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ABSTRACT

Covariation amongst wood traits along the stem axis is important to maintain 

hydraulic integrity ensuring sufficient sap flow to the canopy. Here, we test how 
wood traits (co)vary along the trunk and whether two seasonally dry Brazilian 

habitats (cerrado and caatinga) influence this variation in two co-occurring spe-

cies, Tocoyena formosa (Rubiaceae) and Tabebuia aurea (Bignoniaceae). The 

samples were collected at five heights along the main trunk of three individu-

als per species in both sites. We used light, scanning and transmission electron  

microscopy to observe the wood traits. Out of 13 wood traits, nine show rela-

tionships with sampling height: eight traits predict height in T. formosa and five 
in T. aurea. Contrastingly, only three traits show differences between sites and 

only for T. formosa. The intratrunk wood variation is reflected by the hydrauli-
cally weighted vessel diameter showing a curvilinear relationship, disagreeing 

with the prediction of a continuous vessel widening from tip to base. In both 

species, the largest vessels are linked to the thinnest intervessel pit membranes. 

Wood density increases basipetally for both species, being site-dependent and 

correlated with vessel traits in T. formosa, and site-independent and determined 

by fiber wall thickness in T. aurea. Furthermore, the functional role of rays was 

found to be different for each species, and may be related to the marked differ-

ence in ray composition. In conclusion, both species show a unique adaptation to 

deal with height-related constraints using species-specific co-variation amongst 
wood traits, while site does not contribute much to the wood variation.

Keywords: Caatinga, cerrado, intraspecific variation, thickness of intervessel pit 
membrane, Tocoyena formosa, Tabebuia aurea, vessel widening.

Note: Supplementary material can be accessed in the online edition of this 

journal via brill.com/iawa.
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INTRODUCTION

There is a vast wood anatomical literature describing an endless variation in anatomi-

cal characters between co-occurring species as well as species growing in contrasting 

environments, emphasizing the ability of plants to develop anatomical strategies to 

cope with similar or different environmental constraints (Carlquist 1975; Baas &  

Schweingruber 1987; Hacke & Sperry 2001; Lens et al. 2004; Pratt et al. 2007; Poorter 

et al. 2010; O’Brien et al. 2017). However, studies investigating functional covaria-

tion amongst xylem anatomical traits at the individual level remain scarce (Petit et al. 

2010; Andofillo et al. 2013; Olson et al. 2018; Pfautsch et al. 2018). According to the 

cohesion-tension theory, maintaining hydraulic integrity becomes more challenging 

for plants with increasing height due to the more negative pressure inside the water 

conducting cells of the upper parts of trees, which is required to draw water upwards 

against gravity in order to reach the leaves (McCulloh & Sperry 2005; Pfautsch et al. 

2011; Olson et al. 2018). Likewise, the increase in hydraulic resistance with stem length 

predicted by the Hagen-Poiseuille’s law states that maximum tree height is limited by 
the conflicting requirements for water transport efficiency and water column safety 
(McDowell et al. 2002; Koch et al. 2004; Domec et al. 2008).

 There are several xylem anatomical characters that are known to change with tree 

height. The best studied character is conduit widening from top to bottom, as stated by 

the West, Brown and Enquist model (WBE model, West et al. 1999), implying that the 

total resistance of water transport will not increase with longer vessel networks (Fan 

et al. 2009; Petit et al. 2010; Olson & Rosell 2013; Rosell et al. 2017; Olson et al.  

2018; Pfautsch et al. 2018). Also, vessel density will decrease from top to bottom as 

shown by anatomical studies and predicted by hydraulic models (Höltta et al. 2011). 

The intervessel pits constitute a major proportion, roughly half, of the hydraulic resist-

ance of the xylem (Sperry et al. 2006) and are a key feature explaining the variation in 

embolism resistance amongst tree species (Lens et al. 2011; Li et al. 2016; Dória et al. 

2018). The few studies dealing with intraspecific variation at the pit level showed that 
pit aperture diameter decreased and torus-margo overlap increased significantly with 
increasing height in the conifers Sequoia sempervirens, Sequoiadendron giganteum, 

and Pseudotsuga menziesii (Burgess et al. 2006; Domec et al. 2008; Lazzarin et al. 

2016), but variation in the ultrastructure of pits in the angiosperm Eucalyptus grandis 

was found to be more variable across vertical gradients (Pfautsch et al. 2018).

 In addition to conduits that impact hydraulic conductance, also stem mechanical 

characters - probably indirectly - impact the long-distance water transport in plants, 

suggesting the presence of a mechanical–functional trade-off. This relationship is often 

explained by the need to resist vessel collapse under drought-induced tension, either 

by vessel wall reinforcement (Hacke et al. 2001; Fichot et al. 2010) or by thick-walled 

fibers surrounding the vessels (Jacobsen et al. 2005, 2007; Chave et al. 2009; Pratt & 

Jacobsen 2017) that theoretically lead to higher wood densities (Poorter et al. 2010; 

Zanne et al. 2010). Likewise, also in herbaceous species, more lignified stems are linked 
with hydraulic safety in angiosperms (Lens et al. 2013, 2016; Dória et al. 2018; Dória 

et al. in press).
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 Here, we investigate samples along the vertical axis of the trunk in two woody spe-

cies (Tabebuia aurea, Bignoniaceae; Tocoyena formosa, Rubiaceae) that occur both in  

the distinctive cerrado and caatinga vegetation types experiencing seasonal drought.  

The cerrado is a savanna-like ecosystem located in the Brazilian Central Plateau,  

characterized by a strong seasonal climate with distinctive and regular wet and dry peri-

ods (Oliveira & Marquis 2002), experiencing a mean annual precipitation of 1500 mm 

and a mean annual temperature of 22 °C (Silva et al. 2008). A remarkable characteris- 

tic of the cerrado is the deep and nutrient-poor soils with high aluminium content, which 

is toxic to most plants (Coutinho 2002). The caatinga is a tropical dry forest type located 

in the semiarid region of the northeast of Brazil, surrounded by the atlantic rainforest 

and the cerrado domains (Nimer 1972). The caatinga has a mean annual temperature 

of 27 °C and a mean annual precipitation of less than 1000 mm (Andrade-Lima 1981; 

IBGE 2012), and is defined by a longer and more intense dry season compared to the 
cerrado (often over five months up to 11 months in some areas), and an irregular pre-

cipitation distribution over the years (Moro et al. 2016).

 An earlier study on Tabebuia aurea and Tocoyena formosa showed specific wood 
anatomical strategies to cope with environmental differences between cerrado and 

 caatinga (Dória et al. 2016). Here, we sampled individuals from the same popula- 
tion and focus on intraspecific wood trait variation along the vertical axis of the trunk  
of the same two species and environments (sites). Our study has two major objectives:  

(1) assess how wood traits vary along the vertical axis of the trunk in the two co- 

occurring species, and investigate to which extent differences between sites influence 
the variation in wood traits; (2) assess how wood traits covary amongst them and  

interpret this co-variation in a functional framework.

MATERIALS  AND  METHODS
Sampling,	species	and	field	study
 We studied two woody deciduous species, Tabebuia aurea (Silva Manso) Benth. 

& Hook.f. ex S.Moore and Tocoyena formosa (Cham. & Schltdl.) K. Schum., both of 

common occurrence in both caatinga (Moro et al. 2014, 2016) and cerrado (Ratter et al.  

2003). The two species have a distinctive wood anatomy, showing different anatomical 

strategies to deal with the environmental constraints of the two sites (Dória et al. 2016). 

We selected three individuals from both species in each vegetation type, and collected 

wood samples from the outermost sapwood of the trunk at five different heights (I, at 
the base to V, at the top of the trunk). Before sampling, we measured the total length 

of the trunk, collected sample V at the highest point of the trunk, which was 30–50 cm 

below the branch endings, and subdivided the total trunk height by five in order to collect  
the remaining samples at equal distances along the main stem. In total, we collected  

60 samples derived from the 12 individuals of the two species. The total tree height of 

the three T. aurea individuals varied from 6 to 8 m and 1.5 to 5 m for T. formosa.

 The sampling site for both species in the cerrado was in Pratânia municipality, São 

Paulo state, Brazil (22° 48' 35" S, 48° 39' 57" W). In the caatinga, the sampling was 

performed at two different sites, 20 km away from each other: for T. aurea in São João 

do Cariri municipality (7° 23' 27" S, 36° 32' 2" W) and for T. formosa in Serra Branca 
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municipality (7° 29 ' 14" S, 36° 39' 51" W), both in the state of Paraíba, Brazil. In the 

cerrado sampling area, the mean temperature is below 25 °C, and the rainiest 5-month 

period is from October to February with maximum monthly precipitation of 350 mm. 

The 4-month dry season is from June to September when precipitation reaches less than 

50 mm (data from Estação Experimental of the Faculdade de Ciências Agronômicas, 

UNESP, Botucatu Campus, Brazil). In the caatinga sampling areas, the mean annual 

temperature is higher (above 25 °C) and the dry season is longer (6 months from July 

to December) and more intense (precipitation reaching zero) compared to the cerrado. 

Also, during the irregular rainy season, the maximum monthly rainfall does not exceed 

100 mm (data from Estação Experimental of São João do Cariri, Paraíba, Brazil).

Sapwood	density	and	wood	anatomical	features
 The list of the 13 wood traits assessed can be found in the Supplemental Table S1.

 Wood density was determined for each of the 60 sapwood samples equalling about 

1 cm3 in volume, as defined by the ratio of oven-dried mass (at 100 °C until constant 
weight of the sample) to fresh volume (by the weight of water displacement method) 

(Williamson & Wiemann 2010).

 Cross sections (15–20 µm thickness) for light microscopy (LM) were made using 

a sliding microtome in the Laboratório de Anatomia da Madeira, UNESP, Botucatu 

Campus, São Paulo State, for the total number of 60 samples for the two species. Sec-

tions were double stained with aqueous 1% safranin and aqueous 1% astra blue and 

mounted in synthetic resin (Entellan®).

 The wood anatomical measurements were performed for each of the 60 samples. The 

diameter of vessels (DV) was calculated based on the lumen area that was considered 

to be a circle according to the equation:

where DV is the vessel diameter and A is the vessel lumen area. The hydraulically 

weighted vessel diameter (DH) was calculated following the equation:

where DV is the vessel diameter as measured in equation 1.

 For those samples from the top of the trunk (sampling height V) that included pith we  

also measured the hydraulically weighted vessel diameter of the first formed secondary 
xylem vessels close to the pith as a proxy for the diameter of secondary xylem vessels 

closer to the stem apical meristem. This proxy is referred to as “sampling height VI”.

 In addition, we measured the vessel density (VD; number of vessel /mm2), vessel 

grouping index (VG) as proposed by Carlquist (2001) (number of vessels /number of 

vessel groups including solitary vessels as vessel groups of one) and the thickness of 

the vessel wall. Finally, theoretical hydraulic conductivity (KTH) was estimated for 

each sample using the following formula (Fichot et al. 2010):

where η represents viscosity of water at 20 °C (1.002 × 10-9, MPa s), DH represents the  

hydraulically weighted vessel diameter as calculated in Eq. 2 and VD the vessel density. 

 

DV =  �  4A 

              
π

DH =  
ΣDV

5

              ΣDV
4

 DH4π
KTH  =            × VD
 128η

(Eq. 1)

(Eq. 2)

(Eq. 3)

Downloaded from Brill.com08/20/2022 02:33:11PM
via free access



195Dória et al. – Sampling height, site, and wood traits

 For measuring the fractions of each of the xylem cell types (vessels, fibers, rays, 
and axial parenchyma), we used areas of 1 mm2 in cross-section images. We manually 

painted the area of each group of cell types in different colors using Adobe Photoshop 

CS6, and calculated the area occupied by each of these groups using Color Counter at 

ImageJ software (Schindelin et al. 2012).

 For the ultrastructure of intervessel pits, one individual per site and per species  

(20 samples in total) was used for scanning electron microscopy (SEM) and transmis-

sion electron microscopy (TEM). For SEM, we stored the samples in ethanol 70%, 

following the lab protocol of Dória et al. (2018), and observed the intervessel pits 

with a field emission SEM (Jeol JSM-7600F, Tokyo, Japan) at a voltage of 5 kV. For 
transmission electron microscopy (TEM) the samples were fixed for 48h in Karnovsky 
fixative (Karnovsky 1965) and were subsequently treated according to the protocol 
described in Dória et al. (2018). The relaxed (non-aspirated) intervessel pit membranes 

were observed using a JEOL JEM 1400-Plus TEM (JEOL, Tokyo, Japan), equipped 

with a 11 MPixel camera (Quemesa, Olympus); at least 20 intervessel pit membranes 

per individual were measured.

  All the SEM and TEM observations were carried out at the Naturalis Biodiversity 

Center, The Netherlands. For the stem-anatomical measurements, we followed the  

suggestions of the IAWA Committee (1989) and Scholz et al. (2013). The measurements 

were done using ImageJ (National Institutes of Health, Bethesda, USA).

Data	analysis
 To deal with differences in sampling height amongst individuals, we standardized 

the sampling height for each individual to scale in a range between 0 and 1 (min-max 

scaling).

 Generalized mixed-effects models (GLMMs) were used to test the relationship 

between wood traits, the five sampling heights along the main stem, and the sites 
(caatinga and cerrado). Individuals were used as the random variable to account for the 

effect of different samples collected in the same individual. Likewise, GLMMs were 

used to test for relationships amongst wood traits. We calculated the R2 values based 

on the method of Nakagawa and Schielzeth (2013), using the function r-squared in the 

package piecewiseSEM (Lefcheck 2015).

 All analyses were performed using R version 3.4.3 (R Core Team 2017) in R Studio 

version 1.1.414 (R Studio Team 2016) using the package nlme. All the differences 

were considered significant when P < 0.05.

RESULTS

Regardless of site, the largest fraction of xylem tissues along the trunk in Tabebuia 

aurea is represented by fibers (varying from 0.51 to 0.53), followed by rays (varying 
from 0.19 to 0.24), axial parenchyma (varying from 0.15 to 0.18) and vessels (varying  

from 0.9 to 0.13) (Fig. 1). For Tocoyena formosa, the fiber fraction is the largest xylem 
tissue fraction (varying from 0.37 to 0.40), followed by ray fraction (varying from 0.29 

to 0.37), vessel fraction (varying from 0.17 to 0.28) and axial parenchyma fraction 

(varying from 0.6 to 0.8) (Fig. 2).
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Figure 1. Tissue fractions (TF), light microscope cross sections (LM) and scanning electron 

microscope (SEM) surfaces of Tabebuia aurea along the five sampling heights (I: at the basis of  
the trunk, V: at the top of the trunk).        axial parenchyma fraction;         ray fraction;         vessel 

fraction;         fiber fraction. – Scale bars = 500 µm (LM), 10 µm (SEM).
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Figure 2. Tissue fractions (TF), light microscope cross sections (LM) and scanning electron  

microscope (SEM) surfaces of Tocoyena formosa along the five sampling heights (I: at the basis of  
the trunk, V: at the top of the trunk).        axial parenchyma fraction;         ray fraction;         vessel 

fraction;         fiber fraction. – Scale bars = 200 µm (LM), 2 µm (SEM).
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 There is no difference in pit and aperture size along the different sampling heights 

(Fig. 1 and 2). Likewise, there is no difference in ray morphology from top to bottom 

in both species, but at the same sampling height there is always a narrow zone of first-
formed secondary xylem where the rays are composed of more upright ray cells.
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(Fig. 3 continued) →

Figure 3. Relationships between wood traits and sampling height along the main trunk for in-

dividuals of Tabebuia aurea (green) and Tocoyena formosa (orange) occurring in caatinga and 

cerrado. The linear regression is shown for significant relationships (P < 0.05). Site dependent cor- 

relations, when present, are shown by filled squares (cerrado) and empty squares (caatinga). – 
Sampling height 0.00–1.00 refers to sampling height I–V. 3F:  .  –  .  – .  –   hydraulically weight- 

ed vessel diameter;  . . . . . .  thickness of intervessel pit membrane.
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Relationships	between	wood	traits,	sampling	height	and	sites
 Out of 13 wood traits assessed, nine show relationships with the vertical axis and 

only three show differences between sites (Fig. 3).

 The hydraulically weighted vessel diameter shows a similar curvilinear pattern with 

sampling height for Tabebuia aurea and Tocoyena formosa. For the former species, there 

is no significant relationship, but the latter species does show a significant curvilinear 
relationship with respect to hydraulically weighted vessel diameter (Fig. 3A; Suppl. 

Table S1) and theoretical hydraulic conductivity (Fig. 3B; Suppl. Table S1). Adding 

the measurements of secondary xylem vessels closer to the pith in sample height V 

as a proxy for vessels closer to the stem apical meristem (“sampling height VI”), we 

←
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do find significant relationship for the two species (Suppl. Fig. S1; Suppl. Table S2). 
Vessel fraction is positively correlated with sampling height for both species (Fig. 3C;  

Suppl. Table S1; see also Fig. 1 and 2). Increasing vessel density with increasing samp- 

ling height is observed for T. formosa (Fig. 3D; Suppl. Table S1; see also Fig. 2), while 

increasing vessel grouping with increasing height is observed for T. aurea (Fig. 3E; 

Suppl. Table S1; see also Fig. 1).

 The thickness of intervessel pit membranes varies considerably along the verti- 

cal trunk axis in both species, but independently from sampling height (Fig. 3F;  

Suppl. Table S1). For both species, the largest vessels have the thinnest pit membranes 

(Fig. 3F).

 Ray fraction shows negative relationship for both species (Fig. 3G; Suppl. Table S1; 

see also Fig. 1 and 2), and it is higher in individuals of T. formosa from the caatinga 

than in those of the cerrado (P = 0.012; Fig. 3G). Likewise, axial parenchyma frac- 

tion also shows negative relationship with sampling height, but only for T. formosa  

(Fig. 3H; Suppl. Table S1; see also Fig. 2). Sampling height trends for both species 

are also observed for wood density (Fig. 3 I; Suppl. Table S1) which declines with in- 

creasing sampling height, and it is higher in individuals of T. formosa from the caatinga 

(P = 0.008; Fig. 3I).

 For the proportion of fiber wall per fiber, opposite linear trends are observed for each 
species (Fig. 3J; Suppl. Table S1): negative for T. aurea and positive for T. formosa. 

Fiber fraction and thickness of the intervessel wall are not predicted by sampling height 

for both species (Fig. 3K, L), though the latter shows differences between sites for  

T. formosa, with thicker intervessel walls in the individuals from caatinga (P = 0.043; 

Fig. 3L).

Relationships	amongst	wood	traits
 Wood density varies less than 1.5-fold for Tabebuia aurea (from 0.50 g cm-3 to 

0.67 g cm-3) and two-fold for Tocoyena formosa (from 0.40 g cm-3 to 0.77 g cm-3)  

for the 30 samples per species (Fig. 3 I). The variation of wood density in T. aurea  

is positively correlated with the variation of the proportion of fiber wall per fiber  
(Fig. 4A; P < 0.01, R2 = 0.43). On the other hand, in T. formosa it is negatively corre- 

lated with vessel fraction (Fig. 4B; P = 0.03, R2 = 0.60), and positively with thick- 

ness of the intervessel wall (Fig. 4C; P = 0.03, R2 = 0.46) and ray fraction (Fig. 4D; 

P = 0.04, R2 = 0.54).

 As expected, theoretical hydraulic conductivity (KTH) is positively correlated with 

vessel fraction for both species (Fig. 4E; P = 0.03, R2 = 0.51 for T. aurea, and P < 0.001, 

R2 = 0.74 for T. formosa). KTH is also correlated with ray fraction (Fig. 4F), but shows 

opposite trends for each species: slightly positive for T. aurea (P = 0.05, R2 = 0.42) 

←
Figure 4. Relationships amongst wood density, theoretical hydraulic conductivity and wood 

anatomical traits for individuals of Tabebuia aurea (green) and Tocoyena formosa (orange)  

occurring in caatinga and cerrado. The linear regression is shown for significant relationships 
(P < 0.05). No site correlations are detected.
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and negative for T. formosa (P < 0.001, R2 = 0.74). Additionally, KTH is negatively 

correlated with fiber fraction for T. aurea (Fig. 4G; P < 0.013, R2 = 0.51). There is no 

relationship between KTH and wood density for either T. aurea or T. formosa (P = 0.57; 

P = 0.24, respectively, Fig. 4H).

Figure 5. Relationships between the thickness of intervessel pit membrane (TPM) and vessel  

wall thickness in Tabebuia aurea. – A: Slightly positive relationship between TPM and the  

thickness of intervessel wall. – B & D: Light microscopy cross sections showing vessel walls 

(arrows). –  C & E: Transmission electron microscopy illustrating intervessel pit membranes. 

The thickness of intervessel walls (arrows) matching with the thickness of the pit membrane 

(arrowheads).  – Scale bars = 100 µm (B, D); 2 µm (C, E). 

A
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 Thickness of intervessel pit membrane (TPM) shows relationships with a differ-

ent lignification character in the two species: a slightly positive relationship with the  
thickness of the vessel wall for T. aurea (Fig. 5A–E; P = 0.05, R2 = 0.38), and a nega-

tive relationship with the proportion of fiber wall per fiber for T. formosa (Fig. 6A–E; 

P = 0.01, R2 = 0.57).

Figure 6. Relationships between the thickness of intervessel pit membrane (TPM) and fiber  
wall thickness in Tocoyena formosa. – A: Negative relationship between TPM and the propor- 

tion of the fiber wall per fiber. – B & D: Light microscopy cross sections showing xylem fiber 
walls. – C & E: Transmission electron microscopy illustrating intervessel pit membranes. The 

thickness of xylem fiber walls matching with the thickness of the pit membrane (arrowheads).  –  
Asterisks (*) represent vestures. – Scale bars = 50 µm (B, D); 2 µm (C, E). 

A
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DISCUSSION

Our results show that there is considerable anatomical variation along the vertical gradi-

ent of individual trunks, which is functionally adapted to meet mechanical and hydraulic 

height-related constraints, but intraspecific variation between individuals inhabiting the 
different sites is negligible. This may seem surprising given the clear difference in rain 

seasonality (less and irregular distribution of rain throughout the years in caatinga vs. 

more and well-defined periods of rain in cerrado) and especially the marked difference 
in soil characteristics (deep and nutrient-poor soils with high aluminium content in cer-

rado). Furthermore, we have demonstrated that the two species occurring in both sites 

differ markedly in their wood anatomy and show specific adaptations to deal with the 
specific abiotic variables of the two sites (Dória et al. 2016).

Relationships	between	wood	traits	and	sampling	height
 Although a continuous widening of vessel diameter from top to bottom is widely 

accepted as predicted by the WBE model (West et al. 1999; Rosell et al. 2017), our 

data show a narrowing of vessels at the base of the trunk for both species (Fig. 3A). A 

similar hump-shaped trend has also been reported in other trees such as Cordia alli-

odora and Anacardium excelsum (James et al. 2003) and in Eucalyptus grandis (Petit 

et al. 2010; Pfautsch et al. 2018), and thereby disagreeing with the continuous vessel 

widening pattern from tip to base. The functional significance of vessel narrowing at 
the lowest portion of the stem remains debatable, however (Pfautsch et al. 2018). In 

our study, sampling height predicts hydraulically weighted vessel diameter in Tocoyena 

formosa only (Fig. 3A). However, this relationship becomes significant for both spe-

cies when including the measurements of the secondary xylem vessels closer to pith 

region in sampling height V as a proxy for the vessel diameter closer to the stem apical 

meristem (referring to “sampling height VI”; Suppl. Fig. S1). Additionally, our results 

corroborate the prediction of a large dataset testing the relationship between basal and 

tip vessel diameters and stem length, showing that taller plants (Tabebuia aurea in 

our study) have wider conduits at both the base and the tip (Fig. 3A; Suppl. Fig. S1)  

(Olson et al. 2018). Since theoretical hydraulic conductivity (KTH) is estimated from 

the vessel diameter, the relationship between KTH and sampling height shows the same 

non-curvilinear pattern.

 Vessel fraction shows the same vertical pattern in both species with increasing 

plant height (Fig. 3C). For the two species, the increase in vessel fraction towards the 

tip of the trunk is due to the effect of vessel density which also increases with plant 

height, though only slightly for T. aurea (Fig. 3D). This increase in number of vessels 

with height is a pattern supported by hydraulic optimal models along with vessel nar-

rowing towards the apex (Höltta et al. 2011). In addition, the axial increase in vessel 

density and fraction compensates for the potential decrease in conductance due to the 

reduced vessel diameter (Carlquist 2001; Sperry et al. 2008). According to Aloni and 

Zimmermann (1983) and Aloni (2015), the increasing auxin concentration along the 

vertical axis of plants regulate cell differentiation and cell expansion rates, leading to 

more and narrower vessels closer to the stem apex.

  While there is an increase of vessel grouping towards the upper parts of the trees in 

T. aurea, the same trend does not occur for T. formosa (Fig. 3E). Grouping of vessels 
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can be functionally explained as a way of providing an alternate pathway for water 

transport within the same vessel multiple when water transport in some of the ves-

sels is disabled by air embolism (Carlquist 1984). This strategy should minimize the 

number of water-filled vessels that are disconnected from the bulk sap stream, leading 
to a more efficient water transport mechanism in T. aurea (Mrad et al. 2018; Jacobsen 

& Pratt 2018). The wood of T. formosa, on the other hand, has vascular tracheids at 

the end of growth rings (Dória et al. 2016), which can form a subsidiary conductive 

system in case too many of the mainly solitary vessels are embolized due to drought  

stress (Carlquist 1984, 2001; Spicer 2016).

 For both species, the largest vessels are linked to the thinnest intervessel pit mem-

branes (Fig. 3F). In terms of vessel development, it is expected that larger vessels would  

have thinner pit membranes than narrower vessels due to the stretching of the cell wall 

expansion during the vessel maturation stage (Hacke et al. 2017). Also from a hydraulic 

point of view, it makes sense that more efficient, wider (and presumably also longer) 
vessels towards the trunk base of taller trees have thinner intervessel pit membranes in 

order to synergistically reduce the resistance to long distance water transport (Hacke 
et al. 2006; Choat et al. 2008; Rosell et al. 2017). However, in a 20 m tall Eucalyptus 

grandis tree, Pfautsch et al. (2018) has provided clear evidence that wider vessels have 

the thickest intervessel pit membranes, which may act as protection from drought-

induced air bubble spread in the wider and presumably more vulnerable vessels.

 Ray fraction decreases with increasing sampling height for the two species (Fig. 

3G), and the same pattern is observed for the fraction of axial parenchyma in T. for-

mosa (Fig. 3H). This reduction of wood parenchyma in smaller sized stems may be a 

result of a lesser need of both sugar/water storage and radial transport. In addition, the 

diffuse-in-aggregates parenchyma pattern in T. formosa and the confluent parenchyma 
pattern in T. aurea are interconnected with rays and form an effective 3D parenchyma 

network (Carlquist 2001) that is more pronounced at the base of the trunk, which in-

creases hydraulic capacitance via symplastic transport (Van Bell 1990; Holbrook 1995; 
Borchert & Pockman 2005; Pfautsch et al. 2015).

 Our results also show an increase in wood density with decreasing height for both 

species (Fig. 3 I), a pattern already shown in other studies (Kord et al. 2010; Mattos et al.  

2011). The main explanation for higher wood density in the lower part of the trunk 

is related to mechanics: for instance in T. aurea the proportion of fiber wall per fiber 
explains the higher wood density at the base of the trunk, which serves as mechanical 

reinforcement as a result of the increased weight that impacts this part of the plant. 

This phenomenon is probably also related to the observation that wood density tends 

to increase with cambium age (Zobel & Sprague 1998), leading to denser wood at the 

lower parts of the trunk and lighter wood in the upper stem portions (Iqbal 1995; Zobel 

& Sprague 1998; Moya et al. 2003).

Variation	 in	wood	density	 is	 linked	with	 the	proportion	of	 fiber	wall	per	 fiber	 in	 
T.	aurea,	but	with	vessel	 traits	and	ray	fraction	 in	T.	formosa
 Surprisingly, the variation in wood density for the two species studied is correlated 

with different characters. In Tabebuia aurea, the axial variation in wood density is posi- 
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tively linked with the proportion of fiber wall per fiber (PFWF) (Fig. 4A), which is con- 

sidered the most important wood anatomical trait influencing wood density across spe- 
cies (Kollmann & Cote 1968; Zieminska et al. 2013). However, for Tocoyena formosa, 

the variation in wood density is not significantly related to fibers, but instead is linked to  
decreased vessel fraction (Fig. 4B) and increased intervessel wall thickness (Fig. 4C). 

 The stronger negative relationship between PFWF and sampling height in T. aurea 

compared to the weakly positive relationship in T. formosa (Fig. 3J; Estimate = -0.07; 

0.02, respectively) explains why the proportion of fiber wall per fiber does not impact 
wood density similarly in both species (Fig. 4A). By the same token, the explanation 

of vessel fraction in the variation of wood density of T. formosa (Fig. 4B) might be in- 

fluenced by the relationship between vessel density versus sampling height (Estimate =  
42.20; Fig. 3D) which is absent in T. aurea (Fig. 3D). The considerable increase in ves- 

sel density (linked to more vessel fraction and higher vessel lumen area) with sampling 

height is probably the driver for decreased wood density in the upper parts of the trunk 

of T. formosa (Fig. 3 I), since wood density is negatively related to vessel lumen area 

and positively related to the allocation of carbon (Poorter et al. 2006; Chave et al. 

2009; Höltta et al. 2011).

 Wood density is expected to negatively relate to water transport efficiency, since it 
is negatively linked to vessel lumen area (in this study for T. formosa only, Fig. 4B) 

and capacitance (Pratt et al. 2007; Sperry et al. 2008). In addition, wood density is 

defined by the presence of a stronger fiber matrix support (Jacobsen et al. 2005, 2007), 

as shown by T. aurea (Fig. 4A) or by the presence of vessels with thicker walls (Hacke 
et al. 2001; Brodribb & Holbrook 2005) as we observe in T. formosa (Fig. 4C). These 

latter two mechanical characteristics are frequently cited with regards to vessel collapse 

prevention under increasing drought-induced negative pressures, although vessels never 

collapse in mature wood because embolism events always occur before the critical 

point of vessel collapse is reached (Hacke et al. 2001; Sperry et al. 2006; Chave et al. 

2009; Poorter et al. 2010). Based on this information, wood density seems to be more 

related to mechanical properties in T. aurea, while the link between wood density and 

hydraulics appears to be more obvious in T. formosa.

 Along the main stem axis, higher ray fraction at the base of the trunk coincides with 

denser wood for both species (Fig. 3G, I). Additionally, higher ray fraction in T. formosa 

is correlated with higher wood density (Fig. 4D). This positive relationship between 

ray fraction and wood density may be surprising at first as rays consist of parenchyma 
cells enabling radial transport exchange between phloem and xylem (Van Bel 1990; 

Salleo et al. 2004; Höltta et al. 2006), as well as storage of water and minerals (Morris 

et al. 2018). A first cause for this correlation may be related to the increased size of 
the lower trunks that require mechanical reinforcement (higher wood densities), but 

also more developed rays to transport sugars over longer radial distances. Secondly, 

the mechanical function of rays should not be ignored: ray fraction is found to be 

positively correlated to modulus of elasticity (stiffness) and radial tensile strength, 

both mechanical parameters that are positively linked with wood density (Mattheck & 

Kubler 1995; Burgert et al. 1999; Reiterer et al. 2002; Woodrum et al. 2003; Zheng & 

Martinez-Cabrera 2013; see next section).
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Rays	may	serve	different	functions	in	both	species
 The opposite trends shown by each species regarding the relationship between ray 

fraction and KTH (Fig. 4F), indicate that rays may have different functional roles for 

each species. It seems to be more related to mechanical reinforcement in Tocoyena 

formosa due to the positive relationship with wood density (Fig. 4D) and the negative 

correlation with KTH (Fig. 4F), and more related to hydraulic conductance in Tabebuia 

aurea due to the positive KTH link (Fig. 4F).

 The opposite relationships between ray fraction and KTH for the two species is 

intriguing. Although this difference is difficult to explain from a functional point 
of view, it may be related to the marked difference in ray composition: T. aurea has 

homocellular rays with only procumbent cells, while T. formosa forms heterocellu-

lar rays with rows of upright and square cells (Dória et al. 2016). It appears that the  

homocellular rays in T. aurea, perhaps in combination with the abundant paratracheal 

confluent axial parenchyma form a 3D network which positively influence KTH (Fig. 

4F). Contrastingly, the heterocellular rays of T. formosa appear to have a role in the me- 

chanical reinforcement as shown by a positive relationship with wood density (Fig. 4D).  

A positive link between wood density and rays has been reported in some studies, 

including one analysing nearly 800 Chinese tree species (Zhang & Martinez-Cabrera 

2013). However, the relationship between mechanical strength and ray proportion is 
speculative, and should involve links with modulus of elasticity and modulus of rupture 

(Pratt et al. 2007) that still remains to be assessed.

Thickness	of	intervessel	pit	membrane	(TPM)	is	linked	to	lignification,	but	shows	
contrasting	correlations	in	the	two	species
 TPM shows relationships with two different lignification characters: a positive 
relationship with vessel wall thickness for Tabebuia aurea (Fig. 5A–E) and a negative 

relationship with the proportion of fiber wall per fiber (PFWF) for Tocoyena formosa 

(Fig. 6A–E). The positive link between TPM and lignification has already been em-

phasized via the previously observed TPM-vessel wall and proportion of lignified area 
in the stem correlations (Jansen et al. 2009; Li et al. 2016; Dória et al. 2018; Dória  

et al. in press). Moreover, TPM was found to be the functional missing link to explain 

why the stems of insular woody daisies are more embolism resistant compared to their 

herbaceous relatives (Dória et al. 2018). Although we have not measured embolism 

resistance in both species, it is possible that T. formosa resembles T. aurea in their em- 

bolism resistance, based on their similar intervessel pit membrane thickness (on aver- 

age 311.4 nm and 302.5 nm, respectively) that is hypothesized as one of the best  

characters to explain variation in embolism resistance amongst woody species due to  

the direct link with air-seeding (Lens et al. 2011; Li et al. 2016; Dória et al. 2018;  

Dória et al. in press). The positive link between TPM and vessel wall thickness in  

T. aurea can be interpreted as synergistic co-variation to cope with drought-induced 

embolism formation. However, the negative relationship between TPM and the pro-

portion of fiber wall per fiber in T. formosa seems to contradict each other since a me- 

chanically stronger fiber matrix has been linked to more – not less – embolism resis- 
tance (Jacobsen et al. 2005, 2007).
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Site	differences	only	have	subtle	impact	on	wood	variation	in	Tocoyena	formosa
 The denser wood and higher ray fraction in the individuals of Tocoyena formosa 

from caatinga compared to cerrado can be interpreted in different ways. Firstly, there  

is a difference in the size of individuals: the caatinga trees are taller (3.40 m – 5 m)  

and have a thicker trunk base (15 cm – 21 cm) compared to the cerrado ones (1.12 m –  

2.32 m; 8 cm – 11 cm, respectively), which is probably related to the limited plant 

growth in the nutrient-poor cerrado soils with high aluminium content. As stated  

above, taller and wider trunks of the caatinga trees are correlated with denser wood 

and greater ray fraction. 

 In addition, our results corroborate the general trend that wood density is higher 

in drier environments (Chave et al. 2006; Preston et al. 2006; Onoda et al. 2010), as 

evidenced by the mean annual precipitation of caatinga compared to cerrado (up to  

800 mm vs 1500 mm, respectively). The T. formosa individuals from caatinga also 

show thicker vessel walls, a character that is linked with wood density in this spe-

cies, and higher ray fraction. In addition to the arguments given above, increased ray 

fraction in T. formosa trees from the caatinga might be related to increased need of 

storage, such as starch (Evert 2006) during the harsh dry period (up to nine consecu-

tive months per year).

 

CONCLUSION

In the two species studied, we find that axial sampling height along the trunk – rather 
than differences between sites – is a better predictor of wood trait variation; site-

dependent differences were confined to only three traits (wood density, ray fraction 
and intervessel wall thickness) in only one species. The pattern of vessel widening 

does not follow a continuous course from tip to base as expected by hydraulic models. 

In addition, as predicted by hydraulic models, there is an increase in vessel fraction 

upwards to compensate for the potential decrease in conductance. Interestingly, the 

largest vessels are associated with the thinnest intervessel pit membranes, which  

synergistically reduce the hydraulic resistance. 

 In terms of wood density and rays, both characters show interesting co-variation 

with different characters along the axial trunk in the two species studied. 

 For Tabebuia aurea, wood density is positively related to the proportion of fiber  
wall per fiber suggesting a mechanical function, and rays are speculated to interact  
more with the hydraulic system due to the positive link with theoretical hydraulic 

conductivity (KTH). For Tocoyena formosa, on the other hand, wood density may 

counterbalance hydraulics because of its correlation with vessel fraction and inter- 

vessel wall thickness, while ray volume seems to be more related to mechanical rein-

forcement due to its positive relationship with wood density and negative relationship 

with KTH. This means that – despite the fact that species have developed unique ad-

aptational strategies to deal with environmental constraints (Dória et al. 2016) – they  

also need to deal with species specific height-related constraints in terms of mechanical-
hydraulic trade-offs.
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Content: Figure S1 and Table S1 and S2

Figure S1. Relationship between hydraulically weighted vessel diameter and sampling height 

along the main trunk for individuals of Tabebuia aurea (green) and Tocoyena formosa (orange) 

from caatinga and cerrado. The “sampling height VI” refers to the measurements of the first 
formed vessels from sampling height V, as a proxy for the vessel diameter closer to the stem 

apical meristem. The linear regression is shown for significant relationships (P < 0.05).
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Table S1. Relationships between wood anatomical traits, sampling height and site (caatinga  

and cerrado) for individuals of Tabebuia aurea and Tocoyena formosa. Regression slopes  

(β1 = slope for linear models; β2 = slope for quadratic models) and significance levels  
(* P < 0.05; ** P < 0.01; *** P < 0.001) are given. The R2 is the conditional R2 obtained 

from the function r-squared in the package piecewiseSEM. NS = non-significant relation- 
ship; – = relationship not tested.

                                                Tabebula aurea                                          Tocotena formosa

                                    Sampling height             Site                     Sampling height                     Site

 Wood traits R2	 β1	 β2	 R2	 β1	 R2	 β1	 β2	 R2	 β1
 Hydraulically  NS NS NS NS NS 0.67 25.93 -24.51*** NS NS
 weighted vessel 
 diameter

 Theoretical NS NS NS NS NS 0.44 0.040* -0.031** NS NS
 hydraulic
 conductance

 Vessel fraction 0.49 2.96** – NS NS 0.50 9.17*** – NS NS

 Vessel density NS NS – NS NS 0.61 42.20*** – NS NS

 Vessel grouping 0.65 0.22* – NS NS NS NS – NS NS

 Thickness of NS NS – – – NS NS – – –
 intervessel pit
 membrane

 Pit aperture NS NS – – – NS NS – – –
 fraction

 Ray fraction 0.51 -5.05* – NS NS 0.58 -6.05* – 0.46 -8.08*

 Axial NS NS – NS NS 0.21 -2.68* – NS NS
 parenchyma
 fraction

 Wood density 0.55 0.072*** – NS NS 0.79 0.054** – 0.63 0.080**

 Proportion of 0.66 -0.067** – NS NS 0.74 0.020* – NS NS
 fiber wall
 per fiber
 Fiber traction NS NS – NS NS NS NS – NS NS
 
 Thickness of NS NS – NS NS NS NS – 0.50 -1.05*
 the intervessel
 wall
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Table S2. Relationships between hydraulically weighted vessel diameter, sampling height  

and site (caatinga and cerrado) for individuals of Tabebuia aurea and Tocoyena formosa. 

The above relationships include the “sampling height VI” vessel diameter measurements. 

Regression slopes (β1 = slope for linear models; β2 = slope for quadratic models) and sig-

nificance levels (* P < 0.05; ** P < 0.01; *** P < 0.001) are given. The R2 is the conditional 

R2 obtained from the function r-squared in the package piecewiseSEM. NS = non-signifi- 
cant relationship.

                                                   Tabebula aurea                                          Tocotena formosa

                                       Sampling height                 Site                   Sampling height                  Site

  Wood traits R2	 β1	 β2	 R2	 β1	 R2	 β1	 β2	 R2	 β1
 

  Hydraulically  0.63 32.3*** -6.1*** NS NS 0.79 14.49*** -2.52*** NS NS
  weighted vessel 
  diameter
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