axial tomocrapily and three dinensional IMAGI RECONSTRUCTION

L,T. Chang, B. Macdonald, and V, Perez-Mendez

Lawrence Berkeley Laboratory
University of Califomia Berkeley, Galifornia

Abstract

Summary A number of existing cameras for Nuclear Medicine imag!ng of radio-tsotope distributions give depth information about the distribution. These devices have in common that they pi vide tomographic images of the object, that is, that inases of a flven object plane have that plane in Eocus and all other object planes contribute an out-of-focus background superimposed on the in-focus image.

We present here a method for three dimensional reconstruction of these axial tomographic images which removes the biurred off-plane activity from a number of transvelize planes simultaneously. The thethod is applicable to a number of tomographic cameras, such as the multiple single-pinhole camera, the rotating slanted-hole collimator, the Anger focussing tomographe scanner, and the positron camera. The method can be implemented on a mall computer having a disc system.

Ineroduction

A number of cameras for Nuclaar Medicine Imaging have been buift in the recent past which provide depth Information about radio-isotope distributions instead of the simple projected views produced by pinhole collimators. These devices gave images which were, in principle, sindlar to the tomographic Images given by a microscope- any given plane was in focus while the out-of-focus planes gave only a smoothed-nut background. In microscopy, object contrast and resolution are hiph and the out-of-focus backrround is not disturbing. In Nuciear Medicine imaging with its low resalution and its frequencly low contrast obiects it is often not posstble to dist funolsh the in-focus plane from the out-of-focus images. Removal of the background would enable detection of smaller lesions and of lesions of lower contrist.

The method of three ifmensional imaging we present here removes this blurred background from a number of parallel planes through the object simultaneously. It 15 applicable to a number of existing condagraphic cameras and we discuss chree of tbese cameras belou. Data taken by such a camera provides information from which a computer can produce tomographic images on transverse planes through the object. Using thena tomograms and a knowledge of the geometric imaging. properties of the device, reconstructions of the original object are made on these planes with a cieconvolution technique.

Forming the Tomographic Images

Imaging devices which give depth information abou't a source point require radiation from the point to be detected from distinctly separate directions. In Nuclear ledicine imaging devices the direction of each gamma ray event is known snd, if separate views of a source distribution have been made, a tomographic

* Thie work has been supported by the U.S, Atomic Energy Conmission and by the National Institute of General Medical Services of the National Institures of Herlth, Fellowship $\# 1$ FO3CM5 7292-01, and Grant FGME1017.

Fig. 1 Making the different views with the multiple single-pinhole camera

Fig. 2 Multiple SinglewPinhole Camera- Reaponse to a point source. The tomographic fimares of the point are shown as the sum of back projections of the siggle-pinhole views.

Image on any plane through the sou:ce can be made by tack-profocting the gamma rave onto that plane.

Multiple Single Pinhole Cumera

One such tomographic device uses multiple sinciepinhole views (Fig. 1). The depth-informacion properties of these multiple viewn is illustrated in rig. 2 where the source distribution is a single point. An exposure is made using one pinhale selected from the array. Tomograpiti: 1 mages on a number of planes are made by back projecting photons from this exposure through the same pinhole and addiag the appropriate intengity to each tomngraphic plane at its intersection with the line. The process ia repeated for the other views and the final tomographic plane

Image is the sum of contributions from all these views, The plane which actually contained the point source has a shatp image while in other planes the image of the point source is bluried out.

In analyzing image formation it is ugeful to use the point resporse function $h_{f j}\left(\underline{r}, \underline{E}^{\top}\right)$. This function, characteriatic of the imaging device used, degcribes the response at point I in plane J to a poirt source at poincr' in plane i. From Fig. 2 it is seen that this function, or blurring pattem, for the multiple single-pinhole camera has a shape similar to the orlginai array of pinholes but with a size which depends upon the geometry. Fig. 3a shows one of the ptohole artays used in our wort.

F1g. 3 Blurring Patterns - a) For multiple pinhole array. b) For rotating slanted-hole collimator with discrete rotations, c) For rotating slanced-hole collimator with continuous rotation. d) Fot positron camera with data selection.

ROTATING

 COLLIMATOR

Fif. 4 Rotating Slanted-Hole Collimator CameraHesponse to a point source. The tomosraphic images of the point are shown for two positions of the collimator, 0° and 180°.

Rotaring Slanted-hole Callimator Camera

Anvther device uged to obtain tomographic images in Nuclear Medicine is the rotating slinted-hole collimator (Fig. 4). The collimatior rotates about an axis perpendicular to the detector and the parallel holes are slanted at an angle to this axis, generally about 20 degrees. When the collimator is at a given position the itrage of a point source is a aingle point on the detector, Whtis the collimator has rotated 1800 the inage of this point source has traveled on the arc of a circle to an oppraite position. As done previousiy, tomographic images on a number of trans verse planes can be made by back projeccing the detector image obtained at a given position of the collimator along the known direction of the parallel holes and then repeating this process for all positions of the collimator.

In one mode of operation of this cameta views are taken at discrere positions of the collimator and the blurring patterns have a shape similar to Fig. 3b.i

In another mode the collimator in ratated continuotisis during data collection and the blurring pattern is a circle (Fig. 3.),2

Fig. 5 Positron Camera- Response to a point source. The comographic imnges of the point nre shom for two positron events.

Positron Camera

Position cameras are currently under intensive development ${ }^{3}$ because of their ability to give comographic images without the use of a collimator and the associated loss of intensity. The two 511 Kep amrinilation gamenrays from a posizton source radiate from the source point at 180° to each other (Fig. 5). Interactions with two defectors detemine, as in the previous cases, only a line on which the source lies, Projection of events detected onto a transverse plane glves, again, a tomographic image of the source distribution wich shat plane in focus and other planes blurred and superimposed,

The fraction of detected events from a point source 1n" the midiplane, asy, decreaspe considerably at the point bource moves away from the center of the plane. Nur three dimensional image reconstruction method requires chat the point response function rematns constant in shape, size, and intensity as the point source moves over the camera field of view on a given plane, although it may be differene for differenc planes. This blurring pattert can te maintained constant over a given area of s plane if the computer which constructs the tomorraphic Image planes accepts daca only for those events ior which $\left|x_{2}-x_{1}\right| \leq d$ and $\left|y_{2}{ }^{-y_{1}}\right| \leq d$ uh ire d is smaller chan W, the width of the detectors. The region of constant detection efficiency for the midplane which results ia a square of width $H-d$. The blurriag pattem is also a Bquare (Fig. 3d).

Object Reconstruction from Tomogrophic Images

Each tomographic image plane of a three dinensional abject has a finite width slab of the object in focus. The thickness of this alab, the depth of field of the camera, depends only on geometry and detector reaolution. Of courac, included in the tomagraphic image, superimposed on the in-focus object plane, ate the blurred contributions from all the other planes which we are trying tu eliminate in the deconvolution method outlined briow. The resulting image of the abject will be a aeries of images on adjacent planea, each representing the abject aweraged over the depth of field of ti.s imaging system. Lateral and depth resolutions after deconvolution are the same as before. We are only remouing the offplane contributions and not looking for super-
reaslutton.
S' assume in che follfwifg that the object in located in ip phanes and is repromented by tha functsurs of (r), $1=1, \ldots . i_{p}$. X_{p} tomograms $t g(z)$ are iormod by a computer from camern data uning the back projection methodes discussed previously. Since the
 respronte ot in on plane j due to a paint source of unit fintensity at r^{\prime} on plane 1 , the total contribution
 :ince the wopriphte tisage has contributtons from .il oblect plames he have

$$
\begin{equation*}
c_{1}(r\}=\sum_{i=1}^{N} \int o_{1}\left(\underline{z}^{\prime}\right) h_{1}\left(\underline{z_{0}} \underline{z}^{\prime}\right) d^{2} \underline{\underline{t}}^{\prime} \quad j=1, \ldots N_{p} \tag{1}
\end{equation*}
$$

"tblelesingle rininole ranera
Fig. ? shows chat hif if a delta function of fncemisty ih mast the hiJ ($\underline{" r}^{\prime}$) is Just the pattiern h Hit the : h_{2} bole array uned, fut displaced and with n
 4 ite parameter and the ptaholes in h are lacated at portthonk rk, $x=1, \ldots . . i_{h}$, we have

$$
\begin{align*}
& 1,1=1, \ldots N_{1} \tag{2}
\end{align*}
$$

1*sing this in fif. (1) we have

For al ficon valote of r, position telative to the uptic axis, equation (2) is a fet of Sp equntions in the sip variables ot. The $\mathrm{I}^{\prime} \mathrm{s}$ are catbinations of sinple plahole Irage daka and $h(\underline{r}$, inf $)$ depends only an the pinhole tocations in the array and the placernent of ehe recnast ruction planges.

Takins the Fourier transtorm of Eq. (2) and uglng the similarity theoren for fourler transform fivea

$$
\begin{equation*}
\left.T!(\underline{u})=\sum_{i=1}^{N_{p}} t_{i}(u s+/ s i) H_{i}\right)(\underline{u}) \quad i+1, \ldots N_{p} \tag{6}
\end{equation*}
$$

where the quantities Tf, int , fif, Fourier transforms of the corresponding quanticics of Eq. (2), nae functions of the qpatial frequency $y_{\text {. }}$ To eisminate the 1 -

For those (anguiar) spatial frequencies u' for which the detcminant $\mathrm{g}\left(\underline{\underline{n}}^{\prime}\right) \quad\left|\mathrm{H}_{\mathrm{j}}\left(\underline{\underline{u}}^{\prime} / \mathrm{S}_{\mathrm{f}}\right)\right|$ is not zero. Ens. (5) can he solved for $\mathrm{O}_{\mathrm{I}}(\underline{\mathrm{y}}$ '/5i) and Inverae Fourier transforms sive the तesired background-free Imases oe(r).

We note rinat h in fif, 3 depends only on the difference, \underline{I}^{-1} ", of respense point and aource point incatlons. The more cencral functional dependence $h_{1}\left(\underline{r}, \mathbb{I}^{*}\right)$ makes the integral equation (1) much more difficuit to soitre.

Deter ifnant - When the determinant $b\left(\underline{u}^{*}\right)$ equals zera for - ome (angular) spatial Erequency ut, this somponent cattrat be detenaincai for any object plane. Using the analvtic form of che Fouricr tranaform of the deltafunction pinholes of Fig. 2 ve can fingetigace the pronertes of tha decerminant

At zero spatial frequency $H_{i l}(0)=$ Nh and the $S_{p} x_{p}$ determinant $?(o)$ ts identicaliy zero. This means that our reconstructions of (r) are indefinite by an additive constint. This is not a problem if this

Is the only zero aince this constant can be deteralned by a subaidinry condition, for instance, that of,i has no neqntive value. The general property, $D\{0$) $=0$. artaes fron tho fact that only a projection at 900 wil2 aive the cotal intensity of an object plane. All other projections for an object which has, say, :ip Planes of undform intonsity $\left(o_{1}(\underline{y})=f_{f}\right)$ atve the ane value (E_{1}) and assimment of atuen plane's in . Ity if not possible.

Because the slope of $D(u)$ is also zero at uao, the determinant has smill valuen near the oripin, for ingtance, at the first harmonic of spatial frequency, u_{1}. Since the reconstruerion $n_{k}\left(u_{1}\right)$ has terms in it proportional to $\mathrm{Tg}_{\mathrm{j}}\left(\mathrm{u}_{\mathrm{l}}\right) / \mathrm{D}\left(\mathrm{u}_{1}\right)$, when $\mathrm{g}\left(\mathrm{u}_{1}\right)$ is semll $T_{g}\left(u_{j}\right)$ must be corri pondingly neall so as to kive the correct value for $O_{k}\left(u_{1}\right)$. $\left.T_{1} ; u_{1}\right)$ depends on dara frow che eamera and thercfore has mentistical fluctuations in it wisch are marnified by $1 / D\left(u_{1}\right)$. giving rite to incorrect values for $\mathrm{O}_{\mathrm{k}}\left(\mathrm{u}_{1}\right)$. Thtore low frequency fluctuationa have not beon a problem so far for up to five-plane reconstructiona but they arv curn out to be a limitation of the reconstruetion rethod.
nther zeroes of the deteralnant can ansily be avoided by choice of n suitable pinhole array. The decerminant for vartous arrays in mhom in Fif. 6 as a function of (vector) spacial frequency and also plotted in Fig. 7 as a function of $u m$. It in seen that a repularly apaced array has numeroun zeroes in the frequency plane while orher, non-regular arrays do not have chis problem.

Fik. 6 The determinant $D\left(u^{\prime}\right)$ of the reconstuctien motrix for three planes for the multiple single-ptohole catera. a) For a 3×3 regular pinhole array, b) For the pinhole arriy of Fig. ib, e) "or the pinhole array of Fip. ?n.

Fip. 7. Determinant of the reconstruction mencrix as a function oi spatial frequency far differcht cateras and blurting patrerns.

Reconstructions - To investigete the reconstruction method a computtr simulncion was made of an abject in three planes (Fik. 8). The tomographic imaras of Fit. Ac were done using the pinhole artay of Fig. 3n, If is sectu that $t 3$, for exataple, has of in focus with blurred coneributions from the other plance. Ising theae imares the reconsf, uetions of Fif. 8d were made, in excellent viteement with the original. However, thege tomoprams were produced as if the

1. otact

FIf. A, Image Reconztruction with muitiple intriepinhole rievs - Compueter simulation assuning no statistical variation of object picture alebent intensities betveen vions. a) Projected view of object as 12 would be ween with a parallel-hole collifator, b) The these dimenstonal object lozared in three plantag. c) Toropraphic fengen conntrueted uatine nine pinholen with the blurring pettertiof Pif. 2n. d) Reconstruction of the object uning the tomographis teakea $\tau_{2}, \tau_{2}, \mathrm{E}_{3}$.

fif. 9. Imagn Reconstruction- Computar wisulazion assuming $5 z$ statiselcal vartetion of objaec pieture elppents, a) Tomographic leakes on the five planes of a Eive piane object uating blurring paernm of fik. 2a. b) Recongtiuction of chese planes shoulnk a mail noount of background introduced by photon statietich.
Nerestor had colleceed an infinice number of photona fror ench picture element. A more realistic rase is given in Fig. 9. Here, an averake of 400 countr cotal whe ansubed to have been collected froe anch nicture element of a five-plant objace. These 400 countr, however, vere diacributed acatiarically amonk the 9 pinhole views and the conograms of Fix. 9 a vire then formed. The reconatruetion shou excellent ancerent with the oripinale but a mall backpround can he scen.

A radfonctive mource whe uged with a xenan-filtad auleturire proportionat chather (thien nquare, Ien reacluetion) and the digizized gaffarevent onordicaten vere pus on engratic tape for input to the reconstrucgion proaraz. the abfoct, neitclo, crons, and ertangle, wat loented on threc olanes, $5,-20 \mathrm{~cm}$,
 was 39en. The pinhole artay of fig. Th (Gem holen gen diametar) vas uned to an co catcietze depth regolution for apiven ficid of view. The comogrars and thatis recoratructionsare shown in Fig. 10. Because of the high object contrant, acte usually the case in suclear Medtelne, she nature of the objecte ean be inferred frob the tomornazs alone. The reconseruction pechod, hovejer, has clearly gucceusfully renoved artifact and background fron che comoframe.

 plnholo, array of Ele. 2 a .

The Hokneint shanced-liole Culifentor

For thte enmora, and aiso for the ponteror. camera, the poine response function hat the form (analofoun to Eq. 2)
 is the angle rhe ninnted holer aske with the collimator'n axtin of raincion. Tha atisence of the socfficient $S_{j} / 5_{i}$ which enieipilics \underline{r}^{\prime} in the Futcipie pinhole engo maken the reconstivetion equatione (aralogous so E.q. 5) much stapler -

$$
\begin{equation*}
T_{J}(\underline{u})=\sum_{n}^{N} \mathrm{O}_{1}(\underline{\underline{u}}) H_{i j}(\underline{u}) \quad g=1 \ldots \ldots N_{p} \tag{B}
\end{equation*}
$$

He note there are no ecaie changen required there.
Whon this catura in operated in the continuousiy rotating mode tho blur pattern ty an annulus (Fig.je) and His depends on the bagnitude of Apatial frequency. u. and not on isu vector eompanents. $H_{i} j(u)$ is n matrix syaretrie in the indicen ind f.
in this mode wo Mave

$$
\begin{equation*}
H_{1 j}(u)=J_{o}\left(u_{1 j} u\right) \tag{9}
\end{equation*}
$$

where J_{0} it the Destel function of order tes so. The determinant of this matrix for four regulinty space planes in shown in Fig. 7.

Ah dincusmed before, datin from che position camern whould be eaken wich nom maxtmum allowable sfremence in the conrdinite valuen, $d=\max \left(\left|x_{1}-x_{2}\right|\right)$
 glant which in wifflcienty nont the midplane chere is in arej where point sourcen nice detected with congtint effirlancy. The pafnt reaponat function ts then rivon
 the crual tons governing tomosian formation are the thare ats Eqn. (8) and the reconntrueted objoct ${ }^{\prime} \mathrm{N}$ Furtar kransfore in plven by

$$
\begin{equation*}
a_{k}(\underline{u})+\sum_{i=1}^{N_{j}} i_{\underline{j}}(\underline{u}) T_{j}[\underline{y}) \quad k=1, \ldots s_{p} \tag{10}
\end{equation*}
$$

 exaluated at khe apatiat frequency \underline{y}.

If the foinc rexpante function is evalunted for a*al! anciet (henlecting foldd angle effecti) we have
 (12)
 (Ify)(u)| is civen in Fig. 10 n and shown the falliar
 the ponitron cabeta, hotever, if the andy ne of the camesan grudled which does not ghom a decrense as highor apatiat frequencten which any give tat
 taxally, shese cateran ate conatructed to necopt a lorge volld anple $\left(1,-40^{\circ}\right)$ and the effeces of wolld nnple nust be gut into the poine refipotic functions.
 and ta aina separitizo functian of ung and the because the bluzthor pate.eqt in in Bquare then the knoorraphic planes art repathrly apaed $\mathrm{H}_{11}(\underline{(g)}$ depends on che
 $=7!r i x$ i! (for each apatial frequency copponent), there
 i. 1a. af rnitsic, also real and furmetric but it in not separable, Gor regularly spaced planes it has ahout
 frequency shmponent.

Gomptictunal gequitrefentan operation of thin
 ssall conpueer topether with an nasociased disc aygeth, ind work is in profress to implement thik. A randon accean merory o! $\geq B K$ is neple to reconstruct somontates having 6ix 64 - 4096 picture elemente. The inverse raticen lig $\left(\frac{1}{2}\right)$ need to he pre-enmpued for a piven koosetry ind number of planes and will reside os disk
 witt che fordiam trangforms of the S_{p} tomograms, one ne a Ilm, dith reartangesent and stornfe on dige of the rand and ! mapinaty parta as $n\left(2 S_{p}\right) \times 4096$ matrix. \therefore fiven flase in reconatrueted by urtaping she T and G atertcen fots ramdon access mborage, a huffer-load ar a tfre, and ndding appropriate produces of the elerenta of t and T into the resl and imaninory parta of the
 and muitiolications. An fnverse Fourfer cransform will sive the teconstructed plane.

References

L. fis. Frcedann, Digital Famin Camera TomorraphyTheory, in Iomographic luaging in Nuclegr Yedicime (Soctecy of Nuclear Medici: ${ }^{(1)}$ New York, 1977) G.S. Freedman, ed.) ps 68.
2. 6. Muchllehner, Performance Parametera for a Tamogrichic Scintillatiun Camera, ibidem, ng 76
3. There are five different groups in chis sybposism reporting work vich positron detectors, Fipures is modeled after that of D. Chu, et al, at Lawrence Berkeiey Laboratory.

