta
assignments should be taken into account: where it reads M1M2 →
M3M4 it means M1(p)M2(k) → M3(p

′)M4(k
′) and the Mandelstam

variables are defined as follows:

s = (p+ k)2 = (p′ + k′)2 (A.1)

t = (p− p′)2 = (k − k′)2 (A.2)

u = (p− k′)2 = (k − p′)2 (A.3)

When inserting these amplitudes (or transformed to isospin or
SU(3) basis) in the BS-equation, one should be careful to divide the
amplitude by 1√

2
each time the initial or the final state contains a

191
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Table A.1: Amplitudes in the sector C=0, S=0, I=2
Process M
ππ → ππ −2m2

π−2s+t+u
3f2

pair of identical particles, (unitary normalization) in order to ensure
closure of the intermediate states. The extra normalization for the
external lines must be kept in mind but does not matter for the pole
search. The factors γ, ψ are defined in eqs. (2.25), and (2.29). The
amplitudes are given in isospin basis.

A.1 C=0, S=0, I=2

We show in Table A.1 the amplitudes for this sector.

A.2 C=0, S=0, I=1

We show in Table A.2 the amplitudes for this sector.

A.3 C=0, S=0, I=0

We show in Tables A.3, A.4 and A.5 the amplitudes for this sector.

A.4 C=0, S=1, I=3
2

We show in Table A.6 the amplitudes for this sector.
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Table A.2: Amplitudes in the sector C=0, S=0, I=1
Process M
ππ → ππ u−t

f2

ππ → KK̄ u−t
2f2

ππ → πη 0
ππ → πη′ 0

ππ → DD̄ (t−u)(γ+2)
6f2

ππ → ηcπ 0

KK̄ → KK̄ −2m2
K

+s+t−2u

6f2

KK̄ → πη m2
π+2s−t−u
3
√

3f2

KK̄ → πη′
6m2

K
+2m2

π−2s+t+u

6
√

6f2

KK̄ → DD̄ −m2
D

+m2
K
−t+u+sγ−tγ
6f2

KK̄ → ηcπ 0

πη → πη −2m2
π

3f2

πη → πη′ −
√

2m2
π

3f2

πη → DD̄
2m2

D
+2m2

π+(2s−t−u)γ

6
√

3f2

πη → ηcπ 0

πη′ → πη′ −m2
π

3f2

πη′ → DD̄
2m2

D
+2m2

π+(2s−t−u)γ

6
√

6f2

πη′ → ηcπ 0

DD̄ → DD̄
−2m2

D
−t+u+(u−s)ψ

6f2

DD̄ → ηcπ
2m2

D
+(−2s+t+u)γ

6f2

ηcπ → ηcπ 0



194 AMPLITUDES FOR SCALARS

Table A.3: Amplitudes in the sector C=0, S=0, I=0
Process M
ππ → ππ 2(−2s+t+u)−5m2

π

3f2

ππ → KK̄
−2m2

K
−2m2

π−2s+t+u

2
√

6f2

ππ → ηη 2m2
π√

3f2

ππ → ηη′
√

2
3
m2
π

f2

ππ → η′η′ m2
π√

3f2

ππ → DD̄
2m2

D
+2m2

π+(2s−t−u)γ

2
√

6f2

ππ → DsD̄s 0
ππ → ηcη 0
ππ → ηcη

′ 0
ππ → ηcηc 0

KK̄ → KK̄ −2m2
K

+s+t−2u

2f2

KK̄ → ηη −2
√

2(−m2
K
−2s+t+u)

9f2

KK̄ → ηη′
−4m2

K
+3m2

π−2s+t+u

9f2

KK̄ → η′η′ −−34m2
K

+6m2
π−2s+t+u

18
√

2f2

KK̄ → DD̄
m2
D

+m2
K
−t+u+sγ−tγ
6f2

KK̄ → DsD̄s
m2
D

+2m2
K
−m2

π+t−u+sγ−uγ
3
√

2f2

KK̄ → ηcη 0
KK̄ → ηcη

′ 0
KK̄ → ηcηc 0

ηη → ηη −2(2m2
K

+m2
π)

9f2

ηη → ηη′
4
√

2(m2
K
−m2

π)
9f2

ηη → η′η′
2m2

π−8m2
K

9f2



195

Table A.4: Amplitudes in the sector C=0, S=0, I=0
Process M
ηη → DD̄

−2m2
D
−2m2

π+(−2s+t+u)γ

9
√

2f2

ηη → DsD̄s
−2m2

D
−6m2

K
+4m2

π−2sγ+tγ+uγ

18f2

ηη → ηcη
−2m2

D
−6m2

K
+4m2

π−2sγ+tγ+uγ

18f2

ηη → ηcη
′ 0

ηη → ηcηc 0

ηη′ → ηη′
2m2

π−8m2
K

9f2

ηη′ → η′η′
√

2(8m2
K
−5m2

π)
9f2

ηη′ → DD̄
−2m2

D
−2m2

π+(−2s+t+u)γ

18f2

ηη′ → DsD̄s
2m2

D
+6m2

K
−4m2

π+2sγ−tγ−uγ
9
√

2f2

ηη′ → ηcη 0
ηη′ → ηcη

′ 0
ηη′ → ηcηc 0

η′η′ → η′η′
7m2

π−16m2
K

9f2

η′η′ → DD̄
−2m2

D
−2m2

π+(−2s+t+u)γ

18
√

2f2

η′η′ → DsD̄s
−2m2

D
−6m2

K
+4m2

π−2sγ+tγ+uγ

9f2

η′η′ → ηcη 0
η′η′ → ηcη

′ 0
η′η′ → ηcηc 0

DD̄ → DD̄ −6m2
D

+2s+t−3u+(s+2t−3u)ψ

6f2

DD̄ → DsD̄s
−2m2

D
−m2

K
+m2

π−s+u+(u−t)ψ
3
√

2f2

DD̄ → ηcη
(2s−t−u)γ−2m2

D

3
√

6f2

DD̄ → ηcη
′ (2s−t−u)γ−2m2

D

6
√

3f2
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Table A.5: Amplitudes in the sector C=0, S=0, I=0
Process M

DD̄ → ηcηc
−6m2

D
+2m2

π+(−2s+t+u)γ

3
√

2f2

DsD̄s → DsD̄s −4m2
D

+4m2
K
−4m2

π+s+t−2u+(s+t−2u)ψ

6f2

DsD̄s → ηcη
2m2

D
+2m2

K
−2m2

π−2sγ+tγ+uγ

6
√

3f2

DsD̄s → ηcη
′ −4m2

D
+4 m2

K
−4m2

π−4sγ+2tγ+2uγ

6
√

6f2

DsD̄s → ηcηc
−6m2

D
−2m2

K
+4m2

π−2sγ+tγ+uγ

6f2

ηcη → ηcη 0
ηcη → ηcη

′ 0
ηcη → ηcηc 0
ηcη

′ → ηcη
′ 0

ηcη
′ → ηcηc 0

ηcηc → ηcηc
2m2

π−4m2
D

f2

Table A.6: Amplitudes in the sector C=0, S=1, I=3
2

Process M
πK → πK −m2

K
+m2

π−2s+t+u

6f2
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A.5 C=0, S=1, I=1
2

We show in Table A.7 the amplitudes for this sector.

A.6 C=1, S=1, I=1

We show in Table A.8 the amplitudes for this sector.

A.7 C=1, S=1, I=0

We show in Table A.9 the amplitudes for this sector.

A.8 C=1, S=0, I=3
2

We show in Table A.10 the amplitudes for this sector.

A.9 C=1, S=0, I=1
2

We show in Table A.11 the amplitudes for this sector.

A.10 C=1, S=-1, I=1

We show in Table A.12 the amplitudes for this sector.

A.11 C=1, S=-1, I=0

We show in Table A.13 the amplitudes for this sector.
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Table A.7: Amplitudes in the sector C=0, S=1, I=1
2

Process M
πK → πK −2m2

K
+2m2

π+5s+2t−7 u

12f2

πK → ηK −−m2
π+s−2t+u

3
√

2 f2

πK → DsD̄
m2
D

+m2
K
−t+u+sγ−t γ
2
√

6f2

πK → ηcK 0

πK → η′K
6m2

K
+2m2

π+s−2 t+u

12f2

ηK → ηK
2(−m2

K
+s−2t+u)

9 f2

ηK → DsD̄
m2
K
−m2

π+(t−u) (γ+2)

6
√

3f2

ηK → ηcK 0

ηK → η′K −−4m2
K

+3m2
π+s−2 t+u

9
√

2f2

DsD̄ → DsD̄
−2m2

D
−m2

K
+m2

π −t+u+(u−s)ψ
6f2

DsD̄ → ηcK −2m2
D

+m2
K
−m2

π−2 sγ+tγ+uγ

6f2

DsD̄ → η′K
−3m2

D
−5m2

K
+2m2

π−t+u−3sγ+tγ+2uγ

6
√

6f2

ηcK → ηcK 0
ηcK → η′K 0

η′K → η′K
−34m2

K
+6m2

π +s−2t+u

36f2

Table A.8: Amplitudes in the sector C=1, S=1, I=1
Process M

Dsπ → Dsπ 0

Dsπ → DK −m2
D

+m2
K
−s+u−sγ+tγ
6f2

DK → DK 0
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Table A.9: Amplitudes in the sector C=1, S=1, I=0
Process M

DK → DK −m2
D

+m2
K

+s−u+tγ−uγ
3 f2

DK → Dsη
m2
K
−m2

π+(s−u)(γ +2)

3
√

6f2

DK → Dsη
′ −3m2

D
−5m2

K
+2m2

π −s+u+sγ−3tγ+2uγ

6
√

3f2

DK → Dsηc −2m2
D

+m2
K
−m2

π+s γ−2tγ+uγ

3
√

2f2

Dsη → Dsη
−2m2

D
−6m2

K
+4m2

π +sγ−2tγ+uγ

18f2

Dsη → Dsη
′ −−2m2

D
−6m2

K
+4 m2

π+sγ−2tγ+uγ

9
√

2f2

Dsη → Dsηc
2m2

D
+2m2

K
−2m2

π +sγ−2tγ+uγ

6
√

3f2

Dsη
′ → Dsη

′ −2m2
D
−6 m2

K
+4m2

π+sγ−2tγ+uγ

9f2

Dsη
′ → Dsηc −2m2

D
+2m2

K
−2 m2

π+sγ−2tγ+uγ

3
√

6f2

Dsηc → Dsηc
−6m2

D
−2m2

K
+4m2

π +sγ−2tγ+uγ

6f2

Table A.10: Amplitudes in the sector C=1, S=0, I=3
2

Process M
πD → πD −m2

D
+m2

π−s+u−sγ+t γ
6f2
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Table A.11: Amplitudes in the sector C=1, S=0, I=1
2

Process M
πD → πD −2m2

D
+2m2

π+4s−4u+s γ+2tγ−3uγ

12f2

πD → ηD
−2m2

D
−2m2

π+(s−2t+u) γ

6
√

2f2

πD → η′D
−2m2

D
−2m2

π+(s−2 t+u)γ

12f2

πD → K̄Ds −m2
D

+m2
K

+s−u+tγ−u γ

2
√

6f2

πD → ηcD −2m2
D

+(s−2t+u)γ

2
√

6f2

ηD → ηD
−2m2

D
−2m2

π+(s−2t+u) γ

18f2

ηD → η′D
−2m2

D
−2m2

π+(s−2 t+u)γ

18
√

2f2

ηD → K̄Ds
m2
K
−m2

π+(u−s) (γ+2)

6
√

3f2

ηD → ηcD −2m2
D

+(s−2t+u)γ

6
√

3f2

η′D → η′D
−2m2

D
−2m2

π +(s−2t+u)γ

36f2

η′D → K̄Ds
−3m2

D
−5m2

K
+2m2

π+s−u+2sγ−3tγ+uγ

6
√

6f2

η′D → ηcD −2m2
D

+(s−2t+u) γ

6
√

6f2

K̄Ds → K̄Ds −m2
D

+2m2
K
−m2

π +s−u+tγ−uγ
6f2

K̄Ds → ηcD −2m2
D

+m2
K
−m2

π+s γ−2tγ+uγ

6f2

ηcD → ηcD
−6m2

D
+2m2

π+(s−2 t+u)γ

6f2

Table A.12: Amplitudes in the sector C=1, S=-1, I=1
Process M

DK̄ → DK̄ −m2
D

+m2
K
−s+u−sγ+t γ
6f2
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Table A.13: Amplitudes in the sector C=1, S=-1, I=1
Process M

DK̄ → DK̄
m2
D

+m2
K
−s+u−sγ+t γ
6f2
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APPENDIXB
The ξ Coefficients for the axials

This appendix show the matrices ξ, in isospin and G-parity (see ap-
pendix C) basis, when applicable, that appear in the amplitudes for
the interaction of pseudoscalars with vector mesons in eq. (3.7).

B.1 C=1, S=1, I=1

The channels in this sector are in the following order: D∗
sπ, ρDs, D

∗K
and K∗D.

ξ =








0 0 −1 −γ
0 0 −γ −1
−1 −γ 0 0
−γ −1 0 0








203
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B.2 C=1, S=1, I=0

The channels in this sector are in the following order: K∗D, D∗K,
D∗
sη, D

∗
sη

′, ωDs, φDs, D
∗
sηc and J/ψDs.

ξ =






















−2 0 −
√

2
3
γ − γ√

3
−1

√
2

√
2γ 0

0 −2 2
√

2
3

− 1√
3

γ 0 0 −
√

2γ

−
√

2
3
γ 2

√
2
3

0 0 0 − γ√
3

0 γ√
3

− γ√
3

− 1√
3

0 0 0
√

2
3
γ 0 −

√
2
3
γ

−1 γ 0 0 0 0 0 0√
2 0 − γ√

3

√
2
3
γ 0 0 −γ 0√

2γ 0 0 0 0 −γ 0 γ

0 −
√

2γ γ√
3

−
√

2
3
γ 0 0 γ 0






















B.3 C=1, S=0, I=1
2

The channels in this sector are in the following order: D∗π, ρD, D∗
sK,

K∗Ds, D
∗η, D∗η′, ωD, φD, D∗ηc and J/ψD.
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ξ =





























−2 γ
2

√
3
2 0 0 0 −

√
3γ
2 0 0

√
3
2γ

γ
2 −2 0 −

√
3
2

γ√
2

γ
2 0 0 −

√
3
2γ 0

√
3
2 0 −1 0 − 2√

3
1√
6

0 γ 0 −γ
0 −

√
3
2 0 −1 − γ√

3

√
2
3γ − 1√

2
1 −γ 0

0 γ√
2

− 2√
3

− γ√
3

0 0 γ√
6

0 0 − γ√
3

0 γ
2

1√
6

√
2
3γ 0 0 γ

2
√

3
0 0 − γ√

6

−
√

3γ
2 0 0 − 1√

2

γ√
6

γ

2
√

3
0 0 − γ√

2
0

0 0 γ 1 0 0 0 0 0 0

0 −
√

3
2γ 0 −γ 0 0 − γ√

2
0 0 γ

√
3
2γ 0 −γ 0 − γ√

3
− γ√

6
0 0 γ 0





























B.4 C=1, S=-1, I=0

The channels in this sector are in the following order: D∗K̄ and K̄∗D.

ξ =

(

1 γ
γ 1

)

B.5 C=0, S=1, I=1
2

The channels in this sector are in the following order: K∗π, ρK, K∗η,
K∗η′, ωK, φK, D∗

sD̄, D̄∗Ds, J/ψK and K∗ηc.
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ξ =




























−2 1
2 0 0

√
3

2 −
√

3
2 −

√
3
2γ 0 0 0

1
2 −2 −

√
2 1

2 0 0 0
√

3
2γ 0 0

0 −
√

2 0 0
√

2
3 − 2√

3
− γ√

3

γ√
3

0 0

0 1
2 0 0 − 1

2
√

3
1√
6

− γ√
6

−
√

2
3γ 0 0

√
3

2 0
√

2
3 − 1

2
√

3
0 0 0 − γ√

2
0 0

−
√

3
2 0 − 2√

3
1√
6

0 0 −γ 0 0 0

−
√

3
2γ 0 − γ√

3
− γ√

6
0 −γ −ψ 0 γ γ

0
√

3
2γ

γ√
3

−
√

2
3γ − γ√

2
0 0 −ψ γ γ

0 0 0 0 0 0 γ γ 0 0
0 0 0 0 0 0 γ γ 0 0




























B.6 C=0, S=0, IG=1+

The channels in this sector are in the following order: φπ, ρη, ρη′,
K∗K̄ + c.c., ωπ, D∗D̄ + c.c., ρηc and J/ψπ. Note that here and ev-
erywhere else where it reads PV ± P̄ V̄ we are not writing the 1√

2
and the real states used in the calculations are normalized and read
1√
2
(V P̄ ± V̄ P ).
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ξ =





















0 0 0
√

2 0 0 0 0

0 0 0 −2
√

2
3

0 −
√

2
3
γ 0 0

0 0 0 1√
3

0 − γ√
3

0 0√
2 −2

√
2
3

1√
3

−1 −1 −γ 0 0

0 0 0 −1 0 −γ 0 0

0 −
√

2
3
γ − γ√

3
−γ −γ −ψ

√
2γ

√
2γ

0 0 0 0 0
√

2γ 0 0

0 0 0 0 0
√

2γ 0 0





















B.7 C=0, S=0, IG=1−

The channels in this sector are in the following order: K∗K̄ − c.c., ρπ
and D∗D̄ − c.c..

ξ =






−1
√

2 γ√
2 −2 −

√
2γ

γ −
√

2γ −ψ






B.8 C=0, S=0, IG=0+

The channels in this sector are in the following order: K∗K̄ + c.c.,
D∗D̄ + c.c. and D∗

sD̄s − c.c..

ξ =






−3 −γ
√

2γ

−γ −ψ − 2 −
√

2√
2γ −

√
2 −ψ − 1





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B.9 C=0, S=0, IG=0−

The channels in this sector are in the following order: φη, ωη′, φη′,
ρπ, D∗D̄ − c.c., ωηc, φηc, J/ψη, J/ψη

′, ωη, D∗
sD̄s + c.c., K∗K̄ − c.c.

and J/ψηc.

ξ =




















0 0 0 0 0 0 0 0 0
0 0 0 0

γ
√

3
0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 −4 −
√

3γ 0 0 0 0

0
γ
√

3
0 −

√
3γ −ψ − 2 −

√
2γ 0 − 2γ

√

3
−
√

2

3
γ

0 0 0 0 −
√

2γ 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 − 2γ
√

3
0 0 0 0

0 0 0 0 −
√

2

3
γ 0 0 0 0

0 0 0 0
√

2

3
γ 0 0 0 0

−
√

2

3
γ 0

2γ
√

3
0 −

√
2 0 −

√
2γ

√
2

3
γ − 2γ

√

3

4
√

3

1
√

3
−
√

2

3

√
3 γ 0 0 0 0

0 0 0 0 2γ 0 0 0 0

0 −
√

2

3
γ 4

√

3
0

0 0 1
√

3
0

0
2γ
√

3
−
√

2

3
0

0 0
√

3 0√
2

3
γ −

√
2 γ 2γ

0 0 0 0

0 −
√

2γ 0 0

0

√
2

3
γ 0 0

0 − 2γ
√

3
0 0

0 0 −2
√

2

3
0

0 −ψ − 1
√

2γ
√

2γ

−2

√
2

3

√
2γ −3 0

0
√

2γ 0 0























APPENDIXC
Isospin and SU(3) basis

The following phases are taken for the meson assignments of the 15-
plet:

|Ds >0= |D+
s >, |D > 1

2
=

(

|D+ >
−|D0 >

)

, |K > 1
2
=

(

|K+ >
|K0 >

)

,

|π >1=






−|π+ >
|π0 >
|π− >




, |η >0= |η >, |ηc >0= |ηc >,

|K̄ > 1
2
=

(

|K̄0 >
−|K− >

)

, |η′ >0= |η′ >.

|D̄ > 1
2
=

(

|D̄0 >
|D− >

)

and |D̄s >0= |D−
s >

209
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The phases for the vector mesons are the same changing the pseu-
doscalar meson by his correspondent in the 15-plet of vector mesons.

Under charge conjugation the pseudoscalar (P ) and vector mesons
(V ) transform as follows:

ĈP = P̄ (C.1)

ĈV = −V̄ (C.2)

Neutral flavorless states have definite C-parity, for instance the
pseudoscalars like π0 or η have positive C-parity while the vector
mesons like the ρ0 or φ have negative C-parity. States with differ-
ent C-parity quantum number cannot mix.

For states of two mesons it is also possible to write a C-parity
basis. The states like D∗D̄, D∗

sD̄s and K∗K̄ have no definite C-parity,
but one can mix them with their complex conjugates in order to form
states of definite C-parity, as has been done in chapter 5. If instead of
working in charge basis one works with isospin basis, one has to define
the G-parity. The G-parity is defined as the product of the charge
conjugation operator with a 1800 degrees rotation in the isospin plane:

Ĝ = eiπT2Ĉ (C.3)

where T2 is the 2nd generator of the isospin group SU(2).
In the following we will make a list, for the sectors where a SU(3)

decomposition is not trivial, of the isospin and SU(3) states used to
transform the amplitudes, for scalars, from a charge basis to isospin
and then from isospin into a SU(3) basis. For writing the vector
meson pseudoscalar pair states one only has to change one of the
pseudoscalars by his correspondent in the 15-plet of vector mesons and
then use the symmetry property of the Clebsch-Gordan coefficients,
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< j1 j2 m1 m2|j1 j2 J M > = (−1)J−j1−j2

×< j2 j1 m2 m1|j2 j1 J M >,(C.4)

and the proper symmetry transformation of the SU(3) Clebsch-Gordan
coefficients that one can find in [161, 162].

The states η and ηc refered for the states in SU(3) basis are not
the physical η and ηc but the states η8 and η15 refered in Chapter 2.

The figures C.1-C.4 show representations of the irrep products.

C.1 3̄ ⊗ 3̄ (C=2)

|DsDs >0= |D+
s D

+
s >

|DDs > 1
2
= −|D0D+

s >
(

|DD >0

|DD >1

)

= 1√
2

(

−1 1
−1 −1

)(

|D+D0 >
|D0D+ >

)

|6̄, 2, 0 > 1 = |DsDs >0

|6̄, 1, 1
2
>= 1√

2
(|DDs > +|DsD >)2

|6̄, 0, 1 >= |DD >
|3, 1, 1

2
>= 1√

2
(|DDs > −|DsD >)

|3, 0, 0 >= |DD >

C.2 3̄ ⊗ 8 (C=1)

|KDs > 1
2
= |K0D+

s >

1SU(3) states are represented as |Irrep, S, I >
2from now on the label for the isospin of the states will be omitted for the

SU(3) states.
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Figure C.1: 3̄ ⊗ 3̄ = 3 ⊕ 6̄.

(

|KD >0

|KD >1

)

= 1√
2

(

−1 −1
−1 1

)(

|K+D0 >
|K0D+ >

)

|ηDs >0= |ηD+
s >

|πDs >1= |π−D+
s >

( |πD > 1
2

|πD > 3
2

)

=





−1√
3

−
√

2
3

−
√

2
3

1√
3





(

|π0D0 >
|π−D+ >

)

|ηD > 1
2
= −|ηD0 >

|K̄Ds > 1
2
= −|K−D+

s >
(

|K̄D >0

|K̄D >1

)

= 1√
2

(

1 −1
−1 −1

)(

|K−D+ >
|K̄0D0 >

)

|1̄5, 2, 1
2
>= |KDs >

|1̄5, 1, 1 >= 1√
2
(|KD > −|πDs >)

|1̄5, 1, 0 >= −
√

3
2
|ηDs > +1

2
|KD >

|1̄5, 0, 3
2
>= |πD >
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Figure C.2: 8 ⊗ 3̄ = 6 ⊕ 1̄5 ⊕ 3̄.

|1̄5, 0, 1
2
>= 1

4
|πD > +3

4
|ηD > −

√
3
8
|K̄Ds >

|1̄5,−1, 1 >= |K̄D >

|6, 1, 1 >= 1√
2
(|KD > +|πDs >)

|6, 0, 1
2
>=

√
3
8
|πD > −

√
3
8
|ηD > −1

2
|K̄Ds >

|6,−1, 0 >= |K̄D >

|3̄, 1, 0 >= 1
2
|ηDs > +

√
3

2
|KD >

|3̄, 0, 1
2
>= −3

4
|πD > −1

4
|ηD > −

√
3
8
|K̄Ds >

C.3 3̄ ⊗ 3 (C=0)

|DsD̄ > 1
2
= |D+

s D
− >

|DsD̄s >0= |D+
s D

−
s >
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(

|DD̄ >0

|DD̄ >1

)

= 1√
2

(

1 1
1 −1

)(

|D+D− >
|D0D̄0 >

)

Figure C.3: 3̄ ⊗ 3 = 8 ⊕ 1.

|8, 1, 1
2
>= |DsD̄ >

|8, 0, 1 >= |DD̄ >

|8, 0, 0 >=
√

2
3
|DsD̄s > − 1√

3
|DD̄ >

|8,−1, 1
2
>= |D̄sD >

|1, 0, 0 >= 1√
3
|DsD̄s > +

√
2
3
|DD̄ >

C.4 8 ⊗ 8 (C=0)
( |πK > 1

2

|πK > 3
2

)

=





1√
3

−
√

2
3√

2
3

1√
3





(

|π0K0 >
|π−K+ >

)

|ηK > 1
2
= |ηK0 >
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(

|KK̄ >0

|KK̄ >1

)

= 1√
2

(

−1 −1
−1 1

)(

|K+K− >
|K0K̄0 >

)






|ππ >0

|ππ >1

|ππ >2




 =







− 1√
3

− 1√
3

− 1√
3

− 1√
2

1√
2

0

− 1√
6

− 1√
6

√
2
3












|π+π− >
|π−π+ >
|π0π0 >






|πη >1= |π0η >

Figure C.4: 8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 1̄0 ⊕ 27

|27, 2, 1 >= |KK >
|27, 1, 3

2
>= 1√

2
(|Kπ > +|πK >)

|27, 1, 1
2
>= 1

2
√

5
(|Kπ > +|πK > −3|Kη > −3|ηK >)

|27, 0, 2 >= |ππ >
|27, 0, 1 >= 1√

5
(|KK̄ > +|K̄K >) + 3√

30
(|πη > +|ηπ >)

|27, 0, 0 >= 3
2
√

15
(−|KK̄ > −|K̄K >) + 1

2
√

10
|ππ > − 9

2
√

30
|ηη >

|1̄0, 1, 1
2
>= 1

2
(|Kπ > −|πK > +|Kη > −|ηK >)

|1̄0, 0, 1 >= 1√
6
(|KK̄ > −|K̄K > −|ππ >) + 1

2
(|πη > −|ηπ >)
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|10, 1, 3
2
>= 1√

2
(−|Kπ > +|πK >)

|10, 0, 1 >= 1√
6
(−|KK̄ > +|K̄K > +|ππ >) + 1

2
(|πη > −|ηπ >)

|8S, 1, 1
2
>= 1

2
√

5
(−3|Kπ > −3|πK > −|Kη > −|ηK >)

|8S, 0, 1 >= 3√
30

(−|KK̄ > −|K̄K >) + 1√
5
(|πη > +|ηπ >)

|8S, 0, 0 >= 1√
10

(−|KK̄ > −|K̄K >) + 3√
15
|ππ > + 1√

5
|ηη >

|8A, 1, 1
2
>= 1

2
(−|Kπ > +|πK > +|Kη > −|ηK >)

|8A, 0, 1 >= 1√
6
(|KK̄ > −|K̄K > +2|ππ >)

|8A, 0, 0 >= 1√
2
(−|KK̄ > +|K̄K >)

|1, 0, 0 >= 1
2
(−|KK̄ > −|K̄K >) − 3

2
√

6
|ππ > + 1

2
√

2
|ηη >
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